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Abstract

In this paper, we address the problem of joint scheduling andresource allocation for the downlink of

an orthogonal frequency division multiple access (OFDMA) based wireless network. Since perfect current

knowledge of channel state information (CSI) for all users may be difficult to maintain at the base-station,

especially when the number of users and/or subchannels is large, we consider resource allocation under

imperfect CSI, where the channel state is described by a generic probability distribution. In particular,

we model the resource allocation problem as the maximization of an expected sum utility over user

allocations, powers, and code rates, subject to an instantaneous sum-power constraint. First, we consider

the “continuous” case where multiple users and/or code rates can time-share a single OFDMA subchannel

and time slot. This yields a non-convex optimization problem that we convert into a convex optimization

problem and solve optimally using a dual optimization approach. Second, we consider the “discrete”

case where only a single user and code rate is allowed per OFDMA subchannel per time slot. For the

mixed-integer optimization problem that arises, we discuss the connections it has with the continuous

case and show that it can solved optimally in some situations. For the other situations, we present a bound

on the optimality gap. For both cases, we provide algorithmic implementations of the obtained solution.

Finally, we study, numerically, the performance of the proposed algorithms under varying degrees of CSI

uncertainty and OFDMA system configurations.

I. INTRODUCTION

In the downlink of a wireless orthogonal frequency divisionmultiple access (OFDMA) system, the

base station (BS) delivers data to a pool of users whose channels vary in both time and frequency. Since
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bandwidth and power resources are limited, the BS would liketo allocate them most efficiently, e.g., by

pairing users with strong subchannels and distributing power in the most effective manner. At the same

time, the BS may need to maintain per-user quality-of-service (QoS) constraints, such as a minimum

reliable rate for each user. Overall, the BS faces a resourceallocation problem where the goal is to

maximize an efficiency-related quantity (e.g., the sum of log-throughput) under particular (e.g., power)

constraints. Although the optimal allocation of resourcesis clearly a function of the instantaneous channel

state of all users at all subchannels, it is difficult in practice to maintain perfect instantaneous channel

state information (CSI), and so resource allocation must beaccomplished under imperfect CSI.

In this paper, we consider the problem of simultaneous user scheduling, power allocation, and rate

optimization in an OFDMA downlink system when only a genericchannel-state distribution is available

at the BS. Here, the use of a generic channel-state distribution allows us considerable flexibility in the

modeling of channel uncertainty. In particular, we consider the problem of maximizing expected sum-

utility subject to a constraint on sum-power under two scenarios. In the first scenario, we allow multiple

users and/or code rates to time-share any given subchannel and time slot. This formulation results in a non-

convex optimization problem. We show that it can be converted into a convex optimization problem and

solved optimally using a dual optimization approach. For this, we propose an algorithm that converges

exponentially fast to the optimal solution. In the second scenario, we allow at most one user-MCS

combination to be allocated on any subchannel. This formulation results in a mixed-integer optimization

problem. We discuss connections between the two scenarios and attack the second problem using the

solution obtained in the first. For some cases, we show that the obtained solution has an optimality

gap (i.e., difference between the obtained and optimal performance) of zero, while for the other cases,

we bound the optimality gap. In addition, we propose an algorithmic implementation of the proposed

solution. Finally, we study, numerically, the performanceof the proposed algorithms under different

OFDMA system configurations.

We now discuss related work. The problem of OFDMA downlink scheduling and resource allocation

underperfectCSI has been addressed in a number of publications (e.g., [1]–[6]). In [1], a subchannel, bit-

rate, and power allocation algorithm was developed to minimize power consumption while maintaining

a data rate requirement. The authors of [2] proposed a low-complexity power-adaptation algorithm to

maximize sum-rate. They found that sum-rate is maximized when each subchannel is assigned to the user

with the single best channel gain for that subchannel, and when the transmit power is distributed over

subchannels using a water-filling policy. In [5], a weighted-sum ergodic-capacity maximization problem

was formulated to exploit time, frequency, and multi-user diversity while enforcing different notions of
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fairness. Non-convex optimization problems of weighted sum-rate maximization and weighted sum-power

minimization were solved using a Lagrange dual decomposition method in [6].

The above works assume the availability of perfect transmitter CSI that would be very difficult to

maintain in practice. We claim that a more practical formulation of the OFDMA downlink resource

allocation problem would assume imperfect CSI. The effect of imperfect CSI has been widely studied

for single-user OFDM (e.g., [7]–[9]). In [7], channel prediction was used to mitigate the effect of outdated

CSI on the performance of adaptive OFDM systems. The effect of OFDM channel estimation error, as well

as that of outdated CSI, were studied for the variable bit-rate case in [8]. In [9], an optimal power loading

algorithm for rate maximization was derived based on average and outage capacity criteria, and it was

concluded that the outage rate of the system may be greatly reduced due to CSI error. Resource allocation

strategies under imperfect CSI for a multi-user (e.g., OFDMA) downlink system has been studied in

[10]–[12]. In [10], the authors considered the problem of ergodic weighted sum-rate maximization for

user scheduling and resource allocation, and studied the impact of channel estimation error on OFDMA

performance, where channel estimation error resulted pilot-aided MMSE channel estimation. In contrast,

we consider a general utility maximization framework wherein no restrictive assumptions are made on the

generation of imperfect CSI. In [12], a margin adaptive resource allocation framework was studied to cope

with feedback delay and outdated CSI. In particular, the problem of total transmit power minimization,

subject to strict constraints on conditional expected usercapacities, was investigated. In contrast, we

focus on maximizing a more general concave goodput-based utility subject to a sum-power constraint.

The rest of the paper is organized as follows. In Section II, we outline our system model and frame

the optimization problems that we intend to solve. In Section III, we consider the “continuous” problem,

where each subchannel can be shared by multiple users and rates, and present an optimal solution.

In Section IV, we consider the “discrete” problem, where each subchannel can support at most one

combination of user and rate per time slot. There we show that, under certain conditions, the continuous

and discrete problems become equivalent, allowing us to apply our approach to the continuous problem.

When these conditions do not hold, we propose a practical algorithm that approximately solves the

discrete problem and bound its performance. In Section V, wecompare the performance of the proposed

algorithms to reference algorithms under various settings. Finally, in Section VI, we conclude.

II. SYSTEM MODEL

We consider a downlink OFDMA system withN subchannels andK active users (N,K ∈ Z+).

During every channel use, a symbol (of any signaling scheme)is transmitted using a particular OFDMA
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subchannel. It propagates through a fading channel on the way to its intended mobile recipient. The

OFDMA subchannels are assumed to be non-interfering with gains that are time-invariant over each

symbol duration. Furthermore, the subchannels associatedwith a particular user are assumed to be statis-

tically independent of those associated with other users. Thus, the successful reception of a transmitted

symbol depends on the corresponding subchannel’s SNRγ, powerp, and modulation and coding scheme

(MCS) m. Here, we assume that MCSm ∈ {1, . . . ,M} corresponds to a transmission rate ofrm bits

per symbol and a symbol error probability ofǫm(pγ). The symbol error probability is a function of the

received SNRpγ because we treat the subchannel SNRγ as an exogenous parameter.

Given a symbol error rate ofǫm(pγ), the goodputg =
(
1−ǫm(pγ)

)
rm quantifies the expected number

of bits per symbol that can be transmitted without error. In the sequel, we will focus on maximizing

goodput-based utilities of the formU(g), whereU(·) is any twice-differentiable strictly-increasing concave

function. To make the problem tractable, we will assume symbol error probabilities of the form1 ǫm(pγ) =

ame−bmpγ , wheream andbm are known constants (see, e.g., [10]).

Before we can precisely state our scheduling and resource allocation (SRA) problem, we need to

introduce some additional notations. First, to indicate how subchannels are partitioned among users and

rates in each time-slot, we introduce the proportionality indicatorIn,k,m, whereIn,k,m = 1 means that

subchanneln is fully dedicated to userk at MCSm, andIn,k,m = 0 means that subchanneln is totally

unavailable to userk at MCSm. The subchannel resource constraint is then expressed as
∑

k,m In,k,m ≤ 1

for all n. In the sequel, we consider two flavors of the SRA problem, a “continuous” one where each

subchannel can be shared among multiple users and/or rates per time slot (i.e.,In,k,m ∈ [0, 1]), and a

“discrete” one where each subchannel can be allocated to at most one user/rate combination per time slot

(i.e., In,k,m ∈ {0, 1}). Next, we introducepn,k,m ≥ 0 as the power that would be expended on subchannel

n if it was fully allocated to the user/rate combination(k,m). With this definition, the total expended

power becomes
∑

n,k,m In,k,mpn,k,m. Finally, we introduceγn,k as thenth subchannel’s SNR for user

k. Although we assume that the BS does not know the SNR realizations {γn,k}, we assume that it does

know the (marginal) distribution of eachγn,k.

Our objective is to maximize the expected sum utilityE
{∑

n,k,m In,k,mUn,k,m(gn,k,m)
}

, wheregn,k,m

denotes the goodput that is contributed from subchanneln by userk with MCSm if that subchannel was

1 While models of the formame−bmpγ are typically used to describebit error probability [10], we can adapt this model to

symbolerror probability using a generalization of the goodput metric. For example, under bit error probabilityame−bmpγ and

d independent bits per symbol, we would generalize the goodput expression tog = (1− ame−bmpγ)drm. While all results in

this paper can be easily extended to this generalized goodput expression, we consider only the cased = 1, for simplicity.

