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EXTRACTING LONG BASIC SEQUENCES FROM SYSTEMS OF

DISPERSED VECTORS

JARNO TALPONEN

Abstract. We study Banach spaces satisfying some geometric or structural
properties involving tightness of transfinite sequences of nested linear sub-
spaces. These properties are much weaker than WCG and closely related to
Corson’s property (C). Given a transfinite sequence of normalized vectors,
which is dispersed or null in some sense, we extract a subsequence which is a
biorthogonal sequence, or even a weakly null monotone basic sequence, depend-
ing on the setting. The Separable Complementation Property is established
for spaces with an M-basis under rather weak geometric properties. We also
consider an analogy of the Baire category theorem for the lattice of closed
linear subspaces.

1. Introduction

This paper deals with nonseparable Banach spaces enjoying some structural
properties much weaker than reflexivity. These properties involve tightness con-
ditions for transfinite chains of nested linear subspaces. We aim to show that
spaces with such chains admit plenty of bounded linear projections. As a result
we will establish the separable complementation property, the existence of basic
sequences, or other such properties depending on the setting. As the title of the
paper suggests, the main problem here is to extract a transfinite basic sequence or
a biorthogonal sequence from a net of vectors, which is in some sense far from being
constant.

Many Banach spaces have a rich structure of projections (see e.g. [19]). This can
be applied in classifying spaces and it is also often easier to work in separable com-
plemented fragments of the space. For example, spaces with a Schauder basis admit
a very convenient structure of projections, especially if the basis is unconditional.
On the other hand, spaces with very few projections (even few operators, see e.g.
[23]), like HI spaces, are currently an object of wide interest. This is partly due to
several dichotomies about the existence of projections, roughly stating that if there
are a reasonably many projections, then there already exists a basic sequence with
some required properties, like unconditionality (see e.g. [3], [11]).

Recall that the unit ball of a reflexive Banach space is weakly compact, which
implies that each normalized sequence has a cluster point with respect to the weak
topology. The similar conclusion holds for sequences of length ω1 should the unit
ball be weakly Lindelöf. Thus, above we increased the length of the sequence
while weakening the hypothesis. The possibility for this kind of trade-off is typical
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for Banach spaces. This is mostly due to the fact that Banach spaces are always
countably tight in the norm and weak topologies, and more importantly, their duals
are often countably tight in the ω∗-topology, or usually at least something similar
holds. So, even though the weak clustering of countable sequences is not necessarily
common in general Banach spaces, the weak clustering of uncountable sequences
(of vectors, subspaces, etc.) is typical and can be ensured by imposing rather
weak geometric or structural conditions. Thus the applications of countable and
uncountable combinatorics differ considerably in Banach spaces.

The following hypothesis for Banach spaces X becomes useful here:

• For any uncountable, regular cardinal κ each nested sequence {Aα}α<κ of
closed affine subspaces of X has non-empty intersection.

No infinite-dimensional space satisfies the above condition if we consider countable
sequences instead. However, the above hypothesis follows readily if the space in
question is Lindelöf in the weak topology, e.g. a WCG space. The following result
is typical here and it is a kind of prototype of the main results.

Theorem 1.1. Let X be a Banach space and {xγ}γ<κ ⊂ X a normalized sequence,
where κ is an uncountable regular cardinal.

(1) If {xα}α<κ is weakly null, then there is a subsequence {xασ
}σ<κ which

forms a monotone basic sequence.
(2) If X has Corson’s property (C) and {xα}α<κ is dispersed (resp. strongly

dispersed), then there is a subsequence {xασ
}σ<κ which forms a bounded

biorthogonal sequence (resp. a monotone basic sequence).

Moreover, each nonseparable Plichko space contains an uncountable monotone basic
sequence.

This result will be given in more generality, and we will shortly provide the
definition of dispersed and strongly dispersed sequences. Actually, the principle
of the above statement (1) has been essentially known since the work of Bessaga-
Pelczynski in 1958 ([5]) and it is a natural example of the type of phenomena
studied here. We will also study, motivated by the constructions of the projections,
the intersections of a certain kind of fat subspaces.

In the light of some recent work, (e.g. [2], [8], [18], [34]), it is perhaps surprising
that we do not require any additional set theoretic axioms to accomplish the main
results. In our arguments, in addition to Banach space theory, we apply some fairly
elementary techniques of infinitary combinatorics in topology.

Various types of problems regarding subsequences of countable weakly null se-
quences have been studied previously in abundance (see e.g. [1], [22], [26], [27]),
but the combinatorial techniques and the conclusions appear to be very different
in the countable vs. uncountable settings.

1.1. Preliminaries.

Real, infinite-dimensional Banach spaces are typically denoted by X,Y,Z. We
denote by BX the closed unit ball of X and by SX the unit sphere of X.

Unless otherwise stated, λ is a limit ordinal, κ is an uncountable regular cardinal,
and we will apply cardinal arithmetic (instead of ordinal arithmetic) notations.

See [14], [10] and [24] for the standard notions in Banach spaces, set theory and
topology, respectively. We refer to Zizler’s survey [36] on the nonseparable Banach
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spaces for most of the definitions and results used here. The references [12], [13],
[28], [30], [31], [34] provide suitable backround information on different kinds of
biorthogonal and related systems.

Denote dist(A,B) = infa∈A,b∈B ‖a − b‖ where A,B ⊂ X. We call a subset
A ⊂ X generating if [A], the closed linear span of A, is X. Recall that F ⊂ X∗ is a
separating subset if and only if for each x ∈ X there is f ∈ F such that f(x) 6= 0

if and only if [F ]
ω∗

= X∗. We say that a Banach space X has the Countable
Separation Property (CSP) if each separating subset F ⊂ X∗ contains a countable
separating subset F0 ⊂ F . Suppose that {(xα, x∗α)}α<λ ⊂ X×X∗ is a biorthogonal
system, i.e. x∗α(xβ) = δα,β. We call {xα}α<λ a biorthogonal sequence for brevity.
Equivalently, {xα}α<λ is minimal, that is, xβ /∈ [xα : α 6= β] for all β. The
latter concept is more operational for topological vector spaces. A biorthogonal
system {(xα, x∗α)}α is bounded, if supα ‖xα‖ · ‖x

∗
α‖ <∞. An analogous minimality

notion is the following: {xα}α<λ is uniformly minimal if there is C > 0 such that

dist(xβ , [xα : α 6= β]) > C for β < λ. If [xα : α < λ] = X and [x∗α : α < λ]
ω∗

= X∗,
then {(xα, x∗α)}α<λ is called a Markusevic basis or M-basis. If {(xα, x∗α)}α<λ is an
M-basis on [xα : α < λ], then {xα}α<λ is called an M-basic sequence. We often do
not include explicitly the functionals in M-basis.

