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Abstract

In this paper, we address the problem of joint schedulingraedurce allocation for the downlink of
an orthogonal frequency division multiple access (OFDMA3éd wireless network. Since perfect current
knowledge of channel state information (CSI) for all usegg/rhe difficult to maintain at the base-station,
especially when the number of users and/or subchannelsgis, lave consider resource allocation under
imperfect CSl, where the channel state is described by arigepmbability distribution. In particular,
we model the resource allocation problem as the maximizatiban expected sum utility over user
allocations, powers, and code rates, subject to an insteotes sum-power constraint. First, we consider
the “continuous” case where multiple users and/or code i@a time-share a single OFDMA subchannel
and time slot. This yields a non-convex optimization prabkhat we convert into a convex optimization

problem and solve optimally using a dual optimization appio Second, we consider the “discrete”
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case where only a single user and code rate is allowed per @GFBMdchannel per time slot. For the
mixed-integer optimization problem that arises, we disctge connections it has with the continuous
case and show that it can solved optimally in some situatibosthe other situations, we present a bound
on the optimality gap. For both cases, we provide algorithimiplementations of the obtained solution.
Finally, we study, numerically, the performance of the megd algorithms under varying degrees of CSI

uncertainty and OFDMA system configurations.

. INTRODUCTION

In the downlink of a wireless orthogonal frequency divisionltiple access (OFDMA) system, the

base station (BS) delivers data to a pool of users whose elswmary in both time and frequency. Since
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bandwidth and power resources are limited, the BS wouldtlikallocate them most efficiently, e.g., by

pairing users with strong subchannels and distributinggvaw the most effective manner. At the same
time, the BS may need to maintain per-user quality-of-eer(iQoS) constraints, such as a minimum
reliable rate for each user. Overall, the BS faces a resoalioeation problem where the goal is to

maximize an efficiency-related quantity (e.g., the sum gftloroughput) under particular (e.g., power)

constraints. Although the optimal allocation of resourisedearly a function of the instantaneous channel
state of all users at all subchannels, it is difficult in pi@eto maintain perfect instantaneous channel
state information (CSI), and so resource allocation mushdzmmmplished under imperfect CSI.

In this paper, we consider the problem of simultaneous uskeeduling, power allocation, and rate
optimization in an OFDMA downlink system when only a genafi@mnnel-state distribution is available
at the BS. Here, the use of a generic channel-state disarbailows us considerable flexibility in the
modeling of channel uncertainty. In particular, we consithe problem of maximizing expected sum-
utility subject to a constraint on sum-power under two scesaln the first scenario, we allow multiple
users and/or code rates to time-share any given subchamhgh@e slot. This formulation results in a non-
convex optimization problem. We show that it can be conekiéo a convex optimization problem and
solved optimally using a dual optimization approach. Fas,tiwve propose an algorithm that converges
exponentially fast to the optimal solution. In the secondnscio, we allow at most one user-MCS
combination to be allocated on any subchannel. This fortimaesults in a mixed-integer optimization
problem. We discuss connections between the two scenamnwsatack the second problem using the
solution obtained in the first. For some cases, we show tratotitained solution has an optimality
gap (i.e., difference between the obtained and optimalopmdnce) of zero, while for the other cases,
we bound the optimality gap. In addition, we propose an dlgmic implementation of the proposed
solution. Finally, we study, numerically, the performanmfethe proposed algorithms under different
OFDMA system configurations.

We now discuss related work. The problem of OFDMA downlinkextuling and resource allocation
underperfectCSI has been addressed in a number of publications (e.g[6[L]In [1], a subchannel, bit-
rate, and power allocation algorithm was developed to mz@npower consumption while maintaining
a data rate requirement. The authors of [2] proposed a lonptexity power-adaptation algorithm to
maximize sum-rate. They found that sum-rate is maximizedndach subchannel is assigned to the user
with the single best channel gain for that subchannel, anehwthe transmit power is distributed over
subchannels using a water-filling policy. In [5], a weightadn ergodic-capacity maximization problem

was formulated to exploit time, frequency, and multi-usieebsity while enforcing different notions of
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fairness. Non-convex optimization problems of weightechgate maximization and weighted sum-power
minimization were solved using a Lagrange dual decompmositiethod in [6].

The above works assume the availability of perfect trartemi€SI that would be very difficult to
maintain in practice. We claim that a more practical forrtiota of the OFDMA downlink resource
allocation problem would assume imperfect CSI. The effdatmperfect CSI has been widely studied
for single-user OFDM (e.qg., [7]-[9]). In [7], channel pretibn was used to mitigate the effect of outdated
CSl on the performance of adaptive OFDM systems. The effdloF®M channel estimation error, as well
as that of outdated CSI, were studied for the variable Ibé-case in [8]. In [9], an optimal power loading
algorithm for rate maximization was derived based on awei@gd outage capacity criteria, and it was
concluded that the outage rate of the system may be gredilgceel due to CSI error. Resource allocation
strategies under imperfect CSI for a multi-user (e.g., OF)Mownlink system has been studied in
[10]-[12]. In [10], the authors considered the problem afoglic weighted sum-rate maximization for
user scheduling and resource allocation, and studied tpadtrof channel estimation error on OFDMA
performance, where channel estimation error resulted-pitted MMSE channel estimation. In contrast,
we consider a general utility maximization framework whiemso restrictive assumptions are made on the
generation of imperfect CSI. In [12], a margin adaptive tgse allocation framework was studied to cope
with feedback delay and outdated CSI. In particular, theblerm of total transmit power minimization,
subject to strict constraints on conditional expected usgracities, was investigated. In contrast, we
focus on maximizing a more general concave goodput-basktgt stibject to a sum-power constraint.

The rest of the paper is organized as follows. In Sedfibn #,amtline our system model and frame
the optimization problems that we intend to solve. In Sedilf we consider the “continuous” problem,
where each subchannel can be shared by multiple users a®] eatd present an optimal solution.
In Section[1V¥, we consider the “discrete” problem, where hreaabchannel can support at most one
combination of user and rate per time slot. There we show thmater certain conditions, the continuous
and discrete problems become equivalent, allowing us téyapp approach to the continuous problem.
When these conditions do not hold, we propose a practicaridign that approximately solves the
discrete problem and bound its performance. In Se¢tion Vecavepare the performance of the proposed

algorithms to reference algorithms under various settifgsally, in Sectiori’ VI, we conclude.

II. SYSTEM MODEL

We consider a downlink OFDMA system witli subchannels and™ active users §, K € Z%).

During every channel use, a symbol (of any signaling schesneansmitted using a particular OFDMA
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subchannel. It propagates through a fading channel on thetevits intended mobile recipient. The
OFDMA subchannels are assumed to be non-interfering withsgtnat are time-invariant over each
symbol duration. Furthermore, the subchannels assoandthd particular user are assumed to be statis-
tically independent of those associated with other usenssTthe successful reception of a transmitted
symbol depends on the corresponding subchannel's $NR®werp, and modulation and coding scheme
(MCS) m. Here, we assume that MCS € {1,..., M} corresponds to a transmission ratergf bits

per symbol and a symbol error probability @f,(py). The symbol error probability is a function of the
received SNRyy because we treat the subchannel SINBs an exogenous parameter.

Given a symbol error rate ef,(pv), the goodpuy = (1— €, (py)) 7 quantifies the expected number
of bits per symbol that can be transmitted without error. Ha sequel, we will focus on maximizing
goodput-based utilities of the forbi(g), whereU (-) is any twice-differentiable strictly-increasing concave
function. To make the problem tractable, we will assume sylralror probabilities of the forthe,,, (py) =
ame P, wherea,, andb,, are known constants (see, e.g., [10]).

Before we can precisely state our scheduling and resoutceatibn (SRA) problem, we need to
introduce some additional notations. First, to indicatevlsmbchannels are partitioned among users and
rates in each time-slot, we introduce the proportionaligicator I, ;. ,,,, wherel, ;. ,, = 1 means that
subchannet is fully dedicated to usek at MCSm, andI,, s ,, = 0 means that subchannelis totally
unavailable to use at MCSm. The subchannel resource constraint is then expresset] as/y, x,m < 1
for all n. In the sequel, we consider two flavors of the SRA problem, atiouous” one where each
subchannel can be shared among multiple users and/or ratasne slot (i.e.,/,, ;. € [0,1]), and a
“discrete” one where each subchannel can be allocated t@sit ome user/rate combination per time slot
(i.e., I xm € {0,1}). Next, we introduce,, ;. ,, > 0 as the power that would be expended on subchannel
n if it was fully allocated to the user/rate combinatiok m). With this definition, the total expended

power become$ Iy, . mDn.k,m- Finally, we introducey,, ; as then!” subchannel’s SNR for user

n,k,m
k. Although we assume that the BS does not know the SNR reializafy,, ;. }, we assume that it does
know the (marginal) distribution of eac}, .