November 2, 2010 DRAFT



5

fully allocated to that user/MCS combination. Here, the expectation is taken over the subchannel-SNRs

{γn,k}, which in turn affect the goodputs{gn,k,m}. The utility function Un,k,m(·) is used to trans-

form goodput into a quality-of-service (QoS) or fairness2 metric, e.g., maximin fairness or proportional

fairness [13]. We assumeUn,k,m(·) to be any generic real-valued function that is twice differentiable,

strictly-increasing, and concave withUn,k,m(0) < ∞. Therefore,U ′
n,k,m(·) > 0 andU ′′

n,k,m(·) ≤ 0, where

′ denotes the derivative. Incorporating a sum-power constraint to our objective, our SRA problem then

becomes

SRA , max
{pn,k,m≥0}

{In,k,m}

E

{
N∑

n=1

K∑

k=1

M∑

m=1

In,k,mUn,k,m

(
(1− ame−bmpn,k,mγn,k)rm

)

}

(1)

s.t.
∑

k,m

In,k,m ≤ 1 ∀n and
∑

n,k,m

In,k,mpn,k,m ≤ Pcon

In Section III, we solve the SRA problem for the continuous caseIn,k,m ∈ [0, 1], and in Section IV we

solve it for the discrete caseIn,k,m ∈ {0, 1}.

III. O PTIMAL SCHEDULING AND RESOURCEALLOCATION WITH SUBCHANNEL SHARING

In this section, we address the SRA problem in the case whereIn,k,m ∈ [0, 1] ∀(n, k,m). Recall that this

problem arises when sharing of any subchannel by multiple users and/or multiple MCS combinations is

allowed. We refer to this problem as the continuous scheduling and resource allocation (CSRA) problem.

Defining I as theN ×K ×M matrix with (n, k,m)th element asIn,k,m and the domain ofI as

ICSRA :=
{
I : I ∈ [0, 1]N×K×M ,

∑

k,m In,k,m ≤ 1 ∀n
}
,

the CSRA problem can be stated as

CSRA := min
{pn,k,m≥0}

I∈ICSRA

−
∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ame−bmpn,k,mγn,k)rm

)}

s.t.
∑

n,k,m

In,k,m pn,k,m ≤ Pcon.

(2)

This problem has a non-convex constraint set, making it a non-convex optimization problem. In order to

convert it into a convex optimization problem, we write the “actual” power allocated to userk at MCS

m on subchanneln asxn,k,m = In,k,m pn,k,m. Then, the problem becomes

CSRA = min
{xn,k,m≥0}

I∈ICSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) s.t.
∑

n,k,m

xn,k,m ≤ Pcon, (3)

2In our formulation, ifUn,k,m(·) was chosen to incentivize “fairness” constraints, then thefairness would be imposed jointly

over users, subchannels, and rates. If one instead desired to impose fairness over users only, then an optimization problem of

the form
∑

k
E
{

Uk

(

∑

n,m
In,k,mpn,k,m

)}

may be more appropriate. However, this latter problem may require a different

optimization approach than the one taken in this paper.

November 2, 2010 DRAFT



6

whereFn,k,m(·, ·) is given by

Fn,k,m(In,k,m, xn,k,m) =







−E
{

Un,k,m

(
(1− ame−bmxn,k,mγn,k/In,k,m)rm

)}

if In,k,m 6= 0

0 otherwise.
(4)

The modified problem in (3) is a convex optimization problem with a convex objective function (shown

in Appendix A) and linear inequality constraint. Moreover,Slater’s condition is satisfied atIn,k,m = 1
2KM

andxn,k,m = Pcon
N In,k,m, ∀n, k,m. Hence, the solution of (3) is the same as that of its dual problem (i.e.,

zero duality gap) [14]. Let us denote the optimalI andx for (3) by I∗
CSRA andx∗

CSRA, respectively, and

let p∗
CSRA be the correspondingp.

Writing the dual formulation, usingµ as the dual variable, the Lagrangian of (3) is

L(µ, I,x) =
∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) +
( ∑

n,k,m

xn,k,m − Pcon

)

µ, (5)

where we usex to denote theN×K×M matrix [xn,k,m]. The corresponding unconstrained dual problem,

then, becomes

max
µ≥0

min
x�0

I∈ICSRA

L(µ, I,x)

= max
µ≥0

min
I∈ICSRA

L(µ, I,x∗(µ, I)) = max
µ≥0

L(µ, I∗(µ),x∗(µ, I∗(µ))) = L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))),(6)

where x � 0 means thatxn,k,m ≥ 0 ∀n, k,m, x∗(µ, I) denotes the optimalx for a given µ and

I, I∗(µ) ∈ ICSRA denotes the optimalI for a givenµ, and µ∗ denotes the optimalµ. In the next

few subsections, we will optimize the Lagrangian accordingto (6) w.r.t. x, I, andµ in Section III-A,

Section III-B, and Section III-C, respectively. This will be followed by the proposed iterative algorithm

to solve CSRA problem in Section III-D. We will, then, end thediscussion on CSRA problem with few

insightful properties of the obtained optimal CSRA solution in Section III-E.

A. Optimizing over total powers,x, for a givenµ and user-MCS allocation matrixI

The Lagrangian in (5) is a convex function ofx. Therefore, any local minima of the function is the

global minima. Calculating the derivative ofL(µ, I,x) w.r.t. xn,k,m, we get

∂L(µ, I,x)

∂xn,k,m
(7)

=







µ if In,k,m = 0

µ− ambmrm E
{

U ′
n,k,m

(
(1− ame−bmxn,k,mγn,k/In,k,m)rm

)
γn,ke

−bmxn,k,mγn,k/In,k,m

}

otherwise.
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Clearly, if In,k,m = 0, L(·, ·, ·) is an increasing3 function ofxn,k,m sinceµ ≥ 0. Therefore,x∗n,k,m(µ, I) =

0. If howeverIn,k,m 6= 0, then∂L(µ,I,x)
∂xn,k,m

is an increasing function ofxn,k,m sinceU ′
n,k,m(·) is a decreasing

function of xn,k,m. Thus, we have

µ− ambmrm E
{

U ′
n,k,m

(
(1− ame−bmxn,k,mγn,k/In,k,m)rm

)
γn,ke

−bmxn,k,mγn,k/In,k,m

}

= 0 (8)

for some positive value ofxn,k,m if and only if 0 ≤ µ ≤ ambmrmU ′
n,k,m

(
(1−am)rm

)
E{γn,k}. Therefore,

x∗n,k,m(µ, I) =







x̃n,k,m(µ, I) if 0 ≤ µ ≤ ambmrmU ′
n,k,m

(
(1− am)rm

)
E{γn,k}

0 otherwise,
(9)

wherex̃n,k,m(µ, I) satisfies

µ = ambmrm E
{
U ′
n,k,m

(
(1− ame−bmx̃n,k,m(µ,I)γn,k/In,k,m)rm

)
γn,ke

−bmx̃n,k,m(µ,I)γn,k/In,k,m
}
. (10)

From (10), we observe that̃xn,k,m(µ, I) = p̃n,k,m(µ)In,k,m wherep̃n,k,m(µ) satisfies

µ = ambmrm E
{
U ′
n,k,m

(
(1− ame−bmp̃n,k,m(µ)γn,k)rm

)
γn,ke

−bmp̃n,k,m(µ)γn,k
}
. (11)

Combining the above observations, we can write for anyI ∈ ICSRA and (n, k,m) that

x∗n,k,m(µ, I) = In,k,m p∗n,k,m(µ), (12)

where

p∗n,k,m(µ) =







p̃n,k,m(µ) if 0 ≤ µ ≤ ambmrmU ′
n,k,m

(
(1− am)rm

)
E{γn,k}

0 otherwise,
(13)

and p̃n,k,m(µ) satisfies (11). Note that if such ãpn,k,m(µ) exists that satisfies (11), then it is unique.

This is because, in (11),U ′
n,k,m(·) is a continuous decreasing positive function ande−bmp̃n,k,m(µ)γn,k

is a strictly-decreasing continuous function ofp̃n,k,m(µ) which makes the right side of (11) a strictly-

decreasing continuous function ofp̃n,k,m(µ). Therefore, in the domain of its existence,p̃n,k,m(µ) is unique

and decreases continuously with increase inµ. Consequently,x∗n,k,m(µ, I) is a decreasing continuous

function ofµ. A sample plot showing the variation ofp∗n,k,m(µ) w.r.t. µ has been shown in Fig. 1.

3We use the terms “increasing” and “decreasing” interchangeably with “non-decreasing” and “non-increasing”, respectively.

The terms “strictly-increasing” and “strictly-decreasing” are used when appropriate.
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B. Optimizing over user-MCS allocation matrixI for a givenµ

Substitutingx∗(µ, I) from (12) into (5), we get the Lagrangian as follows.