Recall that a Banach space X has the Separable Complementation Property
(SCP) (resp. 1-SCP) if each separable subspace is contained in a complemented
(resp. 1-complemented) subspace of X. A Banach space is Hereditarily Indecom-
posable (HI) if no subspace can be written as a direct sum of two of its infinite-
dimensional subspaces.

Given a limit ordinal θ, a sequence {xα}α<θ ⊂ X\{0} is said to be a (transfinite)
basic sequence if there is a constant 1 ≤ C < ∞ such that ‖y‖ ≤ C‖y + z‖ for all
y ∈ [xα : α < λ], z ∈ [xα : λ ≤ α < θ] and all λ < θ (see [31, p.589]). In such case
there are natural linear basis projections Pλ : [xα : α < θ] → [xα : α < λ] such
that ‖Pλ‖ ≤ C for λ < θ. The basic sequence is said to be monotone if the basis
projections are contractive, i.e. C = 1.

Recall that a compact Hausdorff space K is called a Corson compact if it can be
embedded in a Σ-product of real lines, and a Banach space X is Weakly Lindelöf
Determined (WLD) if (BX∗ , ω

∗) is a Corson compact. The following condition is
equivalent to the fact that X is WLD (see e.g. [17, Thm.4.17]): There is an M-basis
{xα}α of X such that

(1.1) |{α : f(xα) 6= 0}| ≤ ℵ0 for any f ∈ X∗.

A subspace Y ⊂ X∗ is called r-norming, 0 < r ≤ 1, if infx∈SX
supx∗∈SY

x∗(x) ≥ r
and Y is norming if it is r-norming for some r > 0. A Banach space is called Plichko
if it admits a countably 1-norming M-basis, that is, an M-basis {xα}α∈Γ such that
{f ∈ X∗ : |γ : f(xγ) 6= 0| ≤ ℵ0 } ⊂ X∗ is a 1-norming subspace.

Recall that a topological space (T, τ) is countably tight if for any A ⊂ T and

x ∈ A
τ
there is a countable subset A0 ⊂ A such that x ∈ A0

τ
. The following

folklore facts will be applied frequently, sometimes implicitly. Suppose that (T, τ)
is a countably tight topological space and {Eα}α<κ is a family of closed subsets

of T such that Eα ⊂ Eβ for α < β < κ. Then
⋃

α<κEα
τ
=

⋃

α<κEα. We will
study several properties of Banach spaces X that are weakenings of ω∗-countable
tightness of the dual space X∗.



4 JARNO TALPONEN

Given a limit ordinal λ, we say that a sequence {xα}α<λ ⊂ X is dispersed if
⋂

γ<λ

[xα : γ < α < λ] ( [xα : β < α < λ]

holds for all β < λ and strongly dispersed (SD) if it is dispersed and
⋂

β<λ

[xα : β < α < λ] = {0}.

For example, any biorthogonal sequence (resp. M-basic sequence) is a dispersed
(resp. SD) sequence under any re-ordering. Here we are particularly interested in
spaces admitting a normalized dispersed sequence with λ being a regular uncount-
able cardinal. Nonseparable spaces not admitting any such SD sequence have been
studied in [33]. Note that according to the Hahn-Banach theorem any weakly null
sequence {xα}α<κ ⊂ X \ {0} is SD. It is fairly easy to see that if the Lindelöf
number of X in its weak topology is less than κ, then also the converse holds.
More generally, if Z ⊂ X∗ is a separating subspace, then each σ(X,Z)-null sequence
of length κ is SD. The sequences {eα}α<λ ⊂ ℓ1(λ), {1(α,λ]}α<λ ⊂ C([0, λ]) and
{1[α,λ)}α<λ ⊂ ℓ∞(λ) provide examples of SD sequences, which are not weakly null.

2. Technical preparations

In this section we will study properties of Banach spaces, much weaker than reflex-
ivity, related to chains of subspaces.

2.1. Banach spaces enjoying good uncountable asymptotics.

Next, we will enumerate some conditions involving the structure of Banach spaces
X that subsequently turn out to be useful. These conditions are kind of subspace
counterparts for the ω∗-countable tightness of the dual space, or the weaker property
(C). Here κ will stand for any uncountable regular cardinal, and 1 ≤ r < ∞ is a
real number.

(C) X is said to have property (C) (after H. Corson [7]) if each family of closed
convex sets of X with empty intersection has a countable subfamily with
empty intersection.

(C′) An equivalent reformulation of property (C) (proved by R. Pol [25]): given

a set A ⊂ X∗ and f ∈ A
ω∗

, there is a countable subset A0 ⊂ A such that
f ∈ convω

∗

(A0).
(I) Each nested sequence of closed affine subspaces {Eα}α<κ of X has non-

empty intersection.
(II) Given a nested sequence {Zα}α<κ of closed linear subspaces of X, there is

for each f ∈
(
⋂

α<κ Zα

)⊥
an ordinal α < κ such that f ∈ Z⊥α .

(B) Let {Zα}α<κ be a nested sequence of closed linear subspaces of X such that
⋂

α<κ Zα = {0}. Then
⋂

α<κ BX + Zα is bounded. (Considered in [33].)

(r-B) For {Zα}α<κ as in (B) it holds that
⋂

α<κ BX + Zα ⊂ rBX.

Recall that we have the following implications: WCG =⇒ WLD =⇒ weakly
Lindelöf =⇒ property (C). It is easy to see that (C) =⇒ (I), (C′) =⇒ (II) and
that the condition in (B) (resp. in (r-B)) holds if and only if Y =

⋃

α<κ Z
⊥
α ⊂ X∗

is a norming (resp. 1/r-norming) subspace.
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When applying these conditions we use one sequence of subspaces at the time.
So, here it is not really essential here if the respective conclusions are valid si-
multaneously for every sequence and we could have formulated the conditions (I),
(II), (B) specific to a given sequence. In many cases there are spaces failing the
conditions, while there is a specific chain of subspaces, which clearly satisfies the
respective condition. These concepts are also discussed in the last section in terms
of inverse limits but next we will briefly examine some relationships between them.