Our objective is to maximize the expected sum uti]iI}{ ka’m In,k,mUn,k,m(gn,k,m)}. whereg, i m

denotes the goodput that is contributed from subchamiogi userk with MCS m if that subchannel was

1 While models of the formu,,e *"?" are typically used to descrildgt error probability [10], we can adapt this model to
symbolerror probability using a generalization of the goodputninefor example, under bit error probability,,e ~*?” and
d independent bits per symbol, we would generalize the gdodgpression tq = (1 — a,,e™"?7)%r,,. While all results in

this paper can be easily extended to this generalized go@kmuession, we consider only the case- 1, for simplicity.
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fully allocated to that user/MCS combination. Here, theemtption is taken over the subchannel-SNRs
{Vn,k}, Which in turn affect the goodput§g,, i.}. The utility function U, ; (-) is used to trans-
form goodput into a quality-of-service (QoS) or fairr%ssetric, e.g., maximin fairness or proportional
fairness [13]. We assumé&, ;. .»(-) to be any generic real-valued function that is twice diffdi@ble,
strictly-increasing, and concave with, . (0) < co. ThereforelU; , () > 0 andU;, . (-) <0, where

" denotes the derivative. Incorporating a sum-power coimstta our objective, our SRA problem then

becomes

N K M
SRAZ max E {Z S LngmUnpm (1= ame—bmp"wkvm%vk)rm)} (1)

{Pn,k,m >0}
o =1 k= =1
(o} n=1k=1m
s.t. ZIn,k,m < 1 Vn and Z In,k,mpn,k,m < Pcon
k,m n,k,m

In Sectior(Ill, we solve the SRA problem for the continuouses, i ,,, € [0,1], and in Sectiofn IV we

solve it for the discrete cask, ., € {0,1}.

[1l. OPTIMAL SCHEDULING AND RESOURCEALLOCATION WITH SUBCHANNEL SHARING

In this section, we address the SRA problem in the case wherg, € [0, 1] V(n, k, m). Recall that this
problem arises when sharing of any subchannel by multipbesuand/or multiple MCS combinations is
allowed. We refer to this problem as the continuous scheduid resource allocation (CSRA) problem.

Defining I as theN x K x M matrix with (n, k,m)" element ad, »,m and the domain of as
Tesra = {1 : T € [0, 1]V M 5 Lok < 1V0},
the CSRA problem can be stated as

CSRA:= min - Z InkmE {Umk,m((l — ame_bmp""“””""“)rm)} s.t. Z Iy koo Preom < Preon-

{pn,k,rn 20}
T€Tesmn n,k,m n,k,m (2)

This problem has a non-convex constraint set, making it acomvex optimization problem. In order to
convert it into a convex optimization problem, we write thectual” power allocated to usérat MCS

m on subchannek asx,, ;. m = Iy km Pn,k,m- Then, the problem becomes

CSRA = ( IHiIl>O} E In,k,m Fn,k,m(ln,k,m> xn,k,m) s.t. E Tn,km < Pcon> (3)
Tn,k,mZ
TeT e n,k,m n,k,m

2In our formulation, ifUn.k,m(-) was chosen to incentivize “fairness” constraints, thenféimess would be imposed jointly
over users, subchannels, and rates. If one instead desirieahbse fairness over users only, then an optimization|enolof
the form>", E {Uk (Zn’m In,k,mpn,k,m)} may be more appropriate. However, this latter problem mayire a different

optimization approach than the one taken in this paper.
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whereF), i (-, ) is given by

—E {Un,k,m((l _ ame—bmxn,k,mﬁn,k/ln,k,m)Tm)} if In,k,m 75 0 (4)

Fn,k,m(In,k,ma wn,k,m) =
0 otherwise

The modified problem in{3) is a convex optimization probleithva convex objective function (shown
in AppendiX8) and linear inequality constraint. Moreov8later’s condition is satisfied &f, ;, ,,, = ﬁ
andz,, i m = %Imk,m, Vn, k,m. Hence, the solution of]3) is the same as that of its duallprolgi.e.,
zero duality gap) [14]. Let us denote the optirfahndx for (B) by I'igga andaigga, respectively, and
let pEsra b€ the corresponding.

Writing the dual formulation, using as the dual variable, the Lagrangian [of (3) is

L(,Ua Ia ZB) = Z [n,k,m Fn,k,m(In,k,ma wn,k,m) + ( Z Tn,km — Pcon)/h (5)

n,k,m n,k,m
where we use to denote theéV x K x M matrix [z, ;. ,]. The corresponding unconstrained dual problem,

then, becomes

max min L(u, I, x)

p>0 x>0
I€Zcsra

= max min L(p, I, 2" (u,I)) = max L(p, I"(n), 2™ (p, I"(p))) = L(p*, T* ("), 2™ (", I*(1*))),(6)
u=>0 I€Zcsra p=0

wherex = 0 means that, ;,, > 0 Vn,k,m, *(u,I) denotes the optimak for a givenp and
I, I*(u) € Zcsra denotes the optimal for a givenpu, and p* denotes the optimak. In the next
few subsections, we will optimize the Lagrangian accordingd) w.r.t. =, I, and y in Section1ll-A,
Section1II-B, and Sectioh IMI-IC, respectively. This wiletfollowed by the proposed iterative algorithm
to solve CSRA problem in Sectign TIIID. We will, then, end tliscussion on CSRA problem with few
insightful properties of the obtained optimal CSRA solntia Sectior 1I[-E.

A. Optimizing over total powers;, for a giveny and user-MCS allocation matriX

The Lagrangian in[{5) is a convex function of Therefore, any local minima of the function is the

global minima. Calculating the derivative &f(y, I, x) W.r.t. z,, ;. ,, We get

OL(p, I, )
S L) ™
Ln,k,m
1 if Ipgm=0
= @bt BTG (1= aeomnsmtns/ by )y, e=bnosmins/ e L otherwise
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Clearly, if I, . = 0, L(-,-,-) is an increasirH;function ofxy, k., sincep > 0. Thereforex;7k7m(u, I) =

OL(p,1,x)
axn,k,nl

0. If howeverr, ;. ,,, # 0, then is an increasing function of,, ;. ., sincel, , ..(-) is a decreasing

function ofz,, ;. ,,. Thus, we have

,U _ ambmrm E{ ! ((1 _ ame_bmx"’k'm'y"’k/ln’k'm)Tm)’Yn,ke_bmx”'k‘mﬂy”'k/I”'k‘m} _ O (8)

n,k,m

for some positive value of,, . ,,, if and only if 0 < p < @y, by, U/ ((1—am)rm) E{vn 1} Therefore,

n,k,m

‘%n,k,m(ﬂ71) |f 0 S 1% S ambmrm 7/7,,]6,777,((1 - am)rm) E{’Yn,k}

x;kz,k,m(:uv I) = (9)

0 otherwise

wherez,, ;. (1, I) satisfies
U= Qmbmrm E {U,/Lkm((l — ame_bmi"””"(“’I)”’"”‘/I"”"m)rm)yn,ke_bmi"”"m(“’I)”’"”‘/I"””"}. (10)
From [10), we observe that, ;. ,,, (1, I) = Dn k,m (1) In k,m Wherep, (1) satisfies
U= Gmbmrm E {U,'Lkm((l — ame_bmm’k*m(“)%v’“)rm)yn,ke_bmﬁ"v’“vm(“)%* }. (11)

Combining the above observations, we can write for &y Zcsga and (n, k,m) that

x;k,m(:uv I) = n,k,mp;k,m(ﬂ)7 (12)
where
” ﬁn,k,m(ﬂ) if 0< n< ambmrmUyll,hm((l - am)rm) E{'yn,k}
pn,k,m(:u) = (13)
0 otherwise

and p,, ,m(p) satisfies[(Ill). Note that if suchz, i (1) exists that satisfies (L1), then it is unique.
This is because, irﬂllXJ,’%k,m(-) is a continuous decreasing positive function and=#»sm(#)vmx
is a strictly-decreasing continuous function @f . ,,,(1) which makes the right side of (IL1) a strictly-
decreasing continuous function@f ;. ,,(1.). Therefore, in the domain of its existengg,y. ,,, (1) is unique
and decreases continuously with increasquinConsequentlyz;, , .. (u, I) is a decreasing continuous

function of 4. A sample plot showing the variation @tb,km(ﬂ) w.r.t. 4 has been shown in Fig] 1.