L(µ, I,x∗(µ, I))

= −µPcon +
∑

n

∑

k,m

In,k,m

[
Vn,k,m(µ,p∗

n,k,m(µ))
︷ ︸︸ ︷

−E
{

Un,k,m

(
(1− ame−bmp∗

n,k,m(µ)γn,k)rm
)}

+ µp∗n,k,m(µ)

]

︸ ︷︷ ︸

Ln(µ,In)

, (14)

where In = {In,k,m ∀(k,m)}. Since the above Lagrangian contains the sum ofLn(µ, In) over n,

minimizing Ln(µ, In) for everyn (over all possibleIn) minimizes the Lagrangian. Now,Ln(µ, In) is

an linear function of{In,k,m ∀(k,m)} that satisfies
∑

k,m In,k,m ≤ 1. Therefore,Ln(µ, In) is minimized

by theIn that gives maximum possible weight to the(k,m) combination with the most negative value

of Vn,k,m(µ, p∗n,k,m(µ)). To write this mathematically, let us define, for eachµ and subchanneln, a set

of participating user-MCS combinations that yield the samemost-negative value ofVn,k,m(µ, p
∗
n,k,m(µ))

over all (k,m) as follows:

Sn(µ) ,
{

(k,m) : (k,m) = argmin
(k′,m′)

Vn,k′,m′(µ, p∗n,k′,m′(µ)), andVn,k,m(µ, p
∗
n,k,m(µ)) ≤ 0

}

. (15)

If Sn(µ) is a null or a singleton set, then the optimal allocation on subchanneln is given by

I∗n,k,m(µ) =







1 if (k,m) ∈ Sn(µ)

0 otherwise.
(16)

However, if |Sn(µ)| > 1 (cardinality greater than one), then multiple(k,m) combinations contribute

equally towards the minimum value ofLn(µ, I) and thus the optimum can be reached by sharing

subchanneln. In particular, let us suppose thatSn(µ) = {
(
k1(n),m1(n)), . . . , (k|Sn(µ)|(n),m|Sn(µ)|(n)

)
}.

Then, the optimal allocation of subchanneln is given by

I∗n,k,m(µ) =







In,ki(n),mi(n) if (k,m) = (ki(n),mi(n)) for somei ∈ {1, . . . , |Sn(µ)|}

0 otherwise,
(17)

where the vector(In,k1(n),m1(n), . . . , In,k|Sn(µ)|(n),m|Sn(µ)|(n)) is any point in the unit-(|Sn(µ)|−1) simplex,

i.e., it belongs to the space[0, 1]|Sn(µ)| and satisfies

|Sn(µ)|∑

i=1

In,ki(n),mi(n) = 1. (18)
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C. Optimizing overµ

In order to optimize overµ, we can calculate the Lagrangian optimized for a given valueof µ as

L(µ, I∗(µ),x∗(µ, I∗(µ)))

= −µPcon +
∑

n,k,m

I∗n,k,m(µ)

[

− E
{

Un,k,m

(
(1− ame−bmp∗

n,k,m(µ)γn,k)rm
)}

+ µp∗n,k,m(µ)

]

, (19)

and then maximize it over all possible values ofµ ≥ 0 to find µ∗. Notice from (16)-(18) that we have
∑

k,m I∗n,k,m(µ
∗) = 1 for at least onen. Otherwise,I∗(µ∗) = 0 which, clearly, is not the optimal solution.

Therefore,µ∗ ≥ µmin > 0, where

µmin = min
n,k,m

ambmrm E
{
U ′
n,k,m

(
(1− ame−bmPconγn,k)rm

)
γn,ke

−bmPconγn,k
}

(20)

is obtained by taking̃pn,k,m(µ) → Pcon for all (n, k,m) in the right side of (11). Sincep∗n,k,m(µ) is a

decreasing continuous function ofµ (seen in Section III-A), we have
∑

n,k,m x∗n,k,m(µ, I) > Pcon for all

I 6= 0 andµ < µmin. We can also obtain an upper boundµ∗ ≤ µmax, where

µmax = max
n,k,m

ambmrmU ′
n,k,m

(
(1− am)rm

)
E{γn,k}, (21)

is obtained by taking̃pn,k,m(µ) → 0 in the right side of (11). Thus, for anyµ > µmax, x∗n,k,m(µ, I) =

0 ∀n, k,m, I. Since, the primal objective in (3) is not maximized when zero power is allocated on all

subchannels, we haveµ∗ ∈ [µmin, µmax] ⊂ (0,∞).

At the optimalµ, i.e., µ∗, if we have |Sn(µ
∗)| ≤ 1 ∀n, then the optimal CSRA allocation,I∗

CSRA,

equalsI∗(µ∗) and can be calculated using (16). Moreover, the optimal power allocationp∗
CSRA allocates

p∗n,k,m,CSRA =







p∗n,k,m(µ
∗) if I∗n,k,m(µ

∗) 6= 0

0 otherwise.
(22)

to every possible(n, k,m) combination. However, if for somen, we have|Sn(µ
∗)| > 1, then ambiguity

arises due to multiple possibilities ofI∗(µ∗) obtained via (17). In order to find the optimal user-MCS

allocation in such cases, we use the fact that the CSRA problem in (3) is a convex optimization problem

whose optimal solution satisfies the sum-power constraint with equality, i.e.,

∑

n,k,m

x∗n,k,m(µ
∗, I∗(µ∗)) =

∑

n,k,m

I∗n,k,m(µ
∗)p∗n,k,m(µ

∗) = Pcon. (23)

This is becauseµ∗ ≥ µmin > 0 (shown earlier) and the complementary slackness conditiongives that

µ∗
(∑

n,k,m x∗n,k,m(µ
∗, I∗(µ∗)) − Pcon

)
= 0. Now, the total power allocated to any subchanneln at µ∗

is
∑|Sn(µ∗)|

i=1 In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗) where{In,ki(n),mi(n)}
|Sn(µ∗)|
i=1 satisfies (18). This quantity is

November 2, 2010 DRAFT



10

dependent on the choice of values for{In,ki(n),mi(n)}
|Sn(µ∗)|
i=1 and takes on any value between an upper

and lower bound given by the following equation:

min
i

p∗n,ki(n),mi(n)
(µ∗) ≤

|Sn(µ∗)|
∑

i=1

In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗) ≤ max
i

p∗n,ki(n),mi(n)
(µ∗). (24)

Note that the existence of at least oneI = I∗(µ∗) satisfying

∑

n

∑

i

In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗) = Pcon (25)

is guaranteed by the optimality of the dual solution (of our convex CSRA problem over a closed constraint

set). Therefore, we necessarily have
∑

n mini p
∗
n,ki(n),mi(n)

(µ∗) ≤ Pcon, and
∑

nmaxi p
∗
n,ki(n),mi(n)

(µ∗) ≥
Pcon. In addition, all choices of user-MCS allocations,I∗(µ∗), given by (17) that satisfy the equality
∑

n,k,m I∗n,k,m(µ
∗) p∗n,k,m(µ∗) = Pcon, are optimal for the CSRA problem.

In the case that the optimal solutionI∗(µ∗) is non-unique, i.e.,|Sn(µ
∗)| > 1 for somen, then one

instance ofI∗(µ∗) can be found as follows. For each subchanneln, define

(kmax(n, µ
∗),mmax(n, µ

∗)) := argmax
i

p∗n,ki(n),mi(n)
(µ∗), (26)

(kmin(n, µ
∗),mmin(n, µ

∗)) := argmin
i

p∗n,ki(n),mi(n)
(µ∗), (27)

and find the value ofλ ∈ [0, 1] for which

λ
(∑

n

pn,kmin(n,µ∗),mmin(n,µ∗)(µ
∗)
)

+ (1− λ)
(∑

n

pn,kmax(n,µ∗),mmax(n,µ∗)(µ
∗)
)

= Pcon, (28)

i.e.,

λ =

∑

n pn,kmax(n,µ∗),mmax(n,µ∗)(µ
∗)− Pcon

∑

n pn,kmax(n,µ∗),mmax(n,µ∗)(µ∗)−
∑

n pn,kmin(n,µ∗),mmin(n,µ∗)(µ∗)
. (29)

Now, defining two specific allocations,Imin(µ∗) andImax(µ∗), as

Imin
n,k,m(µ

∗) =







1 (k,m) = (kmin(n, µ
∗),mmin(n, µ

∗))

0 otherwise,
, Imax

n,k,m(µ
∗) =







1 (k,m) = (kmax(n, µ
∗),mmax(n, µ

∗))

0 otherwise, (30)

respectively, the optimal user-MCS allocation is given byI∗
CSRA = λImin(µ∗) + (1 − λ)Imax(µ∗). The

corresponding optimal power allocation is then given by (22). It can be seen that this solution satisfies

the subchannel constraint as well as the sum power constraint with equality, i.e.,

∑

n,k,m

I∗n,k,m(µ
∗)p∗n,k,m(µ

∗) =
∑

n,k,m

x∗n,k,m(µ
∗, I∗(µ∗)) = Pcon.

Two interesting observations can be made from the above discussion. Firstly, for any choice of concave

utility functionsUn,k,m(·), there exists an optimal scheduling and resource allocation strategy that allocates

each subchannel to at most2 user-MCS combinations. Therefore for allocatingN subchannels, even if
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more than2N user-MCS options are available, at most2N such options will be used. Secondly, if

Imin(µ∗) = Imax(µ∗), then the optimal CSRA solution allocates power to at most one (k,m) combination

for every subchannel, i.e., no subchannel is shared among any two or more user-MCS combinations. This

observation will motivate the SRA problem’s solution without subchannel sharing in Section IV.

D. Algorithmic implementation

In practical systems, it is not possible to search exhaustively overµ ∈ [µmin, µmax]. Thus, we propose

an algorithm that will reach solutions in close (and adjustable) proximity to the optimal. In this algorithm,

we first narrow down the location ofµ∗ lies by using a bisection-search over[µmin, µmax] for the optimum

total power allocation, and then find a set of resource allocation decisions,(I,x), that achieve a total

utility close to the optimal.

To proceed in this direction, with the aim of developing a framework to do bisection-search overµ,

let us define the total optimal allocated power for a given value ofµ as follows:

X∗
tot(µ) ,

∑

n,k,m

x∗n,k,m(µ, I
∗(µ)), (31)

whereI∗(µ) andx∗(µ, I∗(µ)) (defined in (6)) minimize the Lagrangian (defined in (5)) for agivenµ.

The following lemma relates the variation ofX∗
tot(µ) with respect toµ.

Lemma 1. The total optimal power allocation,X∗
tot(µ), is a monotonically decreasing function ofµ.