Let us consider the space ℓ∞c (ω1) of countably supported vectors in ℓ∞(ω1) and
we denote by Zα, α < ω1, the subspace, where the first α coordinates vanish. Then
⋂

α<ω1
Bℓ∞c (ω1) + Zα = Bℓ∞c (ω1) (as in (1-B)) and it can be seen fairly easily that

for each f ∈ (ℓ∞c (ω1))
∗ there is α < ω1 such that f ∈ Z⊥α (as in (II)). However,

putting {1[0,α] + Zα}α<ω1
defines a nested sequence of affine subspaces in ℓ∞(ω1),

whose intersection is the singleton (1, 1, 1, . . .) ∈ ℓ∞(ω1). This vector clearly escapes
ℓ∞c (ω1), so that condition (I) fails.

On the other hand, suppose that Yα ⊂ ℓ∞(ω1), α < ω1, are the subspaces sup-
ported on (α, ω1). Then

⋂

α<ω1
1[0,α]+Yα = {(1, 1, 1, . . .)} (as in (I)),

⋃

α<ω1
Y ⊥α 6=

ℓ∞(ω1)
∗ ((II) fails),

⋂

α<ω1
Bℓ∞(ω1) + Yα = Bℓ∞(ω1) (as in (1-B)).

An example of a space, which does not satisfy (B) has been constructed in [33]
and the space ℓ1(ω1) is a more simple example. Namely, for each α = ω ·γ+n < ω1,
where we apply ordinal arithmetic, γ < ω1 and 0 < n < ω is regarded as a
real number, let xα = nen + (1/n)eα ∈ ℓ1(ω1) and xα = 0 for limits α. Then
nen ∈ [xα : δ < α < ω1] + (1/n)Bℓ1(ω1) for each δ < ω1 and 0 < n < ω. Thus
nen ∈

⋂

δ<ω1
[xα : δ < α < ω1] + (1/m)Bℓ1(ω1) for n ≥ m.

Proposition 2.1.

(i) Condition (I) of X yields that each quotient and subspace of X satisfies (B).
(ii) Condition (II) of X yields that each quotient and subspace of X satisfies

(1-B).
(iii) The Countable Separation Property implies (I) and (1-B).
(iv) Suppose that X satisfies (II). Then {xα}α<κ ⊂ X \ {0} is SD if and only if

it is weakly null if and only if it is σ(X,Z)-null for any separating subspace
Z ⊂ X∗.

Proof. To check (i) and (ii), it is easy to check that (I) and (II) pass on to quotients
and subspaces. The first two claims follow directly from Theorem 3.11 and the proof
of Proposition 3.9 in [33].

To check (iii), it follows from the considerations in [33] that if X has the countable
separation property, then for each nested sequence of closed subspaces {Zα}α<κ

with
⋂

α<κ Zα = {0}, it follows that Zα = {0} already for some α < κ.
In the last statement (iv) we begin by checking that if {xα}α<κ is σ(X,Z)-null,

then it is SD. Suppose that x ∈
⋂

β<κ[xα : β < α < κ], x 6= 0. Then there is f ∈ Z

such that f(x) 6= 0. On the other hand, if {xα}α<κ is σ(X,Z)-null then, due to
reularity of κ, there is β < κ such that f(xα) = 0 for β < α < κ. This contradicts
the choice of f and x.

To check that SD implies weakly null, let {xα}α<κ ⊂ X be SD and fix f ∈ X∗.

Since
(

⋂

β<κ[xα : β < α < κ]
)⊥

= X∗, we obtain by using (II) that there is β < κ

with f ∈ [xα : β < α < κ]⊥. This reads f(xα) = 0 for α ∈ (β, κ).
�



6 JARNO TALPONEN

Corollary 2.2. Let X be a Banach space with Corson’s property (C). If a sequence
{xα}α<κ ⊂ X is σ(X,Z)-null for some separating subspace Z ⊂ X∗, then it is already
weakly null.

�

Lemma 2.3. Let X be a Banach space, Y ⊂ X a closed subspace with dens(Y) < κ,
κ an uncountable regular cardinal, and let {Zα}α<κ be a nested sequence of closed
subspaces of X with trivial intersection. Suppose that

⋂

α<κ

BX + Zα ⊂ rBX

for some 1 ≤ r < ∞. Then there exists β < κ such that the angle between Y and
Zβ, dist(SY , Zβ) ≥ 1/r.

Proof. First observe that according to the assumption
⋂

α<κ

(1− ǫ)r−1BX + Zα =
⋂

α<κ

(1− ǫ)r−1BX + (1− ǫ)r−1Zα

= (1 − ǫ)r−1
⋂

α<κ

BX + Zα ⊂ (1 − ǫ)BX,

for 0 ≤ ǫ ≤ 1. Assume to the contrary that limα→κ dist(SY, Zα) = r−1(1 − 2ǫ) for
some ǫ > 0. This reads limα→κ dist(rSY , Zα) = 1 − 2ǫ. Then there is a sequence
{yα}α<κ ⊂ rSY such that dist(yα, Zα) < 1 − ǫ for each α. Since the Lindelöf

number of rSY is less than κ, we obtain that
⋂

β<κ {yα : β < α < κ} 6= ∅ and pick
y from this set. Observe that

y ∈
⋂

α<κ

(1− ǫ)BX + Zα ⊂ (1− ǫ)rBX.

Thus we arrive at a contradiction, since y ∈ rSY . �

It is perhaps worthwhile to closely observe in the arguments the intertwined roles
of the structure of Banach spaces, the Lindelöf number of subsets and the length
of the chains.

2.2. Banach subspaces analogy for comeager sets of a Baire space.

Suppose that X is a Banach space and Y ⊂ X is a closed subspace. We will
denote codens(Y) = dens(X/Y), provided that the superspace X is understood. If
codens(Y) = ω, we shall say that Y is coseparable. This concept can be motivated
by its analogy with comeager sets in topology. Namely, if the superspace X is
nonseparable, then the coseparable subspaces Y are fat in a sense. Recall that
comeager subspaces of a Baire space are preserved in countable intersections and
one might ask if the similar is true for coseparable subspaces of a nonseparable
Banach space.