3We use the terms “increasing” and “decreasing” interchahlyewith “non-decreasing” and “non-increasing”, respesy.
The terms “strictly-increasing” and “strictly-decreagirare used when appropriate.
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B. Optimizing over user-MCS allocation matrixfor a giveny

Substitutingz* (i, I) from (@2) into [3), we get the Lagrangian as follows.

L(p, I, x*(p,I)) Voo (127, k., (1))
= —uPeon + Z Z Inkem [ —E {Un,hm((l — ame—bmpil,k,m(u)%,k)rm)} + /j’p:;k,m(/j’) ] . (14)
n km
Ly (1)

where I,, = {I, ., V(k,m)}. Since the above Lagrangian contains the sumLgfu,I,) over n,
minimizing L, (u, I,,) for everyn (over all possiblel,,) minimizes the Lagrangian. Now,,, (x, I,,) is
an linear function of 1, y. ., V(k,m)} that satisfies ;. ,, In k.m < 1. Therefore,L,(u, I),) is minimized
by the I,, that gives maximum possible weight to tfe m) combination with the most negative value
of Vi k,m (1, P, 1., (1)) TO write this mathematically, let us define, for egefand subchannet, a set
of participating user-MCS combinations that yield the sanwst-negative value of;, i, (1, P}, 1. ., (1))
over all (k,m) as follows:

Sn(n) £ {(/am) : (k,m) = au(igmi)ll Vet ame (b P er e (1)) @NA Vi e (15 D7y e (1)) < 0}- (15)
If S,(w) is a null or a singleton set, then the optimal allocation obctiannelr is given by

1 if (k,m) € Sp(p)

0 otherwise

However, if |S,, ()| > 1 (cardinality greater than one), then multiple, m) combinations contribute
equally towards the minimum value df, (u, I) and thus the optimum can be reached by sharing
subchannet. In particular, let us suppose thsit (1) = {(k1(n), m1(n)), ..., (ks, ) (17), mys, () (7)) }-
Then, the optimal allocation of subchanmels given by

Ly keom)miny  iF (kym) = (ki(n),m;(n)) for somei € {1,...,[S,(u)|}

0 otherwise

where the VECtol,, k, (n).m. (n)s - - s Ln,kys, o (n)smys, o (n)) 1S @NY pointin the unit{S,, ()| —1) simplex,
i.e., it belongs to the spads, 1]/%+(#)| and satisfies

|Sn (1

)l
i=1
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C. Optimizing over

In order to optimize ovef, we can calculate the Lagrangian optimized for a given valug as

L(p, I (), 2™ (e, I (1))

= —uPeon + Z [Z,k,m(ﬂ) [ —E {Un,k,m((l — ame—bmp;k,m(#)%,k)rm)} + :“p;kz,k,m(ﬂ)] . (19)

n,k,m
and then maximize it over all possible values;of> 0 to find p*. Notice from [16){(1B) that we have
> kom Ly k(") = 1 for atleast onen. Otherwise I (1*) = 0 which, clearly, is not the optimal solution.

Therefore,.* > pimin > 0, where

Lmin = rrllfin A b rm E {U;L,,%m((l — ame_bmpmn%'k)rm)ymke_bmpwn%'k} (20)

is obtained by taking,, k. m (i) — Peon for all (n,k,m) in the right side of[(I1). Since;, , (v is a
decreasing continuous function pf(seen in Section Il-A), we hav®_,, ; ., 7, ;. (1, I) > Feon for all

I # 0 andyu < pumin. We can also obtain an upper bounpt < pimax, Where

fmax = Max by rm Ul k m((l - am)rm) E{vn i} (21)

is obtained by taking,, . (1) — 0 in the right side of[(Il1). Thus, for any > fimax, Ty (s I) =
0 Vn, k,m, I. Since, the primal objective if](3) is not maximized whenozpower is allocated on all
subchannels, we haye" € [umin, tmax] C (0, 00).
At the optimaly, i.e., pu*, if we have|S, (u*)] < 1 Vn, then the optimal CSRA allocatiodigga,
equalsI*(x*) and can be calculated usirig16). Moreover, the optimal paNecationpfsz, allocates
Pren(”) 1 I5 0 (0*) # 0

pz,k,m,CSRA = (22)
0 otherwise

to every possiblén, k,m) combination. However, if for some, we have|S, (1*)| > 1, then ambiguity
arises due to multiple possibilities df(x*) obtained via[(Il7). In order to find the optimal user-MCS
allocation in such cases, we use the fact that the CSRA probilg3) is a convex optimization problem
whose optimal solution satisfies the sum-power constraithit aquality, i.e.,

S e T W) = > L ()P (1) = Peon. (23)

n,k,m n,k,m

This is because* > umin > 0 (shown earlier) and the complementary slackness condgiees that

15 (2 T e (55 T (1)) = Peon) = 0. Now, the total power aIIocated to any subchanmedt ;.*
1S S L s ) P o (1) WHET® (T ), Vi satisfies [TTB). This quantity is
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10

dependent on the choice of values faf, v. () m. (n) }‘ 0l and takes on any value between an upper

and lower bound given by the following equation:

1S ()]

miin Pk (n),ma(n) (H) < Z T ki (n)ma (n) Pro oy () ms () (1) < max Pk (n),ma (n) (H)- (24)
i=1

Note that the existence of at least ohe- I"*(;.*) satisfying

Zzlnk (n),mi(n) pnk( ),m (n)(#*) = Peon (25)

is guaranteed by the optimality of the dual solution (of oomex CSRA problem over a closed constraint
set). Therefore, we necessarily have, min; p, ;) . (n) (7)< Feon, @andy -, maxi py, ) o ) (B5) 2
Peon. In addition, all choices of user-MCS allocations;(n*), given by [1T) that satisfy the equality
> nteom Do gen (W) P g i (18°) = Peon, are optimal for the CSRA problem.

In the case that the optimal solutidii (1*) is non-unique, i.e.|S,(u*)| > 1 for somen, then one

instance ofl*(n*) can be found as follows. For each subchannedlefine
(kmax(na //’*)7 TMmax (TL, M*)) = argmax p;,kl(n),ml(n) (:u*)a (26)
(kmin (TL, ,u*)a Min (TL, M*)) = argmin p;,kl(n),ml(n) (:u*)a (27)

and find the value oh € [0, 1] for which

)‘< Zpn,kmin(n,u*),mmin(n,u*)(N*)) + (1 - )‘) ( an,kmax(n,u*),mmax(n,u*)(/J’*)> = Pcom (28)

i.e.,
A= 2o Do) 1) (1) — Feon o (29)
Zn pn,kmax(n,u*),mmax(n,u*)(N ) - Znpn,kmin(n,u*),mmin(n,u*)(N )
Now, defining two specific allocationd;™ (x*) and I™(u*), as
min * 1 (ka m) = (kmin(na /L*), mmin(”a M*)) max * 1 (ka m) = (kmax(na M*)a mmax(”a M*))
In,k,m(:u ): ) In,k,m(:u ) =
0 otherwise 0 otherwise (30)

respectively, the optimal user-MCS allocation is given Kygg, = AI™ (1) + (1 — X\)I™(p*). The
corresponding optimal power allocation is then given [by)(22can be seen that this solution satisfies
the subchannel constraint as well as the sum power cornstéh equality, i.e.,

Zl;;vk,m(lu’ pnkm ankmia>I* >k)):})Con-

n,k,m n,k,m
Two interesting observations can be made from the abovesigmn. Firstly, for any choice of concave
utility functionsU,, 1. . (-), there exists an optimal scheduling and resource allatatiategy that allocates

each subchannel to at mastuser-MCS combinations. Therefore for allocatingsubchannels, even if
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more than2N user-MCS options are available, at m@¥ such options will be used. Secondly, if
I™(p*) = I™(u*), then the optimal CSRA solution allocates power to at most(énm) combination
for every subchannel, i.e., no subchannel is shared amontanor more user-MCS combinations. This

observation will motivate the SRA problem’s solution withiesubchannel sharing in Sectibnl IV.