Proof: A proof sketch is given in Appendix B. For the full proof, see [15].

A sample plot ofX∗
tot(µ) and L(µ, I∗(µ),x∗(µ, I∗(µ))) as a function ofµ is shown in Figure 2.

From the figure, three observations can be made. First, asµ increases, the optimal total allocated power

decreases, as expected from Lemma 1. Second, as expected, the Lagrangian is maximized for that value

of µ at which X∗
tot(µ) = Pcon. Third, the optimal total power allocation varies continuously in the

region of µ where the optimal allocation,I∗(µ), remains constant and takes a jump (negative) when

I∗(µ) changes. This happens for the following reason. We know thatfor any (n, k,m), p∗n,k,m(µ) is a

continuous function ofµ. Thus, when the optimal allocation remains constant over a range ofµ, the

total power allocated,
∑

n,k,m I∗n,k,m(µ)p
∗
n,k,m(µ) also varies continuously withµ. However, at the point

of discontinuity (sayµ̃), multiple optimal allocations achieve the same optimal value of Lagrangian. In

other words,|Sn(µ̃)| > 1 for somen. In that case,X∗
tot(µ̃) can take any value in the interval

[
∑

n p
∗
n,kmin(n),mmin(n)

(µ̃),
∑

n p
∗
n,kmax(n),mmax(n)

(µ̃)
]
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while achieving the same minimum value of the Lagrangian atµ̃. Applying Lemma 1, we have

X∗
tot(µ̃−∆1) ≥

∑

n

p∗n,kmax(n),mmax(n)
(µ̃) ≥ X∗

tot(µ̃) ≥
∑

n

p∗n,kmin(n),mmin(n)
(µ̃) ≥ X∗

tot(µ̃ +∆2)

for any∆1,∆2 > 0, causing a jump of
(∑

n p
∗
n,kmin(n),mmin(n)

(µ̃)−
∑

n p
∗
n,kmax(n),mmax(n)

(µ̃)
)

in the total

optimal power allocation at̃µ.

Lemma 1 allows us to do a bisection-search overµ sinceX∗
tot(µ) is a decreasing function ofµ and

the optimalµ is the one at whichX∗
tot(µ) = Pcon. In particular, ifµ∗ ∈ [µ, µ̄] for someµ and µ̄, then

µ∗ ∈
[
µ+µ̄

2 , µ̄
]

if X∗
tot

(
µ+µ̄

2

)

> Pcon, otherwiseµ∗ ∈
[

µ,
µ+µ̄

2

]

. Using this concept, we propose an

algorithm in Table I that finds an interval[µ, µ̄], such thatµ∗ ∈ [µ, µ̄] and µ̄− µ ≤ κ whereκ (> 0) is

a tuning-parameter, and allocates resources based on optimal resource allocations atµ and µ̄.

The following lemma characterizes the relationship between the tuning parameterκ and the accuracy

of the obtained solution.

Lemma 2. Let µ∗ ∈ [µ, µ̄] be the point where the proposed CSRA algorithm stops, and thetotal

utility obtained by the proposed algorithm and the optimal CSRA solution bêUCSRA(µ, µ̄) and U∗
CSRA,

respectively. Then,0 ≤ U∗
CSRA − ÛCSRA(µ, µ̄) ≤ (µ̄ − µ)Pcon.

Proof: For proof, see Appendix C.

Since our algorithm stops when̄µ− µ ≤ κ, from Lemma 2, the gap between the obtained utility and

the optimal utility is bounded byPconκ. Moreover,limµ→µ̄ ÛCSRA(µ, µ̄) = U∗
CSRA.

The proposed algorithm requires at most
⌈
log2

(µmax−µmin
κ

)⌉
iterations ofµ in order to findµ̄, andµ

such that̄µ−µ ≤ κ andµ∗ ∈ [µ, µ̄]. Therefore, measuring the complexity of the algorithm by the number

of times (11) must be solved for a given(n, k,m, µ), the proposed algorithm takes at most

NKM
⌈
log2

(µmax−µmin
κ

)⌉
(32)

steps. We use this method of measuring complexity because itallows us to compare all algorithms in

this paper easily. Since, for a givenκ, the number of steps taken by the proposed bisection algorithm is

proportional tolog2 κ, the algorithm converges exponentially fast to the optimalsolution.

E. Some properties of the CSRA solution

In this sub-section, we study few properties of the CSRA solution that give valuable insights into

the optimal resource allocation strategy for any given value of Lagrange multiplier,µ. Let us fix a

µ̃ ∈ [µmin, µmax]. Now, if |Sn(µ̃)| ≤ 1,∀n, then the optimal allocation at̃µ, I∗(µ̃) is given by (16) which
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reveals thatI∗(µ̃) ∈ {0, 1}N×K×M . In this case, the definition ofICSRA implies that every subchannel

is allocated to at most one user-MCS combination. Note that this is precisely the constraint we impose

in the later part of this paper. Let us now consider the case where |Sn(µ̃)| > 1 for somen is possible.

Lemma 3. For any µ̃ > 0, there exists aδ > 0 such that for allµ ∈ (µ̃− δ, µ̃+ δ) \ {µ̃}, there exists an

optimal allocation,I∗(µ) ∈ ICSRA, that satisfiesI∗(µ) ∈ {0, 1}N×K×M . Moreover, ifµ1, µ2 ∈ (µ̃−δ, µ̃),

then there existsI∗(µ1), I
∗(µ2) ∈ {0, 1}N×K×M such thatI∗(µ1) = I∗(µ2). The same property holds

if both µ1, µ2 ∈ (µ̃, µ̃ + δ).

Proof: A proof sketch is given in Appendix D. For the full proof, see [15].

In conjunction with (12), the above lemma implies that the discontinuities in Fig. 2 are isolated and

that around every point on the horizontal axis, there is a small region over whichX∗
tot(µ) is continuous.

IV. SCHEDULING AND RESOURCEALLOCATION WITHOUT SUBCHANNEL SHARING

In this section, we will solve the scheduling and resource allocation (SRA) problem (1) under the

constraint thatIn,k,m ∈ {0, 1}, i.e., each subchannel can be allocated to at most one combination of user

and MCS per time slot. We will refer to this problem as the discrete scheduling and resource allocation

(DSRA) problem. Storing the values ofIn,k,m in the N × K × M matrix I, the DSRA subchannel

constraint can be expressed asI ∈ IDSRA, where

IDSRA :=

{

I : I ∈ {0, 1}N×K×M ,
∑

k,m

In,k,m ≤ 1 ∀n
}

.

Then, using (1), the DSRA problem can be stated as

DSRA := max
{pn,k,m≥0}

I∈IDSRA

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ame−bmpn,k,mγn,k)rm

)}

s.t.
∑

n,k,m

In,k,mpn,k,m ≤ Pcon.

(33)

Let us denote the optimalI andp for (33) by I∗
DSRA andp∗

DSRA, respectively.

The DSRA problem is a mixed-integer programming problem. Mixed-integer programming problems

are generally NP-hard, meaning that polynomial-time solutions do not exist [16]. Fortunately, in some

cases as in ours, one can exploit the problem structure to come up with polynomial complexity algorithms

that reach solutions in close vicinity of the optimal solution. We first describe the naive approach of

solving the mixed-integer programming problem, DSRA, by exhaustively searching over all possible

user-MCS allocations in order to arrive at the optimal user,rate, and power allocation. We will see that

this approach (termed brute-force) has complexity that is exponential in the number of subchannels.
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Later, we will exploit the DSRA problem structure, and its relation to the CSRA problem, to propose an

algorithm with polynomial complexity.

A. Brute-Force Algorithm

Consider that, if we attempted to solve our DSRA problem via brute-force (i.e., by solving the power

allocation sub-problem for every possible choice ofI ∈ IDSRA), we would solve the following sub-

problem for every givenI.

max
{pn,k,m≥0}

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ame−bmpn,k,mγn,k)rm

)}

s.t.
∑

n,k,m

In,k,mpn,k,m ≤ Pcon. (34)

Using the same approach as taken for the CSRA problem, we transform the variablepn,k,m into xn,k,m

via the relation:xn,k,m = In,k,m pn,k,m. The problem in (34) can, therefore, be written as:

min
{xn,k,m≥0}

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) s.t.
∑

n,k,m

xn,k,m ≤ Pcon, (35)

whereFn,k,m(In,k,m, xn,k,m) is defined in (4). This problem is a convex optimization problem that satisfies

Slater’s condition [14] whenxn,k,m = Pcon/2NKM for all n, k,m. Therefore, its solution is equal to

the solution of its dual problem (i.e., zero duality gap) [14]. To formulate the dual problem, we write

the Lagrangian of the primal problem (35) as

LI(µ,x) =
∑

n,k,m

In,k,mFn,k,m(In,k,m, xn,k,m) +
( ∑

n,k,m

xn,k,m − Pcon

)

µ, (36)

whereµ is the dual variable andx is theN ×K ×M matrix containing actual powers allocated to all

(n, k,m) combinations. Note that the Lagrangian in (36) is exactly the same as the Lagrangian for the

CSRA problem in (5). Using (36), the dual of the brute-force problem can be written as

max
µ≥0

min
x�0

LI(µ,x) = max
µ≥0

LI(µ,x
∗(µ)) = LI(µ

∗
I ,x

∗(µ∗
I)), (37)

for optimal solutionsµ∗
I andx∗(µ∗

I). Minimizing LI(µ,x) over{x � 0} by equating the differential of

LI(µ,x) w.r.t. xn,k,m to zero (identically to the approach taken in Section III-A for the CSRA problem),

we get that, for any subchanneln,

x∗n,k,m(µ) = In,k,m p∗n,k,m(µ). (38)

Here,

p∗n,k,m(µ) =







p̃n,k,m(µ) if 0 ≤ µ ≤ ambmrmU ′
n,k,m

(
(1− am)rm

)
E{γn,k}

0 otherwise,
(39)
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and p̃n,k,m(µ) is the unique4 value satisfying (11), repeated as (40) for convenience.