For example, if X is reflexive and (Yn) is a countable sequence of cosepara-
ble subspaces, then

⋂

n Yn is coseparable. This can be seen by using well-known
properties of reflexive spaces as follows:

X
/

⋂

n

Yn = X∗∗
/

⋂

n

Y∗∗n =
(

span
⋃

Y⊥n

)∗

,

where the annihilators Y⊥n are separable due to coseparability. This argument can
be modified to cover the more general case, where X is coseparable in its bidual.
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However, in general Banach spaces coseparability is not necessarily stable even
in finite intersections. For example, let X = ℓ2 ⊕ ℓ∞,

Y1 = {(x1, 0, 2
−2x2, 0, 3

−2x3, 0, . . .)× (x1, x2, x3, . . .) ∈ X : }

and

Y2 = {(0, x1, 0, 2
−2x2, 0, 3

−2x3, . . .)× (x1, x2, x3, . . .) ∈ X : }.

Observe that (ℓ2⊕{0})+Y1 = (ℓ2⊕{0})+Y2 = ℓ2⊕ℓ∞. For this reason X/Y1 and
X/Y2 are separable by using the continuity of the respective quotient mappings.
Note that Y1∩Y2 = {0} ⊂ X and codens({0}) = 2ω. Essentially the same argument
gives the following observation.

Proposition 2.4. Let Z be a separable space and X a space with ω∗-separable
dual. Then there exist coseparable subspaces Y1, Y2 ⊂ Z⊕ X, whose intersection is
{0}. This trivial intersection is not coseparable if X is nonseparable. In particular,
if K is any separable, non-metrizable compactum, then c0 ⊕ C(K) contains two
coseparable subspaces with trivial intersection, which is not coseparable.

�

It is not hard to check the following fact by using the Hahn-Banach theorem.

Proposition 2.5. The coseparable subspaces of X are preserved in countable in-
tersections if and only if the following condition holds:

(σ) Given any ω∗-closed, ω∗-separable subspace Z ⊂ X∗, then codens(Z⊥) = ω.

�

The condition (σ) can also be viewed as a reverse Asplund property.
Yet another way to describe this class of Banach spaces would be to say that

they are saturated with separable quotients. Recall the well-known separable quo-
tient problem, which asks whether each nonseparable Banach space has a separable
infinite-dimensional quotient. Observe that the finite-codimensional subspaces are
a fortiori coseparable, and thus the separable quotient problem has a positive an-
swer in the class of Banach spaces X satisfying (σ). In fact, (σ) states that this
happens in a very strong way, and by using the Hahn-Banach extension of function-
als one can see that also every infinite-dimensional subspace of X has a separable
infinite-dimensional quotient.

3. Main results

Next we will give the main result.

Theorem 3.1. Let X be a Banach space and {xα}α<κ be a dispersed sequence of
X. Then one can extract increasing subsequences {ασ}σ<κ ⊂ κ as follows.

(1) Suppose that X satisfies (I) (resp. (II)). Then there is a bounded (resp.
1-bounded) biorthogonal sequence {xασ

}σ<κ.
(2) If X satisfies (B) and {xα}α<κ is SD, then there is a basic sequence {xασ

}σ<κ.
(3) If Z ⊂ X∗ is a norming subspace such that {xα}α<κ is σ(X,Z)-null, then

there exists a basic sequence {xασ
}σ<κ.

If additionally X satisfies (1-B) in (2), or Z is 1-norming in (3), then the basic
sequence can be chosen to be monotone.
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Note that if X in Theorem 3.1(2) satisfies condition (II), then {xα}α<κ is already
weakly null. Recall that such a sequence is SD.

Observe that if {xασ
}σ<κ ⊂ X is not SD for any cofinal subsequence {ασ}σ<κ ⊂

κ, then there clearly does not exist an M-basic subsequence of {xα}α<κ of length
κ, since M-basic sequences are necessarily SD. The analogous satement holds
for dispersed sequences and biorthogonal sequences. Observe that each minimal
sequence {xα}α<κ contains a uniformly minimal subsequence of length κ, since
lim supβ→κ dist(xβ , [xα : α 6= β]) > 0 by the regularity of κ. Thus we obtain the
following dichotomy.

Corollary 3.2. Let X be a Banach space with property (C) and let {xα}α<κ ⊂ X.
Then exactly one of the following conditions hold:

• There is no subsequence {xασ
}σ<κ, which is dispersed,

• There is a bounded biorthogonal sequence {xασ
}σ<κ,

and exatly one of the following conditions hold:

• There is no subsequence {xασ
}σ<κ, which is SD,

• There is a weakly null monotone basic sequence {xασ
}σ<κ.

�

Proof of Theorem 3.1 . We will first consider the hardest case (2), where X satisfies
(B). For each θ < κ let η(θ) be the infimum of numbers C ≥ 1 such that there
exists γ < κ and a continuous linear projection

P : [xα : α ∈ [0, θ] ∪ [γ, κ)]→ [xα : α ∈ [0, θ]]

given by P (x+ y) = x for x ∈ [xα : α ∈ [0, θ]], y ∈ [xα : α ∈ [γ, κ)] with ‖P‖ ≤ C
(and η(θ) =∞ if such P does not exist). Let ǫ > 0. Suppose that θ1 ≤ θ2 < κ and

P2 : [xα : α ∈ [0, θ2] ∪ [γ2, κ)]→ [xα : α ∈ [0, θ2]]

is an admissible projection in the definition η(θ2) with ‖P2‖ ≤ η(θ2) + ǫ. Then,
putting P1 = P2|[xα: α∈[0,θ1]∩[γ2,κ)] defines a projection, which is admissible in the
definition of η(θ1) and again ‖P1‖ ≤ η(θ2)+ǫ. We conclude that η : [0, κ)→ R∪{∞}
is a non-decreasing function.

Next, we will show that η(θ) < ∞ for each θ < κ under the hypothesis (B).
Indeed, it follows from Lemma 2.3 that there is β < κ such that the angle between
[xα : α ≤ θ] and [xα : α ≥ β] is strictly positive, which is equivalent to the
statement that there is a continuous linear projection

P : [xα : α ∈ [0, θ] ∪ [β, κ)]→ [xα : α ≤ θ]

given by P (x+ y) = x for x ∈ [xα : α ∈ [0, θ]], y ∈ [xα : α ∈ [β, κ)].
Thus the values of η are finite. By using the the regularity of κ and the fact

that η is non-decreasing we obtain that limθ→κ η(θ) exists and is finite. Denote this
limit by 1 ≤ C <∞.