D. Algorithmic implementation

In practical systems, it is not possible to search exhaelgtiover v € [rimin, tmax|.- Thus, we propose
an algorithm that will reach solutions in close (and adjokaproximity to the optimal. In this algorithm,
we first narrow down the location @f* lies by using a bisection-search oVgfin, 1max] for the optimum
total power allocation, and then find a set of resource aliocadecisions,I, x), that achieve a total
utility close to the optimal.

To proceed in this direction, with the aim of developing arfeavork to do bisection-search over
let us define the total optimal allocated power for a giverugadf ;. as follows:

Xtot Z xnkm #7-[* )) (31)

n,k,m
where I'* () andx* (u, I* (1)) (defined in [(6)) minimize the Lagrangian (defined [ (5)) fogigen ..

The following lemma relates the variation &f%; (1) with respect tou.
Lemma 1. The total optimal power allocationX;:;(x), is a monotonically decreasing function of

Proof: A proof sketch is given in AppendixIB. For the full proof, seb]. |

A sample plot of X5, (u) and L(u, I*(u), x*(u, I*(1))) as a function ofu is shown in Figurd 2.
From the figure, three observations can be made. First, insreases, the optimal total allocated power
decreases, as expected from Lenitha 1. Second, as expeetédgiangian is maximized for that value
of p at which X(u) = Peon. Third, the optimal total power allocation varies continsly in the
region of u where the optimal allocationf*(x), remains constant and takes a jump (negative) when
I*(n) changes. This happens for the following reason. We knowftvaany (n, k,m), p;, ;. (1) is @
continuous function of:. Thus, when the optimal allocation remains constant ovesirme of ., the
total power allocated _,, ;. .., I 1. .. ()P}, 1., (1) @lso varies continuously with. However, at the point

of discontinuity (sayi), multiple optimal allocations achieve the same optimdu&aof Lagrangian. In

Sn(f)| > 1 for somen. In that case X (1) can take any value in the interval

20 Py () () (V)5 2 P e () s () ()
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while achieving the same minimum value of the Lagrangiap.ahpplying Lemma[l, we have

X7 = 81) 2D Ph ) mnto) () 2 Xia (7 ankm.nn (o) () 2 Xior(7 + Az)

for any Ay, Ay > 0, causing a jump of 3, 05, 1 o () = 320 P g n) ey () 1N the tota
optimal power allocation a.

Lemmall allows us to do a bisection-search ovesince X;5 (1) is a decreasing function ¢f and
the optimaly is the one at whichX{ (1) = FPeon. In particular, if u* € [u, i) for somep and fz, then
= [“2“,;‘4 if X, (“;“) > Peon, Otherwisep* e [,u, } Using this concept, we propose an
algorithm in Tablell that finds an intervl, i], such thatu* € [, 7] and i — p < s wheres (> 0) is
a tuning-parameter, and allocates resources based onabpésource allocations at and fi.

The following lemma characterizes the relationship betwie tuning parametet and the accuracy

of the obtained solution.

Lemma 2. Let u* € [u, 1] be the point where the proposed CSRA algorithm stops, andotiaé
utility obtained by the proposed algorithm and the optim&RA solution béjcsm(g’ﬂ) and Ulggra
respectively. Ther) < Uggra — Ucsra(jts i) < (fi — 1) Peon.

Proof: For proof, see Appendix]C. |
Since our algorithm stops when— p < x, from Lemmal2, the gap between the obtained utility and
the optimal utility is bounded by’%onx. Moreover,lim,,,; Ucsra(, i) = Ugra-
The proposed algorithm requires at mdgig, (Lr=—tmn)] jterations ofy in order to findz, andp
such thafi—u < x andp™ € [u, i]. Therefore, measuring the complexity of the algorithm bg/tiamber

of times [11) must be solved for a givén, k,m, 1), the proposed algorithm takes at most
NEKM [log, (tmatimn)] (32)

steps. We use this method of measuring complexity becausows us to compare all algorithms in
this paper easily. Since, for a given the number of steps taken by the proposed bisection digoiig

proportional tolog, x, the algorithm converges exponentially fast to the optiswition.

E. Some properties of the CSRA solution

In this sub-section, we study few properties of the CSRA tamiuthat give valuable insights into
the optimal resource allocation strategy for any given eatd Lagrange multipliery:.. Let us fix a

i € [pmins tmax)- Now, if |S, ()| < 1,Vn, then the optimal allocation gt, I*(jz) is given by [16) which
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reveals thatl*(jz) € {0, 1}V>*5xM In this case, the definition dfcsgra implies that every subchannel
is allocated to at most one user-MCS combination. Note thiatis precisely the constraint we impose

in the later part of this paper. Let us now consider the caser@jl$,, ()| > 1 for somen is possible.

Lemma 3. For any iz > 0, there exists & > 0 such that for allu € (&2 — 9, 2+ 0) \ {i}, there exists an
optimal allocation,I* (1) € Zcsgra, that satisfied * (1) € {0, 1}V>*E*M Moreover, ifuy, pa € (fi—6, ji),
then there existd™ (uy), I*(u2) € {0, 1}VXEXM gych thatI*(u;) = I*(u2). The same property holds
if both i1, o € (ji, ji + 0).

Proof: A proof sketch is given in AppendixID. For the full proof, se¥5]. [ |
In conjunction with [[IR), the above lemma implies that thecdntinuities in Fig[l2 are isolated and

that around every point on the horizontal axis, there is allsmgion over whichX;;,(x) is continuous.

IV. SCHEDULING AND RESOURCEALLOCATION WITHOUT SUBCHANNEL SHARING

In this section, we will solve the scheduling and resourdecation (SRA) problem[{1) under the
constraint thatl,, ;. ,, € {0, 1}, i.e., each subchannel can be allocated to at most one catiairof user
and MCS per time slot. We will refer to this problem as the dite scheduling and resource allocation
(DSRA) problem. Storing the values df, ;, ,,, in the N x K x M matrix I, the DSRA subchannel
constraint can be expressed B& Zpsra, Where

Tosra = {I . T € {0, 1}NxKxM,ZIm,m <1 \m}.

k,m

Then, using[(ll), the DSRA problem can be stated as

DSRA := max Z In,kva {Unykvm((l - ame_bmpn’k'm’yn'k)rm)} s.t. Z In,k:,mpn,k,m < Peon-
{pn.k.m 20} n,k,m n,k,m (33)
I€Tpspa

Let us denote the optimd andp for B3) by Iigga andpjqga, respectively.

The DSRA problem is a mixed-integer programming problemxédiinteger programming problems
are generally NP-hard, meaning that polynomial-time $whst do not exist [16]. Fortunately, in some
cases as in ours, one can exploit the problem structure te cgmvith polynomial complexity algorithms
that reach solutions in close vicinity of the optimal sadati We first describe the naive approach of
solving the mixed-integer programming problem, DSRA, byhaustively searching over all possible
user-MCS allocations in order to arrive at the optimal ussie, and power allocation. We will see that

this approach (termed brute-force) has complexity thatxigorential in the number of subchannels.
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Later, we will exploit the DSRA problem structure, and ittat®n to the CSRA problem, to propose an

algorithm with polynomial complexity.

A. Brute-Force Algorithm

Consider that, if we attempted to solve our DSRA problem viadsforce (i.e., by solving the power
allocation sub-problem for every possible choicelot Zpsga), We would solve the following sub-

problem for every giverI.

e 3 Lot B { Ui (1~ ame 75005} S0 S L < Poon- (34)
Pt = n,k,m

n,k,m

Using the same approach as taken for the CSRA problem, wsforam the variable,, i ,, iNto zy, k.,

via the relation:z,, 1. », = I, k.m Pn.k.m- The problem in[(34) can, therefore, be written as:

Inin>0 Z In7k7m Fn7k;7m(ln,k;7m7$n,k:,m) St Z vflf'n,k:,m é PCOH) (35)
{Z’n,,k,mf }n,k,m n,k,m

whereF,, 1. 1 (In k.m, Tn k.m) iS defined in[(#). This problem is a convex optimization pesbithat satisfies
Slater’s condition [14] whem,, ;. ,, = Peon/2NKM for all n, k, m. Therefore, its solution is equal to
the solution of its dual problem (i.e., zero duality gap)][1¥o formulate the dual problem, we write
the Lagrangian of the primal problem {35) as