µ = ambmrm E
{
U ′
n,k,m

(
(1− ame−bmp̃n,k,m(µ)γn,k)rm

)
γn,ke

−bmp̃n,k,m(µ)γn,k
}
. (40)

Note that the Lagrangian as well as the power allocation in (36) and (38) are identical to that obtained

for the CSRA problem in (5) and (12), respectively. Also recall that (19)-(21) hold even whenI∗(µ) is

replaced by arbitraryI. Thus, we haveµ∗
I ∈ [µmin, µmax], whereµmin andµmin are defined in (20) and

(21), respectively.

As discussed in Section III-A,̃pn,k,m(µ) is a strictly-decreasing continuous function ofµ, which makes

p∗n,k,m(µ) a decreasing continuous function ofµ. Let us now define

X∗
tot(I, µ) ,

∑

n,k,m

x∗n,k,m(µ) =
∑

n,k,m

In,k,mp
∗
n,k,m(µ) (41)

as the total optimal power allocation for allocationI at µ. Therefore,X∗
tot(I, µ) is also a decreasing

continuous function ofµ. This reduces our problem to finding the minimum value ofµ ∈ [µmin, µmax]

for which X∗
tot(I, µ) = Pcon. Such a problem structure (i.e., finding the minimum Lagrange multiplier

satisfying a sum-power constraint) yields awater-filling solution (e.g., [2], [10]). To obtain such a solution

(in our case,µ∗
I ) one can use the bisection-search algorithm given in Table I.

While there are other ways to findµ, we focus on bisection-search for easy comparison to the

CSRA algorithm. Thus, to solve the resource allocation problem for a givenI ∈ IDSRA, the com-

plexity in terms of the number of times (40) (or (11)) is solved to yield µ̂I such that|µ̂I − µ∗
I | < κ,

is
(∑

n,k,m In,k,m
) ⌈

log2
(µmax−µmin

κ

)⌉
. Since, the brute-force algorithm examines|IDSRA| = (KM +

1)N hypotheses ofI, the corresponding complexity needed to find the optimal DSRA solution is
⌈
log2

(µmax−µmin
κ

)⌉
×
∑N

n=1 n
(N
n

)
(KM)n, which equals

⌈
log2

(µmax−µmin
κ

)⌉
× (KM + 1)N−1NKM. (42)

This may be impractical to implement for typical values ofK, M , andN , as it grows exponentially

with the number of subchannelsN . In the sequel, using insights from the CSRA problem, we willfind

approximations to the DSRA solution with much lower complexity.

4By assumption,U ′
n,k,m(·) is a decreasing positive function ande−bmp̃n,k,m(µ)γn,k is a strictly-decreasing positive function

of p̃n,k,m(µ), which makes the right side of (40) a strictly-decreasing positive function of p̃n,k,m(µ).
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B. Proposed DSRA Algorithm

Equation (30) in Section III-B demonstrated that there exists an optimal user-MCS allocation for the

CSRA problem that either lies in the domain of DSRA problem, i.e., I∗(µ∗) ∈ IDSRA or is a convex

combination of two points from the domain of DSRA problem, i.e.,I∗(µ∗) = λImin(µ∗)+(1−λ)Imax(µ∗),

whereImin(µ∗) 6= Imax(µ∗) andImin(µ∗), Imax(µ∗) ∈ IDSRA (note that ifI ∈ ICSRA andI ∈ {0, 1}N×K×M ,

then I ∈ IDSRA). This motivates us to attack the DSRA problem using the CSRAalgorithm. In this

section, we provide details of the proposed approximate DSRA solution using the above observation.

The following lemma will be instrumental in understanding the relationship between the CSRA and

DSRA problems and will serve as the basis for allocating resources in the DSRA problem setup.

Lemma 4. If the solution of the Lagrangian dual of the CSRA problem (6)for a givenµ is such that

I∗(µ) ∈ {0, 1}N×K×M , and the corresponding total power isX∗
tot(µ) as in (31), then the solution to the

optimization problem

(P∗, I∗) = argmax
{P�0}

I∈IDSRA

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ame−bmPn,k,mγn,k)rm

)}

s.t.
∑

n,k,m

In,k,mPn,k,m ≤ X∗
tot(µ)

satisfiesI∗ = I∗(µ) and, for every(n, k,m), P∗
n,k,m =







x∗
n,k,m(µ,I∗(µ))

I∗
n,k,m(µ) if I∗n,k,m(µ) 6= 0

0 otherwise.

Proof: A proof sketch is given in Appendix E. For the full proof, see [15].

From the above lemma, we conclude that if aµ exists such thatI∗(µ) ∈ IDSRA andX∗
tot(µ) = Pcon,

then the DSRA problem is solved optimally by the CSRA solution set(I∗(µ),x∗(µ, I∗(µ))), i.e., the

optimal user-MCS allocationI∗
DSRA equalsI∗(µ) and the optimal power allocation,p∗

DSRA, for any

(n, k,m) is given by

p∗n,k,m,DSRA =







x∗
n,k,m(µ,I∗(µ)))

I∗
n,k,m(µ) if I∗n,k,m(µ) 6= 0

0 otherwise.
(43)

Recall that the optimal total power achieved for a given value of Lagrange multiplierµ, i.e.,X∗
tot(µ) =

∑

n,k,m x∗n,k,m(µ, I
∗(µ)), is piece-wise continuous and a discontinuity (or “gap”) occurs atµ when mul-

tiple allocations achieving the same optimal value of Lagrangian exist. When the sum-power constraint,

Pcon, lies in one of such “gaps”, the optimal allocation for the CSRA problem is given by a convex

combination of two elements from the setIDSRA, and the CSRA solution is not admissible for DSRA. In

such cases, we are motivated to choose the sub-optimal DSRA solution ÎDSRA ∈ {Imin(µ), Imax(µ)} that

yields highest utility. In Table I, we provide details of theimplementation of the proposed sub-optimal
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DSRA algorithm that has a significantly lower complexity compared to the brute-force algorithm. We

also show using numerical simulations in Section V that its performance is very close to optimal.

The following lemma bounds the asymptotic difference in utilities achieved by the optimal DSRA

allocation and the proposed DSRA algorithm.

Lemma 5. Let µ∗ be the optimalµ for the CSRA problem andµ, µ̄ be such thatµ∗ ∈ [µ, µ̄]. Let

U∗
DSRA and ÛDSRA(µ, µ̄) be the utilities achieved by the optimal DSRA solution and the proposed DSRA

algorithm, respectively. Then,

0 ≤ U∗
DSRA − lim

µ→µ̄
ÛDSRA(µ, µ̄) ≤ (µ∗ − µmin)

(
Pcon −X∗

tot(I
min(µ∗), µ∗)

)
(44)

≤







0 if |Sn(µ
∗)| ≤ 1 ∀n

(
µmax − µmin

)
Pcon otherwise

. (45)

Proof: The proof is given in Appendix F.

It may be interesting to note that the bound in (45) does not scale with number of usersK or

subchannelsN .

The complexity of the proposed DSRA algorithm is marginallygreater than that of the CSRA algorithm,

since an additional comparison of two possible user-MCS allocation choices is involved. In units of solving

(11) for a given(n, k,m, µ), the DSRA complexity is, at most,

N(KM + 2)
⌈
log2

(µmax−µmin
κ

)⌉
. (46)

Comparing (42) and (46), we find that the complexity of the proposed DSRA algorithm is polynomial

in N,K,M , which is considerably less than that of the brute-force algorithm (exponential inN ).

V. NUMERICAL EVALUATION

In this section, we analyze the performance of an OFDMA downlink system that uses the proposed

CSRA and DSRA algorithms for scheduling and resource allocation under different system parameters.

Here, we choose the utility functionUn,k,m(·) in the primal objective to be the identity function, and

thus the objective is to maximize sum-goodput of the system.

For downlink transmission, the BS employs a2m+1-QAM signaling scheme with MCS indexm ∈
{1, . . . , 15}. In this case, we haverm = m+1 bits per symbol. In the symbol error rate modelǫm(pγ) =

ame−bmpγ , we chooseam = 1 and bm = 1.5/((m + 1)2 − 1) because the actual symbol error rate

of a 2m+1-QAM system is proportional toexp(−1.5pγ/((m + 1)2 − 1)) in the high-(pγ) regime and
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is equal to1 when pγ = 0. We use the standard OFDM model [17] to describe the (instantaneous)

frequency-domain observation made by thekth mobile user on thenth subchannel:

yn,k = hn,kxn + νn,k, for n ∈ {1, . . . , N} andk ∈ {1, . . . ,K} (47)

In (47), xn denotes the QAM symbol broadcast by the BS on thenth subchannel,hn,k the gain of

the nth subchannel between thekth user and the BS, andνn,k a corresponding complex Gaussian

noise sample. We assume that{νn,k} is unit variance and white across(n, k), and we recall that the

exogenous subchannel-SNR satisfiesγn,k = |hn,k|2. We furthermore assume that thekth user’s frequency-

domain channel gainshk = (h1,k, . . . , hN,k)
T ∈ CN are related to the channel impulse response

gk = (g1,k, . . . , gL,k)
T ∈ CL via hk = Fgk, whereF ∈ CN×L contains the firstL(< N) columns

of the N -DFT matrix, and where{gl,k} are i.i.d. over(l, k) and drawn from a zero-mean complex

Gaussian distribution with varianceσ2
g chosen so thatE{γn,k} = 1. Since the total available power for

all subchannels at the base-station isPcon, the average available SNR per subchannel can be denoted by

SNR = Pcon
N E{γn,k}.