Let us define an increasing sequence Φ: [0, κ) → [0, κ) by letting Φ(θ) be the
least φ such that there is a projection

P : [xα : α ∈ [0, θ] ∪ [φ, κ)]→ [xα : α ∈ [0, θ]]

with ‖P‖ ≤ C. Indeed, this can be accomplished by the regularity of κ.
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The required basic sequence can be extracted by transfinite recursion as follows.
Let α0 = 0 and

ασ = Φ

(

sup
γ<σ

αγ

)

∨

(

sup
γ<σ

αγ

)

+ 1, σ < κ.

The relevant basis projections are obtained by restriction from the the projections
provided by the definition of Φ. It is clear that the basis constant is at most C.

In proving (1) we apply the quotient mapping q : X→ X/
⋂

β<κ[xα : β < α < κ].

Then {q(xα)}α<κ becomes a SD sequence in X/
⋂

β<κ[xα : β < α < κ]. Since the

conditions (I) and (II) pass on to quotients and imply (B), according to Proposition
2.1, we may apply (2) to extract a basic sequence {q(xαβ

)}β<κ. Then one lifts this
sequence to obtain a corresponding biorthogonal system. Indeed, this biorthogonal
sequence will be bounded, since the basis projections Pλ on the quotient are uni-
formly bounded and the suitable biorthogonal functional fαβ

is obtained from the
1-dimensional projection Pλ+1 − Pλ.

Next, we will indicate the key modification to obtain the monotonicity of the
basis in the case where {xα}α<κ is σ(X,Z)-null and Z ⊂ X∗ is 1-norming. Given
an initial segment [0, θ] with θ < κ infinite, we let {fγ}γ<θ ⊂ SX∗ ∩ Z be a set of
functionals that 1-norms [xα : α ≤ θ]. Then according to the σ(X,Z)-convergence
we find β < κ such that fγ(xα) = 0 for β ≤ α < κ and γ < θ. It follows that the
natural linear projection

P : [xα : α ∈ [0, θ] ∪ [β, κ)]→ [xα : α ≤ θ]

given by P (x+ y) = x for x ∈ [xα : α ∈ [0, θ]], y ∈ [xα : α ∈ [β, κ)] is contractive,
since ‖x‖ = supf∈Z∩SX∗

f(x) = supf∈Z∩SX∗
f(x+ ty) ≤ ‖x+ ty‖ for t ∈ R. �

Remark 3.3. The recursive method in the proof of Theorem 3.1 can be adapted for
verifying the following fact: Suppose that in Theorem 3.1 for each γ < κ there are
ordinals γ < µ < ν < κ such that [xµ]

⊥ is 1-norming for [xα : α ∈ [0, κ) \ (γ, ν)].
Then one can extract a suppression unconditional basic sequence of length κ.

Theorem 3.4. Let X satisfy (B) and admit a generating SD sequence {xα}α<κ.

(i) If κ = ω1, then X has SCP.
(ii) If κ < ℵω and {xα}α<κ is an M-basis, then X has SCP.
(iii) Let κ = ℵk, 0 < k < ω, and Y ⊂ X be a separable subspace. Then there is

a subspace Z ⊂ X with codens(Z) ≤ ℵk−1 and a separable subspace W ⊃ Y
complemented in Z.

If X satisfies additionally (1-B) in (i) or (ii), then X has 1-SCP. In all cases the
complemented subspaces can be chosen in such a way that they are generated by
subsequences of {xα}α<κ.

Lemma 3.5. Let X be a Banach space satisfying (B). Suppose that {xα}α<κ+ is
a SD sequence of X. Then there exists an ordinal φ < κ+, cf(φ) = κ, such that
{xα}α<φ is SD and [xα : α < φ] is complemented in [xα : α < κ+].

Proof. By studying the proof of Theorem 3.1 we obtain that there is constant
1 ≤ C < ∞ and increasing cofinal sequences {θβ}β<κ+ , {ηβ}β<κ+ ⊂ κ+ such that
θβ < ηβ and such that the natural projection

Pθβ ,ηβ
: [{xα : α ∈ [0, κ+) \ (θβ , ηβ)}]→ [{xα : α ∈ [0, θβ]}]
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satisfies ‖Pθβ ,ηβ
‖ ≤ C for each β. Since {θβ}β<κ+ is cofinal in κ+, we can define

a function Φ: [0, κ+) → [0, κ+) by letting Φ(α) be the least ordinal σ < κ+ such
that the linear projection Pα,σ is well-defined and ‖Pα,σ‖ ≤ C holds. We define
φ(0) = 0 and recursively

φ(β) = Φ(sup
α<β

φ(α) + 1)

for 1 ≤ β < κ. Observe that this defines an increasing sequence. Let φ = supβ φ(β).
Observe that cf(φ) = κ. Moreover, by the construction of φ it holds that Φ([0, φ)) ⊂
[0, φ).

We claim that φ is the required ordinal and the natural projection

P : [xα : α < κ+]→ [xα : α < φ]

is well-defined and satisfies ‖P‖ ≤ C. Towards this, let x ∈ [xα : α < φ], ‖x‖ = 1.
Fix a countable subset Γ0 ⊂ [0, φ) such that x ∈ [xα : α ∈ Γ0]. Since Φ(supΓ0) <

φ, we obtain the following facts by the construction of Φ.

(i) We have x /∈ [xα : Φ(supΓ0) ≤ α < φ]. We conclude that {xα}α<φ is SD.
(ii) We have ‖x+z‖ ≥ 1/C for all z ∈ [xα : Φ(sup Γ0) ≤ α < κ+]. In particular,

this holds for z ∈ [xα : φ ≤ α < κ+]. We conclude that [{xα}α<φ] is
complemented in [{xα}α<κ+ ] in the natural way, the projection constant
being at most C.

�

Lemma 3.6. Let {(xα, x∗α)}α<λ ⊂ X×X∗ be an M-basis. Then for each uncount-
able regular cardinal κ < λ there is a mapping φ : κ→ λ such that {(xφ(β), x

∗
φ(β))}β<κ

is an M-basic sequence and κ ⊂ φ(κ).