L[(/L,$) = Z In,k,an,kz,m(In,k,m>xn,kz,m) + ( Z Tn,km — Pcon),u, (36)

wherey is the dual variable ana is the N x K x M matrix containing actual powers allocated to all
(n, k,m) combinations. Note that the Lagrangian [inl(36) is exacty shme as the Lagrangian for the
CSRA problem in[{b). Usind(36), the dual of the brute-forceljem can be written as

mex min Li(p,x) = nax Ly(p, 2" (1)) = Lr(pg, =" (11)), (37)
for optimal solutions:; anda*(x3). Minimizing Lr(u, ) over{x > 0} by equating the differential of
Lr(p, x) W.rt. z, ., to zero (identically to the approach taken in Seclion lllgk the CSRA problem),

we get that, for any subchanne]

Ty ke (1) = I kom D e (1) (38)
Here,

ﬁn,k,m(#) if0<p< ambmrmUylL,k,m((l - am)rm) E{'Vn,k}

p;,k,m(:u) = (39)

0 otherwise

November 2, 2010 DRAFT



15

andp,, .m (1) is the uniqug value satisfying[(111), repeated &s](40) for convenience.
Iu = ambmrm E {UT/l,ki,m((l _ ame_bMﬁn,k,m(u)Vn,k)T.m)fyn7ke_bmﬁn,k,Tn(/J')’Yn,k}. (40)

Note that the Lagrangian as well as the power allocatiof &) éhd [38) are identical to that obtained
for the CSRA problem in[{5) and_(L2), respectively. Also tetzat (19)-(21) hold even whedi*(y) is
replaced by arbitrary. Thus, we have.} € [umin, tmax], Where umin and umin are defined in[{20) and
(27)), respectively.

As discussed in Sectidn THAG,, . (1) is a strictly-decreasing continuous functioniofwhich makes
Py, r.m(p) @ decreasing continuous function of Let us now define

X L) 2 Y k() = O TPy (1) (41)

n,k,m n.km
as the total optimal power allocation for allocatidnat x.. Therefore, X;5,(I, 1) is also a decreasing
continuous function of:. This reduces our problem to finding the minimum valueuof [iimin, ftmax]
for which X7, (I, 1) = Peon. Such a problem structure (i.e., finding the minimum Lageanwultiplier
satisfying a sum-power constraint) yieldsvater-filling solution (e.g., [2], [10]). To obtain such a solution

(in our caseuj}) one can use the bisection-search algorithm given in Table |

While there are other ways to find, we focus on bisection-search for easy comparison to the
CSRA algorithm. Thus, to solve the resource allocation l@mmbfor a givenI € Zpsga, the com-
plexity in terms of the number of times_(40) (dr {11)) is sav® yield /iy such that|ir — p}| < &,
iS (2, 5m Inkm) [logy (#m2ctmn) . Since, the brute-force algorithm examinggsgal = (KM +
1)V hypotheses off, the corresponding complexity needed to find the optimal BS®lution is
[log, (Hme—tmin)] ™Y (YY) (K M)", which equals

K

log, (Lmecimn)] s (KM 4+ )N"INK M. (42)

This may be impractical to implement for typical valuesif M, and N, as it grows exponentially
with the number of subchannel$. In the sequel, using insights from the CSRA problem, we firildl

approximations to the DSRA solution with much lower comjiex

“By assumption[J;, ;... (-) is a decreasing positive function and’mPn.km DIk is g strictly-decreasing positive function

of pn,k.m (1), which makes the right side df (40) a strictly-decreasingitp@ function ofp,, xm (1)-
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B. Proposed DSRA Algorithm

Equation [(3D) in Section T-B demonstrated that there tsxa& optimal user-MCS allocation for the
CSRA problem that either lies in the domain of DSRA problera,,iI* (u*) € Zpsra O iS @ convex
combination of two points from the domain of DSRA problera, il *(p*) = AN™ (u*)+ (1 =X I™(u*),
whereI™ (u*) # I™(u*) andI™ (u*), I"™(1*) € Ipsra (note thatifl € Tcspa andI € {0, 1}V ¥ EXM
then I € Zpsra). This motivates us to attack the DSRA problem using the CSiRyorithm. In this
section, we provide details of the proposed approximate AS&ution using the above observation.

The following lemma will be instrumental in understandirg trelationship between the CSRA and

DSRA problems and will serve as the basis for allocating ueses in the DSRA problem setup.

Lemma 4. If the solution of the Lagrangian dual of the CSRA probléinf@@)a given is such that
I*(p) € {0, 1}V*EXM "and the corresponding total power i, (1) as in [31), then the solution to the

optimization problem

(P*,I*) = argmax Z Hn7k,mE{Un,k7m((1 — ame_bmp"”“”"%”“)Tm)} s.t. Z L ey Prke,m < Xior ()
{P=0}

I€pspa

n,k,m n,k,m

nkm( A" (1) *

0 otherwise

satisfiesl* = I*(u) and, for every(n, k,m), P}, ;. ., =

Proof: A proof sketch is given in AppendiXIE. For the full proof, s€é]. [ |
From the above lemma, we conclude that ifi @xists such thal*(u) € Zpsra and X5 (1) = Peon,
then the DSRA problem is solved optimally by the CSRA solutget (I*(u), z*(u, I*(1))), i.e., the
optimal user-MCS allocatiol gz, equalsI*(x) and the optimal power allocatiomigz,, for any
(n,k,m) is given by

T3 e (0,17 (1))
I kum(u) if Inkm( ) 7& 0

Pka DSRA — (43)
0 otherwise

Recall that the optimal total power achieved for a given gadh Lagrange multiplieg, i.e., X () =
>on Em Tk m(u, I*(w)), is piece-wise continuous and a discontinuity (or “gap’gws aty when mul-
tiple allocations achieving the same optimal value of Lagran exist. When the sum-power constraint,
Peon, lies in one of such “gaps”, the optimal allocation for the R¥Sproblem is given by a convex
combination of two elements from the SBjsra, and the CSRA solution is not admissible for DSRA. In
such cases, we are motivated to choose the sub-optimal D8Rios Ipspa € {I™ (1), I™ (1)} that

yields highest utility. In Tablél I, we provide details of tiraplementation of the proposed sub-optimal
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DSRA algorithm that has a significantly lower complexity quamed to the brute-force algorithm. We
also show using numerical simulations in Secfidn V that ésfigrmance is very close to optimal.
The following lemma bounds the asymptotic difference iditigs achieved by the optimal DSRA

allocation and the proposed DSRA algorithm.

Lemma 5. Let p* be the optimaly for the CSRA problem ang, i be such thatu* € [u,fa]. Let
Ubsra a@nd UDSRA(H, i) be the utilities achieved by the optimal DSRA solution amdpioposed DSRA

algorithm, respectively. Then,
0 < Upsra — }ngll_l Ubsral(tt, ) < (0" = pmin) (Peon — X (T™ (1), 1)) (44)

0 if |Sp(u*)] <1Vn

IN

(45)
(tmax — tmin) Peon  Otherwise
Proof: The proof is given in Appendik]F. |
It may be interesting to note that the bound [n](45) does nateswith number of userd< or
subchannelsv.
The complexity of the proposed DSRA algorithm is margingligater than that of the CSRA algorithm,
since an additional comparison of two possible user-MG&ation choices is involved. In units of solving

(A1) for a given(n, k, m, i), the DSRA complexity is, at most,
N(KM +2) [log, (Lme—tmn)] (46)

Comparing [(4R) and(46), we find that the complexity of theppsed DSRA algorithm is polynomial

in N, K, M, which is considerably less than that of the brute-forcetlgm (exponential inV).

V. NUMERICAL EVALUATION

In this section, we analyze the performance of an OFDMA downsystem that uses the proposed
CSRA and DSRA algorithms for scheduling and resource dilmcainder different system parameters.
Here, we choose the utility functiod,, ;. ,,(-) in the primal objective to be the identity function, and
thus the objective is to maximize sum-goodput of the system.