To model imperfect CSI, we assume that there is a channel-estimation period during which the

mobiles take turns to broadcast one pilot OFDM symbol, from which the BS estimates the correspond-

ing subchannel gains. Furthermore, we assume that the channels do not vary between pilot and data

periods. To estimatehk, we assume that the BS observesỹk =
√
ppilot hk + ν̃k ∈ CN . Note that

the average SNR per subchannel under pilot transmission isSNRpilot = ppilot E{γn,k}. The channel

hk and the pilot observations̃yk are jointly Gaussian, and furthermorehk|ỹk is Gaussian with mean

E{hk|ỹk} = Rhk,ỹk
R−1

ỹk,ỹk
ỹk and covarianceCov(hk|ỹk) = Rhk,hk

− Rhk,ỹk
R−1

ỹk,ỹk
Rỹkhk

, where

Rz1,z2
denotes the cross-correlation of random vectorsz1 andz2 [18, pp.155]. SinceRhk,hk

= σ2
gFF ′,

Rhk,ỹk
=

√
ppilotσ

2
gFF ′, and Rỹk,ỹk

= ppilotσ
2
gFF ′ + I (where I denotes the identity matrix), it

is straightforward to show that the elements on the diagonalof Cov(hk|ỹk) are equal. Furthermore,

E{hk|ỹk} can be recognized as the pilot-aided MMSE estimate ofhk. In summary, conditioned on

the pilot observations,hn,k is Gaussian with mean̂hn,k given by thenth element ofE{hk|ỹk}, and

with varianceσ2
e given by the first diagonal element ofCov(hk|ỹk). Thus, conditioned on the pilot

observations,γn,k has a non-central chi-squared distribution with two degrees of freedom.

We will refer to the proposed CSRA and DSRA algorithms implemented under imperfect CSI as

“CSRA-ICSI” and “DSRA-ICSI,” respectively. Their performances will be compared to that of “CSRA-

PCSI,” i.e., CSRA implemented under perfect CSI, which serves as a performance upper bound, and

fixed-power random-user scheduling(FP-RUS), which serves as a performance lower bound. FP-RUS
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schedules, on each subchannel, one user selected uniformlyfrom {1, . . . ,K}, to which it allocates power

Pcon/N and the fixed MCSm that maximizes expected sum-goodput. Unless specified, thenumber of

OFDM subchannels wasN = 64, the number of users wasK = 16, the impulse response length was

L = 2, the average SNR per subchannel wasSNR = 10 dB, the pilot SNR wasSNRpilot = −10 dB,

and the DSRA/CSRA tuning parameter wasκ = 0.3/Pcon (recall Table I). In all plots, goodput values

were empirically averaged over1000 realizations.

Figure 3 plots the subchannel-averaged goodput achieved bythe above-described scheduling and

resource-allocation schemes for different grades of CSI. In this curve,SNRpilot is varied so as to

obtain estimates of subchannel SNR with different grades ofaccuracy. All other parameters remain

unchanged. The plot shows that asSNRpilot is increased, the performance of the proposed schemes under

the availability of imperfect CSI increases from that of FP-RUS to that achieved by the CSRA-PCSI

scheme. This is expected because with increasingSNRpilot, the BS uses more accurate channel-state

information for scheduling and resource allocation, and thus achieves higher goodput. The plot also

shows that, even though the proposed CSRA algorithm optimally solves the CSRA problem and the

proposed DSRA algorithm sub-optimally solves the DSRA problem, their performances almost coincide.

In particular, although the goodput achieved by CSRA-ICSI scheme exceeds that of DSRA-ICSI scheme

in up-to 49% of the realizations, the maximum difference in the subchannel-averaged goodput is merely

4×10−3 bits/channel-use. Since the DSRA-ICSI schemes cannot achieve a sum-goodput higher than that

achieved by the CSRA-ICSI scheme, it can be deduced that the proposed DSRA algorithm is near-optimal

in this case.

Figure 4 plots the sum-goodput over all subchannels as a function ofN , ranging between16 and128. In

this numerical evaluation,Pcon is fixed such thatSNR = 10 dB for a64-subchannel OFDM system. The

plot shows that the sum-goodput increases withN . This is expected since more subchannels allows more

scheduling flexibility and availability of even stronger subchannels, which can be effectively exploited

by BS to achieve higher goodput. It can be seen that the performances of CSRA-ICSI and DSRA-ICSI

schemes are almost identical, regardless ofN . In particular, although the goodput achieved by CSRA-ICSI

scheme exceeds that of DSRA-ICSI scheme in up-to27% of the realizations, the maximum difference

in sum-goodput is merely3× 10−3 bits/channel-use.

Figure 5 plots the subchannel-averaged goodput as a function of K (number of active users) varying

between1 and32. It shows that, asK increases, the goodput per subchannel achieved by the proposed

schemes under perfect and imperfect CSI increase, whereas that achieved by the FP-RUS scheme remains

constant. This is because, in the former schemes, the availability of more users can be exploited to
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schedule users with stronger subchannels, whereas in the FP-RUS scheme, this advantage is lost due to

the lack of information about the users’ instantaneous channel conditions. Similar to the observations

in the previous plots, the performance of the proposed algorithms under imperfect CSI remain almost

identical. In particular, although the goodput achieved byCSRA-ICSI scheme exceeds that of DSRA-ICSI

scheme in up-to29% of the realizations, the maximum difference in the subchannel-averaged goodput is

merely7× 10−4 bits/channel-use.

In Figure 6, the top plot shows the subchannel-averaged goodput and the bottom plot shows the

subchannel and realization-averaged value of the bound (in(44)) on the optimality gap for the DSRA

problem as a function ofSNR. In the top plot, it can be seen that asSNR increases, the difference between

CSRA-PCSI and CSRA-ICSI (or, DSRA-ICSI) schemes increases. However, the difference grows slower

than the difference between CSRA-PCSI and FP-RUS schemes. Interestingly, even for high values of

SNR, the performance of CSRA-ICSI and DSRA-ICSI remain almost identical. In particular, although

the goodput achieved by CSRA-ICSI scheme exceeds that of DSRA-ICSI scheme in up-to28% of the

realizations, the maximum difference in the subchannel-averaged goodput is merely4×10−5 bits/channel-

use. The bottom plot, which illustrates the average value of(µ∗ − µmin)
(
Pcon −X∗

tot(I
min, µ∗)

)
over all

realizations and subchannels w.r.t.SNR shows that the loss in sum-goodput over all subchannels due to

sub-optimality of proposed DSRA solution under imperfect CSI is bounded by7×10−3 bits/channel-use

even when the subchannel-averaged goodput of DSRA-ICSI is of the order of tens of bits/channel-use.

This suggests that the proposed bound in Lemma 5 on the optimality gap of proposed DSRA solution is

quite tight at high values ofSNR.

From the above plots, we conclude that even with imperfect CSI, the proposed CSRA and DSRA

algorithms for scheduling and resource allocation can greatly enhance the system’s goodput performance

compared to non CSI-based schemes. It was seen that the algorithms’ performances are very close to

each other, confirming that the proposed DSRA algorithm is near optimal in the tested scenarios.

VI. CONCLUSION

In this paper, we considered the problem of joint schedulingand resource allocation (SRA) in downlink

OFDMA systems under imperfect channel-state information.We considered two scenarios: 1) when

subchannel sharing is allowed, and 2) when it is not. Both cases were framed as optimization problems

that maximize a utility function subject to a sum-power constraint. Although the optimization problem

in the first scenario (the so-called “continuous” SRA problem) was found to be non-convex, we showed

that it can be converted to a convex optimization problem andsolved using a dual optimization approach
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with zero duality gap. An algorithmic implementation of theCSRA solution was also provided. The

optimization problem faced in the second scenario (the so-called “discrete” SRA problem) was found

to be a mixed-integer programming problem. To attack it, we linked the DSRA problem to the CSRA

problem, and showed that, in some cases, the DSRA solution coincides with the CSRA solution. For

the case that the solutions do not coincide, we proposed a practical DSRA algorithm and bounded

its performance. Numerical results were then presented under a variety of settings. The performance

of the proposed CSRA and DSRA algorithms schemes under imperfect CSI were compared to those

under perfect CSI and no CSI (i.e., fixed-power random scheduling). In all cases, it was found that the

proposed imperfect-CSI-based algorithms offer a significant advantage over schemes that do not use any

CSI. Moreover, the performance of DSRA was nearly equal to CSRA. Therefore, we conclude that, in

OFDMA-based downlink communication systems under imperfect CSI, it is unlikely that the performance

gains that result from time-sharing of multiple user-MCS combinations within a single subchannel would

justify the additional system-level complexity that wouldbe required to implement such time-sharing.