Proof. Let Γ0 = [0, κ). Since the Lindelöf number of SX∩ [xα : α ∈ Γ0] is κ and the
biorthogonal functionals separate X, we obtain that there is a subset Γ1 ⊂ λ such
that Γ0 ⊂ Γ1, |Γ1| = κ and {x∗α}α∈Γ1

separates [xα : α ∈ Γ0]. We proceed by a
recursion of length ω1 to construct Γ =

⋃

σ<ω1
Γσ. Then [xα : α ∈ Γ] =

⋃

σ<ω1
[xα :

α ∈ Γσ], so that reorganizing {φ(β)}β<κ = Γ yields the required mapping. �

Proof of Theorem 3.4. Suppose that Y ⊂ X is a separable subspace. In verifying
SCP we may assume without loss of generality that Y ⊂ [xα : α < ω].

Let us consider the claim (i). By the proof of Theorem 3.1 we obtain a sequence
{σβ}β<ω1

⊂ ω1 such that there is a bounded linear projection Pβ,σβ
: [xα : α ∈

[0, ω1) \ [β, σβ)] → [xα : α < β] for each β. Then lim infβ→ω1
‖Pβ,σβ

‖ = C < ∞
according to the regularity of ω1. Thus we can find a sequence of indices ω <
β0 < σ0 < β1 < σ1 < . . . , such that for all n < ω there is a linear projection
Pβn,σn

with ‖Pβn,σn
‖ ≤ C. Then according to the construction of the sequence,

the mapping span(xα : α < ω1) → span(xα : α <
∨

n βn) given by x + z 7→ x
for x ∈ span(xα : α <

∨

n βn) and z ∈ span(xα :
∨

n βn ≤ α < ω1) defines
bounded linear projection onto span(xα : α <

∨

n βn) in the dense linear subspace
span(xα : α < ω1) of X. Let us extend this projection to the whole space. Thus
we have obtained a continuous linear projection onto [xα : α <

∨

n βn].
Let us consider the claim (iii). Write ℵk = κ for the suitable k < ω. By

applying Lemma 3.5 we obtain that there is a bounded linear projection Pk−1

onto [xα : α < φk−1] for some φk−1 < κ, cf(φk−1) = ℵk−1. Pick a cofinal
subsequence ψk−1 = {αβ}β<ℵk−1

⊃ ω of φk−1. We apply Lemma 3.5 again to
find that there is φk−2 < ℵk−1, cf(φk−2) = ℵk−2, and a bounded linear projection
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Pk−2 : [xα : α ∈ ψk−1] → [xα : α < φk−2, α ∈ ψk−1]. Next we will pick a further
increasing subsequence ψk−2 : ℵk−2 → ψk−1 such that ψk−2 is cofinal in φk−2. We
proceed in this manner to produce projections Pk−i−1 : [xα : α ∈ ψk−i] → [xα :
α < φk−i−1, α ∈ ψk−i] for 1 ≤ i ≤ k − 1. Write φk = 0 and ψk = [0, κ). Put
Γ = ψ1 ∪

⋃

0≤i<k[φi, κ) ∩ ψi+1 and Z = [xα : α ∈ Γ].
Now, since k < ω, this produces a finite chain of continuous linear projections

Z = Zk −→ Zk−1 −→ . . . −→ Zi −→ . . . −→ Z1 −→ Z0 ⊃ Y,

where Zi has density ℵi for 0 ≤ i ≤ k. Observe that [φk−1, κ) ⊂ Γ, so that
codens(Z) ≤ ℵk−1.

The claim (ii) follows from the proof of claim (iii) as follows. Since M-basic
sequences of regular length are SD under any re-ordering, we may use the above
projections Pi with the exception that after each step we may reorganize the indices
in such a way that φi = ℵi. Thus no indices need be discarded and we can set
Z = X. �

Apparently, the requirement of the existence of a SD sequence {xα}α<κ ⊂ X
somewhat narrows down the class of Banach spaces. For example, neither Kunen’s
C(K) space ([24]), Shelah’s space ([28]), nor any other CSP space admits such a
sequence, see [12, 33]. Every nonseparable dual space has an uncountable biorthog-
onal system (see [32, Cor. 4]) and thus a dispersed sequence but not necessarily a
SD sequence of regular uncountable length. Also, the HI spaces, which admit a SD
sequence {xα}α<κ cannot satisfy conditions (I), (II), or, a fortiori, property (C).

Theorem 3.7. Let X be a Plichko space with a countably 1-norming M-basis
{xα}α<θ where θ is an uncountable cardinal. Then there exists an injective map-
ping φ : θ → θ such that {xφ(α)}α<θ forms a monotone basic sequence. Moreover,
if θ is regular, then {φ(α)}α<θ can be taken to be an increasing sequence.

Proof. According to the countably 1-norming property of the M-basis we may
choose for each A ∈ P(θ) a set Λ(A) ∈ P(θ) such that the resulting mapping
Λ: 2θ → 2θ satisfies the following properties:

(i) A ⊂ Λ(A),
(ii) |Λ(A)| ≤ |A| ∨ ω,
(iii) [xα : α ∈ θ \ Λ(A)]⊥ 1-norms [xα : α ∈ A].

Observe that then there exists a contractive projection

P : [xα : α ∈ A ∪ (θ \ Λ(A))]→ [xα : α ∈ A]

for each A ⊂ P(θ). Indeed, the functionals in [xα : α ∈ θ \Λ(A)]⊥ witness the fact
that the relevant projections will be contractive similarly as in the end of the proof
of Theorem 3.1. The mapping φ is constructed recursively as follows. Let φ(0) = 0.
For each µ < θ and {φ(α)}α<µ ⊂ θ we pick φ(µ) ∈ θ \ Λ({φ(α) : α < µ}). Then
|Λ({φ(α) : α ≤ µ})| ≤ |µ| ∨ ω. �

In the proof of Theorem 3.1, say, the case dens(X) = ω1, we applied the well-
ordering of the SD sequence, which, combined with the structural assumption (B)
of the space, yields that the generating sequence splits to three parts: the separable
part generating the range of the projection, the separable residual part, and the
nonseparable tail, which yields the kernel of the projection. Setting the residual
middle-part aside, we applied a phenomenon in Banach spaces, which can be viewed
as a weaker form of the SCP and which is mostly due to the well-ordering of the
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system of vectors. Namely, the intersections of the tail spaces are coseparable here,
and thus we were able to apply combinatorial-geometro-topological argument on
the separable part to extract a basic sequence step by step. There appear to be some
connections between condition (B), the SCP and the preservation of coseparable
subspaces in countable intersections, and these are studied in the next section.