For downlink transmission, the BS employ2&*!'-QAM signaling scheme with MCS indem <
{1,...,15}. In this case, we have,, = m+ 1 bits per symbol. In the symbol error rate modgl(py) =
ame PY, we choosea,, = 1 andb,, = 1.5/((m + 1)> — 1) because the actual symbol error rate

of a 2"*1-QAM system is proportional texp(—1.5py/((m + 1)? — 1)) in the high{py) regime and
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is equal tol when py = 0. We use the standard OFDM model [17] to describe the (insteenus)

frequency-domain observation made by #i& mobile user on the:'” subchannel:
Ynk = M kTn +Vpg, forne{l,... ., N}andk e {1,..., K} 47)

In (@1), =, denotes the QAM symbol broadcast by the BS on #lfe subchannelp,, ;, the gain of

the n'" subchannel between theé” user and the BS, and, ; a corresponding complex Gaussian
noise sample. We assume that, ;,} is unit variance and white acrog¢s, k), and we recall that the
exogenous subchannel-SNR satisfigg = |h,, x|*. We furthermore assume that thé user’s frequency-
domain channel gaing, = (h17k,...,hN7k)T e CV are related to the channel impulse response
9r = (91ks---,90k)T € CL via hy = Fg,, where F € CV*L contains the first.(< N) columns

of the N-DFT matrix, and where{g; ;} are i.i.d. over(l,k) and drawn from a zero-mean complex
Gaussian distribution with variancz% chosen so thakE{~, ,} = 1. Since the total available power for

all subchannels at the base-statiorPig,, the average available SNR per subchannel can be denoted by
SNR = &2 E{, ..

To model imperfect CSI, we assume that there is a channetagin period during which the
mobiles take turns to broadcast one pilot OFDM symbol, frohiclv the BS estimates the correspond-
ing subchannel gains. Furthermore, we assume that the elsada not vary between pilot and data
periods. To estimatéy,, we assume that the BS observgs = VPpiot hi + Ui € CN. Note that
the average SNR per subchannel under pilot transmissid@NR o = ppilot E{7n.1x}. The channel
h; and the pilot observationg, are jointly Gaussian, and furthermotg, |y, is Gaussian with mean
E{hi|9r} = Rn.y, Ry 5 9 and covariance&Cov(hi|yy) = Rh,n, — Ru, g, Ry

Ui Ys
R, ., denotes the cross-correlation of random vectgrandz, [18, pp.155]. SinceRy,, p, = o—gFF’,

Ry, p,, Where

Ry, 5, = \/MUZFF,, and Ry, 5 = ppnotagFF’ + | (where | denotes the identity matrix), it
is straightforward to show that the elements on the diagohalov(h;|y,) are equal. Furthermore,
E{hi|y,} can be recognized as the pilot-aided MMSE estimaté:of In summary, conditioned on
the pilot observationsh,, ;, is Gaussian with meaﬁmk given by then' element of E{h;|gy,}, and
with variancec? given by the first diagonal element éfov(h:|y;). Thus, conditioned on the pilot
observationsy,, ;. has a non-central chi-squared distribution with two deg@fefreedom.

We will refer to the proposed CSRA and DSRA algorithms immeted under imperfect CSI as
“CSRA-ICSI” and “DSRA-ICSI,” respectively. Their performnces will be compared to that of “CSRA-
PCSI,” i.e., CSRA implemented under perfect CSI, which esras a performance upper bound, and

fixed-power random-user schedulifigP-RUS), which serves as a performance lower bound. FP-RUS
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schedules, on each subchannel, one user selected uniffsomly{1, ..., K}, to which it allocates power
Peon/N and the fixed MCSn that maximizes expected sum-goodput. Unless specifiedyuhger of
OFDM subchannels wad = 64, the number of users wak = 16, the impulse response length was
L = 2, the average SNR per subchannel v&i¢R = 10 dB, the pilot SNR wasSNRpjj,r = —10 dB,
and the DSRA/CSRA tuning parameter was= 0.3/ Py (recall Tabldll). In all plots, goodput values
were empirically averaged ovén00 realizations.

Figure[3 plots the subchannel-averaged goodput achievethdyabove-described scheduling and
resource-allocation schemes for different grades of C&lthis curve, SNRy is varied so as to
obtain estimates of subchannel SNR with different gradesamfuracy. All other parameters remain
unchanged. The plot shows that@N R is increased, the performance of the proposed schemes under
the availability of imperfect CSI increases from that of RBS to that achieved by the CSRA-PCSI
scheme. This is expected because with increaSINgRio:, the BS uses more accurate channel-state
information for scheduling and resource allocation, angstlachieves higher goodput. The plot also
shows that, even though the proposed CSRA algorithm ogtinsalves the CSRA problem and the
proposed DSRA algorithm sub-optimally solves the DSRA faol) their performances almost coincide.
In particular, although the goodput achieved by CSRA-IGS3lesne exceeds that of DSRA-ICSI scheme
in up-to 49% of the realizations, the maximum difference in the subcle&armeraged goodput is merely
4 x 1073 bits/channel-use. Since the DSRA-ICSI schemes cannog¢waehi sum-goodput higher than that
achieved by the CSRA-ICSI scheme, it can be deduced thartpeged DSRA algorithm is near-optimal
in this case.

Figurel4 plots the sum-goodput over all subchannels as di«umaf NV, ranging between6 and128. In
this numerical evaluationi,, is fixed such thaBNR = 10 dB for a 64-subchannel OFDM system. The
plot shows that the sum-goodput increases wWithThis is expected since more subchannels allows more
scheduling flexibility and availability of even strongerbshannels, which can be effectively exploited
by BS to achieve higher goodput. It can be seen that the peaioces of CSRA-ICSI and DSRA-ICSI
schemes are almost identical, regardles® ofn particular, although the goodput achieved by CSRA-ICSI
scheme exceeds that of DSRA-ICSI scheme in up7a@ of the realizations, the maximum difference
in sum-goodput is merelg x 10~3 bits/channel-use.

Figure[® plots the subchannel-averaged goodput as a fanefié& (number of active users) varying
betweenl and32. It shows that, ad{ increases, the goodput per subchannel achieved by the ggdpo
schemes under perfect and imperfect CSl increase, whéraiaadhieved by the FP-RUS scheme remains

constant. This is because, in the former schemes, the bvi#jlaof more users can be exploited to
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schedule users with stronger subchannels, whereas in #iUSPscheme, this advantage is lost due to
the lack of information about the users’ instantaneous cékhoonditions. Similar to the observations
in the previous plots, the performance of the proposed dlgos under imperfect CSI remain almost
identical. In particular, although the goodput achieveI8RA-ICSI scheme exceeds that of DSRA-ICSI
scheme in up-t@9% of the realizations, the maximum difference in the subclke&aneraged goodput is
merely 7 x 10~ bits/channel-use.

In Figure[®, the top plot shows the subchannel-averaged mdoand the bottom plot shows the
subchannel and realization-averaged value of the boun@d)) on the optimality gap for the DSRA
problem as a function dNR. In the top plot, it can be seen that@&IR increases, the difference between
CSRA-PCSI and CSRA-ICSI (or, DSRA-ICSI) schemes increadesever, the difference grows slower
than the difference between CSRA-PCSI and FP-RUS schemiesestingly, even for high values of
SNR, the performance of CSRA-ICSI and DSRA-ICSI remain almdsintical. In particular, although
the goodput achieved by CSRA-ICSI scheme exceeds that ofABISBI scheme in up-t@8% of the
realizations, the maximum difference in the subchannetayed goodput is merelyx 10~° bits/channel-
use. The bottom plot, which illustrates the average valugudf— umin)(Pcon — X{gt(Im‘”,u*)) over all
realizations and subchannels w.BINR shows that the loss in sum-goodput over all subchannelsalue t
sub-optimality of proposed DSRA solution under imperfe&i @ bounded by x 10~ bits/channel-use
even when the subchannel-averaged goodput of DSRA-ICSI tiseoorder of tens of bits/channel-use.
This suggests that the proposed bound in Leriima 5 on the djtyigap of proposed DSRA solution is
quite tight at high values oBNR.

From the above plots, we conclude that even with imperfed; @® proposed CSRA and DSRA

compared to non CSl-based schemes. It was seen that théttatggdrperformances are very close to

each other, confirming that the proposed DSRA algorithm & optimal in the tested scenarios.