APPENDIX A

SKETCH OF PROOF FOR CONVEXITY OFCSRA PROBLEM

First, we show thatIn,k,mFn,k,m(In,k,m, xn,k,m) is convex inIn,k,m andxn,k,m. For this, consider the

case whenIn,k,m > 0. In this case, the Hessian ofIn,k,mFn,k,m(In,k,m, xn,k,m) w.r.t. In,k,m andxn,k,m

can be calculated and found to be positive semi-definite. Next, consider the case whenIn,k,m = 0. To

prove convexity in this case, we apply the definition of convexity, i.e., for any two points(I(1)n,k,m, x
(1)
n,k,m)

and (I(2)n,k,m, x
(2)
n,k,m) in the domain of CSRA problem and for anyλ ∈ [0, 1], convexity means

λI
(1)
n,k,m Fn,k,m

(

I
(1)
n,k,m , x

(1)
n,k,m

)

+ (1− λ)I
(2)
n,k,m Fn,k,m

(

I
(2)
n,k,m , x

(2)
n,k,m

)

≥
[

λI
(1)
n,k,m + (1− λ)I

(2)
n,k,m

]

Fn,k,m

(

λI
(1)
n,k,m + (1− λ)I

(2)
n,k,m , λx

(1)
n,k,m + (1− λ)x

(2)
n,k,m

)

. (48)

When one or both of{I(1)n,k,m, I
(2)
n,k,m} are zero, it is straightforward to show that the above equa-

tion holds. Therefore,In,k,mFn,k,m(In,k,m, xn,k,m) is convex in In,k,m and xn,k,m. Consequently, it

is a convex function ofI and x. Since the primal objective function of the CSRA problem, i.e.,
∑

n,k,m In,k,m Fn,k,m(In,k,m, xn,k,m), is a sum of functions that are convex inI andx, it is also convex

in I andx.
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APPENDIX B

SKETCH OF PROOF OFLEMMA 1

Suppose thatµ1 < µ2, whereµ1, µ2 ∈ [µmin, µmax]. With µ fixed, the minimization problem becomes

L(µ, I∗(µ),x∗(µ, I∗(µ)))

= min
{x�0}

I∈ICSRA

L(µ, I,x) = min
{x�0}

I∈ICSRA

( ∑

n,k,m

xn,k,m − Pcon

)

µ+
∑

n,k,m

In,k,mFn,k,m(In,k,m, xn,k,m) (49)

recalling (6). Atµ = µ1, I∗(µ2) andx∗(µ2, I
∗(µ2)) are suboptimal values ofI∗(µ) andx∗(µ, I∗(µ)),

and atµ = µ2, I∗(µ1) andx∗(µ1, I
∗(µ1)) are suboptimal values ofI∗(µ) andx∗(µ, I∗(µ)). Therefore,

L(µ1, I
∗(µ1),x

∗(µ1, I
∗(µ1))) ≤ L(µ1, I

∗(µ2),x
∗(µ2, I

∗(µ2))), and (50)

L(µ2, I
∗(µ2),x

∗(µ2, I
∗(µ2))) ≤ L(µ2, I

∗(µ1),x
∗(µ1, I

∗(µ1))). (51)

Adding (50) and (51), and evaluating the result, we get

(µ1 − µ2)
( ∑

n,k,m

x∗n,k,m(µ1, I
∗(µ1))− x∗n,k,m(µ2, I

∗(µ2))
)

≤ 0. (52)

Sinceµ1 < µ2, we haveX∗
tot(µ1) ≥ X∗

tot(µ2). Therefore,X∗
tot(µ) is monotonically decreasing inµ.

APPENDIX C

PROOF OFLEMMA 2

Proof: To compare the utilities obtained by the proposed CSRA algorithm and the optimal CSRA so-

lution, we compare the Lagrangian values achieved by the twosolutions. Recallµ∗ ∈ [µ, µ̄] ⊂ [µmin, µmax].

Therefore,

L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))) − L(µ, I∗(µ),x∗(µ, I∗(µ))) ≥ 0, and

L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))) − L(µ̄, I∗(µ̄),x∗(µ̄, I∗(µ̄))) ≥ 0. (53)

The solution of the proposed CSRA algorithm allocates resources such that the sum-power constraint is

satisfied while achieving a Lagrangian value of

L̂CSRA , λL(µ̄, I∗(µ̄),x∗(µ̄, I∗(µ̄))) + (1− λ)L(µ, I∗(µ),x∗(µ, I∗(µ))).

For anyµ, notice thatL(µ, I∗(µ),x∗(µ, I∗(µ))) = −U∗(µ) + (X∗
tot(µ) − Pcon)µ, whereU∗(µ) is the

total utility achieved due to optimal power allocation at that µ. Since the resource allocation obtained

November 2, 2010 DRAFT



23

by the proposed CSRA algorithm and the optimal CSRA solutionsatisfy the sum-power constraint with

equality, we have

U∗
CSRA = −L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))), and (54)

L̂CSRA = −ÛCSRA(µ, µ̄) + (X∗
tot(µ̄)− Pcon)λµ̄+ (X∗

tot(µ)− Pcon)(1 − λ)µ

= −ÛCSRA(µ, µ̄) + (X∗
tot(µ̄)− Pcon)(µ̄ − µ)λ. (55)

Equation (55) holds sinceλX∗
tot(µ̄) + (1− λ)X∗

tot(µ) = Pcon. From (54) and (55), we get

0 ≤ U∗
CSRA − ÛCSRA(µ, µ̄) = −L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))) + L̂CSRA − (X∗

tot(µ̄)− Pcon)(µ̄ − µ)λ.

From the above equation and (53), we have

0 ≤ U∗
CSRA − ÛCSRA(µ, µ̄) ≤ (Pcon −X∗

tot(µ̄))(µ̄ − µ)λ ≤ (µ̄− µ)Pcon. (56)

APPENDIX D

SKETCH OF PROOF OFLEMMA 3

Let µ̃ ∈ [µmin, µmax] be any value of the Lagrangian dual variable for the CSRA problem. Then, at̃µ,

one of the following three cases holds.

1) |Sn(µ̃)| ≤ 1 ∀n.

2) For somen, |Sn(µ̃)| > 1 but no two combinations inSn(µ̃) have the same allocated power.

3) For somen, |Sn(µ̃)| > 1 and at least two combinations inSn(µ̃) have the same allocated power.

We make use of two properties in the proof. Firstly,Vn,k,m(µ, p
∗
n,k,m(µ)) is a continuous function

of µ. Therefore, by definition of continuous functions, ifVn,k,m(µ̃, p
∗
n,k,m(µ̃)) > 0, then we can fix a

δn,k,m (> 0) such thatVn,k,m(µ, p
∗
n,k,m(µ)) > 0 whenever|µ − µ̃| < δn,k,m. Secondly, for all values of

µ, we know
∂Vn,k,m(µ,p∗

n,k,m(µ))

∂µ = p∗n,k,m(µ). We now apply these properties to each of the three cases

to determineSn(µ) ∀n. Whenµ is sufficiently close toµ̃, we show that, in cases1) and 2), one can

fix a δ such that|Sn(µ)| ≤ 1 ∀n whenever0 < |µ − µ̃| < δ. When this happens, it can be shown

that, for all µ1, µ2 ∈ (µ̃ − δ, µ̃), one hasI∗(µ1), I
∗(µ2) ∈ {0, 1}N×K×M and Sn(µ1) = Sn(µ2) ∀n.

The same property holds whenµ1, µ2 ∈ (µ̃, µ̃ + δ). In case3), we establish that all combinations with

the same allocated power contribute equally to the total power allocated, as well as the total optimal

value of Lagrangian. Therefore, all but any one combinationcan be ignored safely, implying that there

exists a fixedδ such thatI∗(µ) ∈ {0, 1}N×K×M whenever|µ − µ̃| < δ. After ignoring the redundant
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combinations, it follows from cases1) and2) that, for all µ1, µ2 ∈ (µ̃ − δ, µ̃) andµ1, µ2 ∈ (µ̃, µ̃ + δ),

there existsI∗(µ1), I
∗(µ2) ∈ {0, 1}N×K×M such thatI∗(µ1) = I∗(µ2).

APPENDIX E

SKETCH OF PROOF OFLEMMA 4

From (6) and the stated assumptions, we haveI∗(µ) ∈ IDSRA ⊂ ICSRA and
(

I∗(µ),x∗(µ, I∗(µ))
)

= argmin
x�0

I∈IDSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) +
( ∑

n,k,m

xn,k,m − Pcon

)

µ, (57)

whereFn,k,m(·, ·) was defined in (4). Then, applying the concept of generalizedLagrange multiplier

method from [19, Theorem1], we conclude that

(I∗,X∗) = argmin
{X�0}

I∈IDSRA

∑

n,k,m

In,k,mFn,k,m(In,k,m,Xn,k,m) s.t.
∑

n,k,m

Xn,k,m ≤
∑

n,k,m

x∗n,k,m(µ, I
∗(µ)).(58)

SubstitutingXn,k,m = In,k,mPn,k,m back into the above equation, we obtain the desired result.

APPENDIX F

PROOF OFLEMMA 5

Proof: Let us denotelimµ→µ̄ ÛDSRA(µ, µ̄) by ÛDSRA. The left inequality in the lemma is straight-

forward sinceU∗
DSRA ≥ ÛDSRA(µ, µ̄) ∀µ, µ̄. Now, if |Sn(µ

∗)| ≤ 1 ∀n, then we haveU∗
DSRA = U∗

CSRA =

ÛDSRA, ensuring that the solution obtained via the proposed DSRA algorithm is optimal in the limit

µ, µ̄ → µ∗. However, when|Sn(µ
∗)| > 1 for somen, Pcon lies in one of the “gaps” as mentioned in

Fig. 2 andI∗
CSRA /∈ IDSRA. In this case, we have0 ≤ U∗

DSRA − ÛDSRA ≤ U∗
CSRA − ÛDSRA. Let U∗(I) be

the optimal utility achieved for user-MCS allocation matrix I ∈ IDSRA. We recall from Section III-C that,

at µ∗, the allocationImin(µ∗) is one of possibly many values ofI minimizing L(µ∗, I,x∗(µ∗, I)). Thus,

U∗
CSRA = −L(µ∗, Imin(µ∗),x∗(µ∗, Imin(µ∗))). For brevity in this proof, let us denoteImin(µ∗) andImax(µ∗)

(∈ IDSRA), defined in (30), byImin andImax, respectively. Therefore,̂UDSRA = max{U∗(Imin), U∗(Imax)}.