4. WLD spaces and coseparable subspaces

First, we would like to pose the following problem: Which ’large-density-related
properties’ of a Banach space are inherited by the coseparable subspaces? For ex-
ample, if X is a non-WCG space then each coseparable subspace of X is such a space,
see [35]. The following observation is a consequence of WLD space characterization
(1.1).

Corollary 4.1. In a WLD space X let Y ⊂ X be a nonseparable subspace and
Z ⊂ X a coseparable subspace. Then dens(Y ∩ Z) = dens(Y). More generally,

dens(X) = dens(
⋂

n

En) ∨
∨

n

codens(En),

where (En) is any countable sequence of closed subspaces of X.

�

Theorem 4.2. Let X be a Banach space with the property that for any countable
sequence of functionals (fn)n<ω ⊂ X∗ there exists a generating family of vectors
{xγ}γ∈Γ ⊂ X such that |{γ : fn(xγ) 6= 0}| ≤ ℵ0 for n < ω. Then (σ) holds, i.e.
the coseparable subspaces of X are stable in countable intersections. In particular,
this is the case if X is WLD.

Proof. Suppose that X is a Banach space with the above property. We will show
that if (Zn) is a sequence of closed subspaces of X such that ω∗-dens((X/Zn)

∗) = ω
for n < ω, then X/

⋂

n<ω Zn is separable.

Indeed, for each n let (gn,k)k ⊂ Z⊥n be a sequence, which separates X/Zn. Re-
organize (fn)n<ω = {gn,k : n, k < ω}, and let {xγ}γ∈Γ be a generating family of
vectors as in the assumptions. Write

Γ0 = {γ ∈ Γ : fn(xγ) 6= 0, for some n < ω},

and observe that Γ0 is countable. According to the selection of (fn) there is for
each x ∈ X \

⋂

n<ω Zn an index n such that fn(x) 6= 0. This reads

[xγ : γ ∈ Γ \ Γ0] ⊂
⋂

n<ω

Kerfn ⊂
⋂

n<ω

Zn.

Since X = [{xγ}γ ], we have the following chain of surjective quotient mappings

[xγ : γ ∈ Γ0] −→ X/[xγ : γ ∈ Γ \ Γ0] −→ X/
⋂

n<ω

Kerfn −→ X/
⋂

n<ω

Zn.

As the quotient mappings are continuous (in fact contractive), we obtain that
X/

⋂

n<ω Zn is separable. The proof is finished by taking into account the charac-
terization (1.1) of WLD spaces. �

Theorem 4.3. Suppose that X is a nonseparable Banach space satisfying (σ).

(1) Then X has a monotone basic sequence of length ω1. Moreover, any basic
sequence of X having countable order type has an uncountable extension.
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(2) Given a separable subspace A ⊂ X there exists a coseparable subspace M ⊂
X such that A is 1-complemented in M .

Proof. Let us check the latter claim in (1). This argument essentially covers both
claims. Let (xn)n<α, α < ω1, be a countable basic sequence on X. By using the
separability of [xn : n < α] we may let (fi)i<ω ⊂ X∗ be a 1-norming sequence for
[xn : n < α]. According to (σ) we have that

⋂

i<ω Ker(fi) is a coseparable subspace,
in particular non-trivial. Hence we may pick xα ∈

⋂

i<ω Ker(fi), ‖xα‖ = 1. Note
that ‖x‖ ≤ ‖x+ txα‖ for any x ∈ [xn : n < α] and t ∈ R. We proceed by recursion
of length ω1.

Let us check (2). Let (gn)n<ω ⊂ SX∗ be a 1-norming sequence for A. Let
Z =

⋂

n<ω Ker(gn) and M = [A ∪ Z]. According to (σ) Z is coseparable and thus
M is coseparable. Since (gn)n<ω ⊂ SX∗ is 1-norming, we obtain, similarly as in the
σ(X,Z)-null case of the proof of Theorem 3.1, that there is a contractive projection
P : M → A. �

Theorem 4.4. Let X be a Banach space. Then the following conditions are equiv-
alent:

(i) X is WLD
(ii) X has property (C) and admits an M-basis.
(iii) X satisfies condition (II) and admits an M-basis.

Proof. The directions (i)⇔(ii) are known (see [13]), and (ii)⇒(iii) is clear.
Thus it suffices to check that the implication (iii) =⇒ (i) holds. Suppose that

{(fα, xα)}α is an M-basis of X. We will check that the characterization (1.1) for
WLD spaces holds.

Assume to the contrary that there is f ∈ X∗ such that Γ = {α : f(xα) 6= 0} sat-
isfies |Γ| ≥ ω1. By applying Lemma 3.6 we find an M-basic sequence {xαβ

}β<ω1
⊂

{xα}α containing ω1-many indices of Γ.
Put Y = [{xαβ

}β<ω1
]. Since the chosen M-basic sequence is total on Y we have

that
⋂

γ<ω1

⋂

0≤β≤γ

Ker(fαβ
|Y) = {0} ⊂ Y,

so that condition (II) can be applied. We obtain that there is γ < ω1 such that

f |Y ∈
(

⋂

0≤β≤γ Ker(fαβ
|Y)

)⊥

⊂ Y∗. This contradicts the fact that the chosen

M-basic sequence contains uncountably many indices of Γ. Consequently, (1.1)
holds. �

5. Interpreting the conditions on subspace chains in terms of inverse

limits

The nested sequence of subspaces {Zα}α<κ of X yields in a natural way a direct
system with the initial object Z =

⋂

α<κ Zα and the terminal object Z0. Next we
will discuss the connections of conditions I, II and (B) to direct and inverse limits.
It turns out that there is a very natural reformulation for these conditions in terms
of these limits and this motivates the use of the conditions.