VI. CONCLUSION

In this paper, we considered the problem of joint scheduding resource allocation (SRA) in downlink
OFDMA systems under imperfect channel-state informatde. considered two scenarios: 1) when
subchannel sharing is allowed, and 2) when it is not. Botlesagere framed as optimization problems
that maximize a utility function subject to a sum-power daaigt. Although the optimization problem
in the first scenario (the so-called “continuous” SRA pratjevas found to be non-convex, we showed

that it can be converted to a convex optimization problemsoided using a dual optimization approach
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with zero duality gap. An algorithmic implementation of tlESRA solution was also provided. The
optimization problem faced in the second scenario (theadled “discrete” SRA problem) was found
to be a mixed-integer programming problem. To attack it, inkeld the DSRA problem to the CSRA
problem, and showed that, in some cases, the DSRA solutimtides with the CSRA solution. For
the case that the solutions do not coincide, we proposed etigah DSRA algorithm and bounded
its performance. Numerical results were then presente@ruadvariety of settings. The performance
of the proposed CSRA and DSRA algorithms schemes under feqie€S| were compared to those
under perfect CSI and no CSI (i.e., fixed-power random sdiregu In all cases, it was found that the
proposed imperfect-CSl-based algorithms offer a signmifiealvantage over schemes that do not use any
CSI. Moreover, the performance of DSRA was nearly equal tR&STherefore, we conclude that, in
OFDMA-based downlink communication systems under immi@S|, it is unlikely that the performance
gains that result from time-sharing of multiple user-MC$ntinations within a single subchannel would

justify the additional system-level complexity that woudd required to implement such time-sharing.

APPENDIXA

SKETCH OF PROOF FOR CONVEXITY O-CSRAPROBLEM
First, we show that,, i,y Fy k. (In km» Tnk,m) IS CONVEX NI, i, andzy, i . For this, consider the
case whern,, ;. ,, > 0. In this case, the Hessian &f j ., L, im(In kms Tnkm) WLt Ly g @NA 25, g o,

can be calculated and found to be positive semi-definite t,Nmnsider the case Whelf;ykm =0.To

prove convexity in this case, we apply the definition of codityei.e., for any two pomts( N k o x% m)
and([ff,l m fi .m) In the domain of CSRA problem and for anye [0, 1], convexity means

M Fon (Lt ki) (0= VL Foon (1 230k )

> [u}j;m (U= NI, | P (M + (= NIE, Aally (1= N2l ). 48)
When one or both of{I nkm,[ffkm} are zero, it is straightforward to show that the above equa-

tion holds. Therefore/, i mFn km(In km, Tnkm) IS cONVex inly, ., and x, . Consequently, it
is a convex function off and x. Since the primal objective function of the CSRA probleng.,i.
ka’m Iy ie.m Fooleom (I je.ms Tnke.m ), 1S @ SUM of functions that are convexInand, it is also convex

in I andzx.
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APPENDIX B

SKETCH OF PROOF OFLEMMA [1]
Suppose that; < po, Wherepu, 1o € [fmin, tmax]- With p fixed, the minimization problem becomes

L, I (), 2 (i, I (1))

= {I;lil'{)l} L(M,I,$) = {2151]8} ( Z Tn,kom — PCOH),“"" Z [n,k,an,k,m([n,k,mawn,k,m) (49)

n,k,m n,k,m
I€Zcsra I€lcspa

recalling [6). Aty = p1, I*(ue) anda*(us2, I*(u2)) are suboptimal values df*(u) andx* (u, I* (1)),
and aty = pg, I*(p1) andx*(uq, I*(p1)) are suboptimal values df* (u) anda*(u, I*(n)). Therefore,

Lp, I (pa), ™ (pa, I (1)) < Lpa, I (p2), @™ (2, I7(p12))), and (50)
L(pg, I (p2), @™ (p2, I*(p2))) < L(po, I (p1), 2" (11, I (p1)))- (51)

Adding (50) and[(511), and evaluating the result, we get

(1 = 12) (D2 (b1, T (112)) = @5, 112, T (12)) ) < 0. (52)

n,k,m

Sincep; < p2, we haveX; (11) > X (p2). Therefore X5 (1) is monotonically decreasing in.

APPENDIXC

PROOF OFLEMMA [2

Proof: To compare the utilities obtained by the proposed CSRA dlgarand the optimal CSRA so-
lution, we compare the Lagrangian values achieved by thebldions. Recall:™ € [u, ji] C [1min, fmax]-

Therefore,
L(u, T (), @ (", T (1)) = L, T (), @ (, " ())) > 0, and
L(p", I (p"), ™ (0", I" (")) — L(p, I (), 2" (11, I*(R))) = 0. (53)

The solution of the proposed CSRA algorithm allocates ressusuch that the sum-power constraint is

satisfied while achieving a Lagrangian value of

Lesra £ AL(R, I(), & (7, T°(R))) + (1= AL, T (), & (o, T (1))-

For any u, notice thatL(u, I (u), z*(p, I" (1)) = —U*(p) + (Xi(1t) — Peon) i, WhereU*(u) is the

total utility achieved due to optimal power allocation aattlu. Since the resource allocation obtained
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by the proposed CSRA algorithm and the optimal CSRA solusiatisfy the sum-power constraint with

equality, we have

Ucsra = —L(p", I ("), 2" (", I* (7)), and (54)

Lesra = —UCSRA(ﬁa ) + (Xt (1) — Peon) M+ (Xior (1) — Peon) (1 — A

= —Ucsra(pt 1) + (Xiee(1) — Peon) (i — p) A, (55)
Equation [(5b) holds sincg& X, (1) + (1 — X)X (1) = Peon- From [54) and[(55), we get
0 < Ugsra — Ucsra(p, 1) = —L(p*, T* (1), @* (1, T* (1)) + Lesra — (Xigq(12) = Poon) (12 — A
From the above equation arld {53), we have

0 < Ucspra — UCSRA(ﬁa f) < (Peon — Xt (12)) (18 — )X < (i — p) Peon- (56)

APPENDIXD

SKETCH OF PROOF OALEMMA

Let x € [pmin, 4max] b€ any value of the Lagrangian dual variable for the CSRA lerabThen, ati,
one of the following three cases holds.

1) [Sa(f)| < 1 ¥n.

2) For somen, |S,(fx)| > 1 but no two combinations it%,, (&) have the same allocated power.

3) For somen, |S,(iz)| > 1 and at least two combinations #,(5z) have the same allocated power.

We make use of two properties in the proof. First, ;. ,,,(u, . ,,(1)) is @ continuous function
of uu. Therefore, by definition of continuous functions,Vif, i . (i, pZ ;. ,.(2)) > 0, then we can fix a
On.ke,m (> 0) such thatVn,hm(u,p;k,m(u)) > 0 wheneverjy — fi| < 6, mn. Secondly, for all values of

1, we know av"”"m(‘gi:“’“m(“)) = p; ..(1). We now apply these properties to each of the three cases

to determineS, (1) Vn. Wheny is sufficiently close toi, we show that, in casek) and2), one can
fix a § such that|S, ()| < 1 ¥n whenever0 < | — | < ¢. When this happens, it can be shown
that, for all yy1, 2 € (fi — 6, /i), one hasl*(uy), I*(pg) € {0,1}V>*EXM and S, (u1) = S, (u2) ¥n.
The same property holds when, us € (i, 2 + ¢). In case3), we establish that all combinations with
the same allocated power contribute equally to the totalguaalocated, as well as the total optimal
value of Lagrangian. Therefore, all but any one combinatian be ignored safely, implying that there

exists a fixeds such thatI*(u) € {0, 1}V*ExM whenever|u — ji| < 6. After ignoring the redundant
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combinations, it follows from casels and2) that, for all p;, ue € (0 — 6, &) and py, ua € (i, it + 9),
there existsl* (uy), I*(u2) € {0, 1}V*EXM sych thatl*(py) = I*(p2).

APPENDIX E

SKETCH OF PROOF OFLEMMA [4]

From [8) and the stated assumptions, we hBYg:) € Zpsra C Zcsra @nd

(I*(N%m*(/‘»I*(/‘))) = argg(l]in Z Imk,m ka,m(In,hm»xmk,m) + ( Z Tnkm — Pcon),ua (57)
m_

I€Ipsra

where F), ;. . (-,-) was defined in[{4). Then, applying the concept of generalizegrange multiplier

n,k,m n,k,m

method from [19, Theorent], we conclude that

(I*, X*) = afgmi}n > T Frkn o geoms Xnkn) SEY - Kok <Y @ (. T5(12)).(58)
X>0

I€Zpsra
SubstitutingX,, » m = L, k.mPnk.m back into the above equation, we obtain the desired result.

n,k,m n,k,m n,k,m

APPENDIXF

PROOF OFLEMMA [§

Proof: Let us denotdimﬁ_m UDSRA(E; i) by Ubsra. The left inequality in the lemma is straight-
forward sincelUzgga > Upsra(, /i) Vp, fi. Now, if [ S, (1*)] < 1 Vn, then we have/isps = Ugspa =
Ubsra, €nsuring that the solution obtained via the proposed DSRjarighm is optimal in the limit
W, i — p*. However, whenS,, (u*)| > 1 for somen, Peon lies in one of the “gaps” as mentioned in
Fig.[2 andIigga ¢ Zosra- In this case, we have < Ucen — Upsra < Ugega — Unsra. Let U*(I) be
the optimal utility achieved for user-MCS allocation matfi € Zpsgra. We recall from Sectiop ITI=C that,
at p*, the allocationI™ (1.*) is one of possibly many values dfminimizing L(u*, I, *(p*, I)). Thus,
Ubspa = —L(p*, I™ (p*), z*(p*, I™ (p*))). For brevity in this proof, let us deno®™ (n*) and 1™ (p*)
(€ Ipsra), defined in[(3D), byf™ and I, respectively. Thereford/psra = max{U*(I™), U*(I™)}.