This gives us

U∗
CSRA − ÛDSRA ≤ U∗

CSRA − U∗(Imin)

= −L(µ∗, Imin,x∗(µ∗, Imin)) + LImin(µ∗
Imin ,x

∗(µ∗
Imin)))

= −L(µ∗, Imin,x∗(µ∗, Imin)) + L(µ∗
Imin , I

min,x∗(µ∗
Imin , I

min)), (59)

where, for (59), we use the equivalence betweenL(µ, I,x) in (5) and LI(µ,x) in (36). Note that

µ∗
Imin ≤ µ∗, since the total optimally allocated power forImin at µ = µ∗ is less than or equal toPcon and
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the total optimally allocated power for any givenI is a decreasing function ofµ. PluggingL(·, ·, ·) from

(5) into (59), we get

U∗
CSRA − ÛDSRA ≤ −

[

− µ∗Pcon +
∑

n,k,m

Imin
n,k,m

(

− Ūn,k,m(p
∗
n,k,m(µ

∗)) + µ∗p∗n,k,m(µ
∗)
)]

(60)

+
[

− µ∗
IminPcon +

∑

n,k,m

Imin
n,k,m

(

− Ūn,k,m(p
∗
n,k,m(µ

∗
Imin)) + µ∗(Imin)p∗n,k,m(µ

∗
Imin)

)]

,

where,Ūn,k,m(x) = E
{
Un,k,m

(
(1 − ame−bmxγn,k)rm

)}
. Using the definition ofX∗

tot(I, µ) in (41), we

haveX∗
tot(I

min, µ∗) ≤ Pcon andX∗
tot(I

min, µ∗
Imin) = Pcon. Therefore, (60) can be re-written as

U∗
CSRA − ÛDSRA

≤ µ∗
(
Pcon −X∗

tot(I
min, µ∗)

)
−

∑

n,k,m

Imin
n,k,m

[

Ūn,k,m(p
∗
n,k,m(µ

∗
Imin))− Ūn,k,m(p

∗
n,k,m(µ

∗))
]

. (61)

Calculating the first two derivatives of̄Un,k,m(x) with respect tox, we find that it is a strictly-increasing

concave function ofx. Therefore, ifx1 ≤ x2, one can write that̄Un,k,m(x2) − Ūn,k,m(x1) ≥ (x2 −
x1)Ū

′
n,k,m(x2). Pluggingx1 = p∗n,k,m(µ

∗) andx2 = p∗n,k,m(µ
∗
Imin) into this inequality, we get

Ūn,k,m(p
∗
n,k,m(µ∗

Imin))− Ūn,k,m(p
∗
n,k,m(µ

∗)) ≥
(

p∗n,k,m(µ
∗
Imin)− p∗n,k,m(µ

∗)
)∂Ūn,k,m(x)

∂x

∣
∣
∣
∣
x=p∗

n,k,m(µ∗

Imin )

(62)

From (61) and (62), we then get

U∗
CSRA − ÛDSRA

≤ µ∗
(
Pcon −X∗

tot(I
min, µ∗)

)
−

∑

n,k,m

Imin
n,k,mŪ

′
n,k,m

(
p∗n,k,m(µ

∗
Imin)

)(

p∗n,k,m(µ
∗
Imin)− p∗n,k,m(µ

∗)
)

. (63)

EvaluatingŪ ′
n,k,m

(
p∗n,k,m(µ

∗
Imin)

)
, we find

∂Ūn,k,m(x)

∂x

∣
∣
∣
∣
x=p∗

n,k,m(µ∗

Imin )

= ambmrm E
{
U ′
n,k,m

(
(1− ame−bmp∗

n,k,m(µ∗

Imin)γn,k)rm
)
γn,ke

−bmp∗
n,k,m(µ∗

Imin)γn,k
}

≥ µmin. (64)

From (63) and (64), we finally obtain

U∗
CSRA − ÛDSRA ≤ (µ∗ − µmin)

(
Pcon −X∗

tot(I
min, µ∗)

)
≤ (µmax − µmin)Pcon. (65)
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TABLE I
ALGORITHMIC IMPLEMENTATIONS OF THE PROPOSED ALGORITHMS

Proposed CSRA algorithm Brute force algorithm for a givenI

1) Setµ = µmin, µ̄ = µmax, andµ =
µ+µ̄

2
.

2) For each subchanneln = 1, . . . , N :
a) For each(k,m),

i) Use (11) and (13) to calculatep∗n,k,m(µ).
ii) Use (14) to calculateVn,k,m(µ, p∗n,k,m(µ)).

b) CalculateSn(µ) using (15).
3) If |Sn(µ)| ≤ 1 ∀n, then findI∗(µ) using (16), else use

(30) and setI∗(µ) = Imin(µ).
4) Findx∗(µ, I∗(µ)) using (12) and calculateX∗

tot(µ) =
∑

n,k,m
x∗
n,k,m(µ, I∗(µ)).

5) If X∗
tot(µ) ≥ Pcon, setµ = µ, otherwise set̄µ = µ.

6) If µ̄− µ > κ, go to step 2), else proceed.
7) Now we haveµ∗ ∈ [µ, µ̄] andµ̄−µ < κ. If X∗

tot(µ) 6=

X∗
tot(µ̄), setλ =

X∗
tot(µ)−Pcon

X∗
tot(µ)−X∗

tot(µ̄)
, else setλ = 0.

8) The optimal user-MCS allocation is given bŷICSRA =
λI∗(µ̄) + (1 − λ)I∗(µ) and the corresponding opti-
mal x is given by x̂CSRA = λx∗(µ̄, I∗(µ̄)) + (1 −
λ)x∗(µ, I∗(µ)). The optimal power allocation,̂pCSRA,
then can be found using

p̂n,k,m,CSRA=















x̂n,k,m,CSRA

În,k,m,CSRA
if În,k,m,CSRA 6= 0

0 otherwise,
(66)

where În,k,m,CSRA and x̂n,k,m,CSRA denote the
(n, k,m)th component ofÎCSRA and x̂CSRA, respec-
tively. Notice that the obtained solution satisfies the
sum-power constraint with equality.

1) Initialize µ = µmin and µ̄ = µmax.

2) Setµ =
µ+µ̄

2
.

3) For each(n, k,m), use (38)-(40) to obtainx∗
n,k,m(µ).

4) FindX∗
tot(I, µ) using (41).

5) If X∗
tot(I, µ) > Pcon , setµ = µ, otherwise set̄µ = µ.

6) If µ̄− µ < κ, go to step 7), otherwise go to step 2).

7) If X∗
tot(I, µ̄) 6= X∗

tot(I, µ), setλ =
X∗

tot(I,µ)−Pcon

X∗
tot(I,µ)−X∗

tot(I,µ̄)
,

otherwise setλ = 0.
8) Setµ̂I = µ̄. The best actual power allocation is given

by x̂I = λx∗(µ̄) + (1 − λ)x∗(µ) and the best power
allocation,p̂

I
, is given by

p̂n,k,m,I =

{

x̂n,k,m,I

In,k,m
if In,k,m 6= 0

0 otherwise,

where p̂n,k,m,I and x̂n,k,m,I are the(n, k,m)th ele-
ment of p̂

I
and x̂I , respectively. The corresponding

Lagrangian, found usinĝLI = LI(µ̄,p
∗(µ)), gives the

optimal Lagrangian value.

Proposed DSRA algorithm

1) Use the algorithmic implementation of the proposed
CSRA solution in to findI∗(µ) andI∗(µ̄), where the
optimalµ for the CSRA problem, i.e.,µ∗ lies in the set
[µ, µ̄], µ̄− µ < κ, andI∗(µ), I∗(µ̄) ∈ IDSRA.

2) For bothI = I∗(µ) and I = I∗(µ̄) (since they may
differ), calculatep̂

I
and L̂I as described for the brute

force algorithm.
3) Choose ÎDSRA = argmin

I∈{I∗(µ), I∗(µ̄)} L̂I as the
user-MCS allocation and̂pDSRA = p̂

ÎDSRA
as the as-

sociated power allocation.
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Fig. 1. Prototypical plot ofp∗n,k,m(µ) as a function ofµ. The choice of system parameters are the same as those used in
Section V.
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Fig. 2. Prototypical plot ofX∗
tot(µ) andL(µ, I∗(µ),x∗(µ, I∗(µ))) as a function ofµ for N = K = 5, andPcon = 100. Refer

to Section V for other details. The red vertical lines in the top plot show that a change inI∗(µ) occurs at thatµ.
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Fig. 3. Average goodput per subchannel versusSNRpilot. Here,N = 64, K = 16, andSNR = 10 dB.
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Fig. 4. Average sum-goodput versus number of subchannelsN . Here,K = 16, Pcon is fixed such thatSNR = 10 dB for a
64-subchannel OFDM system, andSNRpilot = −10 dB.
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Fig. 5. Subchannel-averaged goodput versus number of users. In this plot,N = 64, SNR = 10 dB, andSNRpilot = −10 dB.
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Fig. 6. The top plot shows the subchannel-averaged goodput as a function ofSNR. The bottom plot shows the average
bound on the optimality gap between the proposed and optimalDSRA solutions (given in (44)), i.e., the average value of
(µ∗ − µmin)(Pcon −X∗

tot(I
min, µ∗))/N . In this plot,N = 64, K = 16, andSNRpilot = −10 dB.
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