Let us begin by observing that II has a very simple reformulation in terms of
direct limits, namely that the direct system

Z⊥0 −→ Z⊥1 −→ . . . −→ Z⊥α −→ . . . , α < κ,
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satisfies lim
−→

Z⊥α = Z⊥. Here the inclusion maps serve as the binding maps. In a

sense, this is a statement about the continuity of the functor (·)⊥ understood in a
suitable way.

However, the inverse limits are more interesting in this setting. Note that a
nested sequence {Aα}α<κ of closed affine subspaces of X can be written as {xα +
Zα}α<κ, where xα − xβ ∈ Zα for α < β < κ. Thus each such sequence {Aα}α<κ is
realized as an element of the inverse system

X/Z0 ←− X/Z1 ←− . . .←− X/Zα ←− . . . , α < κ,

and vice versa. Here the binding maps are the natural quotient maps T β
α : X/Zβ −→

X/Zα, x + Zβ 7→ x + Zα for α ≤ β < κ. We endow lim
←−

X/Zα with the norm

‖(Aα)α<κ‖lim
←−

X/Zα
= supα<κ ‖Aα‖X/Zα

= supα<κ dist(0, Aα). It is not hard to

check that this norm is complete by using the completeness of the quotient norms
and the regularity of κ. The natural inclusion mapping φ : X/Z → lim

←−
X/Zα given

by x + Z 7→ (x + Zα)α<κ is an injective, contractive homomorphism. Injectivity
follows from the fact that for each x + Z ∈ X/Z, x /∈ Z, there is α < κ such that
x /∈ Zα. Now, the condition I states that for each admissible sequence {Aα}α<κ

the corresponding mapping φ : X/Z → lim
←−

X/Zα is onto. We note that the open

mapping principle yields that φ is actually an isomorphism in such a case. This
reformulation should be compared to the definition of reflexivity of Banach spaces.

The condition (B) is equivalent to the statement that for a sequence {Zα}α<κ

having trivial intersection there exists C > 0 such that ‖x‖ ≥ C supα dist(x, Zα) for
all x ∈ X. This holds if and only if φ : X/Z → lim

←−
X/Zα is an embedding. Thus, at

this point it becomes apparent why I implies (B). Namely, if φ is an isomorphism,
then it is a fortiori an embedding. Observe that (1-B) holds if and only if φ is an
isometric embedding. To conclude, if X satisfies Corson’s property (C), then φ is
an isometric isomorphism for each inverse limit as above.

The inverse limits defined by using countable sequences of subspaces (Zn)n<ω

seem to expand the space easily, compared to sequences indexed by κ, unless we
make some strong assumptions about X, like reflexivity or the RNP (see [6]). For
example, lim

←−
(c0/[en : n ≥ i])i<ω = ℓ∞.

Finally, we will apply the mapping φ in the setting of topological vector spaces.
It turns out that considering φ is useful already in the case where φ is a (linear
topological) embedding.

Given a topological vector space Y and a sequence {Zα}α<κ of closed subspaces,
the inverse limit of the inverse system

Y/Z0 ←− Y/Z1 ←− . . .←− Y/Zα ←− . . . , α < κ

is topologized by the product topology inherited from
∏

α<κ Y/Zα. Recall that the
quotient topology on Y/M , M ⊂ Y being a closed linear subspace, consists of open

sets of the form U +M , where U ⊂ Y is open. Thus A/M ⊂ Y/M is A+M ⊂ Y
as a set for any A ⊂ Y . Observe that Y/M are Hausdorff and even completely
regular spaces. The mapping φ : Y/Z → lim

←−
Y/Zα is defined similarly as above and

it is continuous and injective.
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Theorem 5.1. Let X be a topological vector space and let {xα}α<κ ⊂ X be a
sequence such that

Y = [xα : α < κ]
/

⋂

β<κ

[xα : β < α < κ]

has density κ and suppose that the inclusion map

φ : Y → lim
←−

(Y/[xα : α ≥ β])β<κ

is a closed mapping. Then there exists a minimal sequence {xαβ
}β<κ.

Proof. Write Zβ = [xα : β < α < κ] for α < κ and Z =
⋂

β<κ Zβ . Without loss
of generality we may assume, possibly by deleting suitable indices and selecting a
subsequence, that xα /∈ Z for α < κ. Let us consider the inverse system

{0} ←− Y/Z0 ←− Y/Z1 ←− Y/Z2 ←− . . .←− Y/Zα ←− . . . α < κ.

Next we will extract a minimal sequence {xγµ
}µ<κ. We will define increasing

sequences {γβ}β<κ, {αβ}β<κ ⊂ κ recursively as follows. Put γ0 = 0. Then there is
α0 < κ such that x0 /∈ Zα0

. Since Y has density κ, there exists γ1 ∈ (α0, κ) such

that xγ1
/∈ [x0] + Z. Indeed, otherwise [xα : α0 < α < κ]/Z ⊂ [x0]/Z ⊂ Y yielding

that Y has density less than κ, a contradiction. Then there exists α1 ∈ (α0, κ) such
that xγ1

/∈ Zα1
.

Given µ < κ and {αβ}β<µ, {γβ}β<µ ⊂ κ there exists, according to the den-
sity assumption on Y , an ordinal γµ ∈ (

∨

β<µ(αβ ∨ γβ), κ) such that xγµ
+ Z /∈

[xγβ
: β < µ]/Z ⊂ Y . Then we choose αµ ∈ (

∨

β<µ(αβ ∨ γβ), κ) such that xγµ
/∈

[xγβ
: β < µ]/Zαµ

⊂ Y/Zαµ
. Indeed, this can be accomplished, since φ : Y →

lim
←−

Y/Zα is a closed mapping. Namely, φ maps [xγβ
: β < µ]/Z ⊂ Y to a closed set

of lim
←−

Y/Zα. Since φ is an injection there is an open neighbourhood for φ(xγµ
+Z),

which does not intersect φ([xγβ
: β < µ]/Z). Since the topology of lim

←−
Y/Zα has

a basis consisting of sets of the form q−1θ (U) where qθ : lim
←−

Y/Zα → Y/Zθ is the

natural quotient map and U ⊂ Y/Zθ is open, we conclude that there is η < κ such

that xγµ
+ Zα /∈ [xγβ

: β < µ]/Zα ⊂ Y/Zα holds for all α > η.
This results in the required minimal sequence {xγµ

}µ<κ, since xγβ
∈ Zαµ

for
β > µ by the construction. �
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