This gives us
Uésra — Upsra < Uspa — U*(I™)
= —L(p", I™, " (", I™)) + Lo (W pmin, " (1 7mn)))
= —L(p", I™, " (1", I™)) + L(1gmin, I, & (1 gmin, I™)), (59)

where, for [GP), we use the equivalence betwddp, I,z) in (B) and Ly(u, ) in (B8). Note that

Wymn < p*, since the total optimally allocated power fof" at u = p* is less than or equal 8o, and
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the total optimally allocated power for any givdns a decreasing function @f. PluggingL(-,-,-) from

(®) into (59), we get

Ucsra — Upsra < — [ — 1" Peon + Z ?Zi,nk,m< - Un7k,m(pz,k,m(ﬂ*)) + M*p;,k,m(ﬂ*))} (60)
n,k,m

[ = g Peon + 3 I (= Oneon (B () + 1 TV g (1) )

n,k,m
where, U, j.m(z) = E{Up m((1 — ame»*+)r,,) 1. Using the definition ofXy (1, 1) in @), we

have X5 (I™, u*) < Peon and X5, (I™, ujmm) = Peon. Therefore,[(6B0) can be re-written as

. X
Ucsra — Upsra

< 1 (Poon = X T 1)) = 3 ks [Orsm 9 (5)) = O (™) (61)

n,k,m
Calculating the first two derivatives @f,, x ,,,(x) with respect tar, we find that it is a strictly-increasing

concave function ofc. Therefore, ifz; < x5, one can write thal, xm(z2) — Upgkm(1) > (22 —

1)U, . (72). Pluggingzy = pj, ;. (1*) andxa = p;, 1 (17me) into this inequality, we get

Uy ke.m ()
Ox

O e P (1)) = Ot B (05°)) 2 (B (o) = D (7)) (62)

x:p;,k,m(u;min)

From [61) and[(62), we then get

Uésra — Ubsra
<t (Pcon — Xiot(I™, N*)) - Z glr}fmUr/Lkm (p;,k,m(/i;min)) (p;kz,k,m(:u';min) - Pka(M*)) (63)
n,k,m
EvaluatingU, ;. .. (9} 1. (Wimn)), We find

OUp ke.m ()
ox

= ambmrm E {U;L,knn((l - ame_bmp:’k’m(u;mm)’yn’k)Tm)7n7ke_bmp;’k’mw;min)%Yk}
x:p;,kmn(u;min)

> Hmin- (64)
From [63) and[{64), we finally obtain

UéSRA - ﬁDSRA < (,U* - ,Umin) (Pcon - X{Zt(Imm, N*)) < (/lmax - ,Umin)Pcon- (65)
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ALGORITHMIC IMPLEMENTATIONS OF THE PROPOSED ALGORITHMS

Proposed CSRA algorithm Brute force algorithm for a giverd

1) Setﬂ HMmin,s [t = [max, andll 7L'a- 1)
2) For each subchannel=1,...,N: 2)

a) For each(k,m), 3)
i) Use [11) and[(I3) to calculatg, , ,,(1)- g’;

i) Use (14) to calculate/, x,m (16, Py gem (1))- 6)
b) CalculateS,, () using [I5).
3) If |Sn(p)| < 1Vn, then findI* (1) using [18), else use 7
(0) and setl” (1) = I™(1). g
4) Finda*(u, I*(p)) using [12) and calculat& g (1) = )
> ki Trtem (1 T (1))
5) If Xit(it) > Peon, Sty = 1, otherwise sefi = p.
6) If o —p > K, go to step 2), else proceed.
7) Now we haveu™ € [u, i] andp—p < r. If Xig(p) #

* (- Xiot(14) — Peon
Xiot(), seth = m else set\ = 0.

8) The optimal user-MCS allocation is given Hysga =
A" () + (1 — X\)I*(p) and the corresponding opt
mal x is given by &cspa = ™ (i, I* (1)) + (1 —
ANa*(u, I*(p)). The optimal power allocationjcgga,
then can be found using

Initialize p = pmin aNd i = pimax.

Sety = %

For each(n, k, m), use [38){(4D) to obtain, ., (1).

Find X (T ) using [41).

If Xeoi(Z, ) > Peon, S€tp = p, otherwise sefi = p.

If 2 —p <k, goto step 7), otherwise go to step 2).
Kot (Ip1) = Peon

If Xiot(I, ) # Xiot(ds 1), SN = =7 =1y
otherwise set\ = 0.

Set/ir = 1. The best actual power allocation is given
by &r = Ax*() + (1 — A\)z*(u) and the best powe
allocation,p,, is given by -

N Znk.m. T if L km # 0
Prk,m, I =

AA

In,k,m

0 otherwise

where p,, x.m.z and @, x.m.1 are the(n,k,m)" ele-
ment of p; and &z, respectively. The corresponding
Lagrangian, found usind,; = Li(a,p* (1)), gives the
optimal Lagrangian value.

Proposed DSRA algorithm

wn k,m,CSRA
Inok.m CSRA jf ] 0
P, k,m CSRA_{ mokom.CSRA 7& (66)

Iy k. cSRA

otherwise 1
where fn,k,m,CSRA and in,k,m,CSRA denote the
(n,kz,m)th component offcsra and ®csra, respec-
tively. Notice that the obtained solution satisfies the 2)
sum-power constraint with equality.

3)

Use the algorithmic implementation of the proposed
CSRA solution in to findl* (1) and I* (@), where the
optimal ;. for the CSRA problem, i.ey* lies in the set
[ pl, o — p <k, and I"(p), I"(fi) € Ipsra-

For bothI = I*(u) and I = I*(i) (since they may
differ), calculatep, and L1 as described for the brut
force algorithm.

Choose Ipsra = ATEMIN f 1+ (), 1+ (1)) L; as the
user-MCS allocation angbpspa = Py, as the as-
sociated power allocation.

1%
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-2 -1 0

10 10 10
I

Fig. 1. Prototypical plot ofp;, ;. ,,,(x) as a function ofu. The choice of system parameters are the same as those used in
Section V.

10 10 10

107 10" 10°
m

Fig. 2. Prototypical plot ofXye (1) and L(p, I™(u), 2™ (1, I* (1)) as a function ofx for N = K = 5, and Peon = 100. Refer
to Sectior[ 'V for other details. The red vertical lines in tbp plot show that a change i (1) occurs at thaju.
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—0 -40 -30 -20 -10 0 10 20
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Fig. 3. Average goodput per subchannel verStRpio;. Here, N = 64, K = 16, andSNR = 10 dB.
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Number of subchannels, N

Fig. 4. Average sum-goodput versus number of subchanNelslere, K = 16, Peon is fixed such thaBNR = 10 dB for a
64-subchannel OFDM system, al@NRpior = —10 dB.
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Fig. 5. Subchannel-averaged goodput versus number of. Usettsis plot, N = 64, SNR = 10 dB, andSNRyjot = —10 dB.

=
(62}

—B— CSRA-PCsI
@+ CSRA-ICSI
—+— DSRA-ICSI

=
o

—A— FP-RUS

o

Goodput per subchannel
(bits/channel-use)

|
[y
o

|
[y
o

|
u
o
o
[y
o
[
(S}
N
o
N
(&

30

Goodput per subchannel
(bits/channel-use)

-5 0 5 ) 10 15 20 25 30
SNR (in dB)

Fig. 6. The top plot shows the subchannel-averaged goodpwt function of SNR. The bottom plot shows the average
bound on the optimality gap between the proposed and opt&RA solutions (given in[(44)), i.e., the average value of
(1" — pmin) (Peon — Xiot(I™", 1)) /N. In this plot, N = 64, K = 16, and SNRji,t = —10 dB.
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