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DIASSOCIATIVE ALGEBRAS AND MILNOR’S INVARIANTS

FOR TANGLES

OLGA KRAVCHENKO AND MICHAEL POLYAK

Abstract. We extend Milnor’s µ-invariants of link homotopy to ordered (clas-
sical or virtual) tangles. Simple combinatorial formulas for µ-invariants are

given in terms of counting trees in Gauss diagrams. Invariance under Reide-
meister moves corresponds to axioms of Loday’s diassociative algebra. The
relation of tangles to diassociative algebras is formulated in terms of a mor-
phism of corresponding operads.

1. Introduction

The theory of links studies embedding of several disjoint copies of S1 into R
3 and

thus has to deal with a mixture of linking and self-knotting phenomena. The theory
of link-homotopy, initiated by Milnor [7] is a useful notion to isolate the linking
phenomena from the self-knotting ones and to study it separately. A fundamental
set of link-homotopy invariants is given by Milnor’s µ̄i1...ir ,j invariants [7] with
non-repeating indices 1 ≤ i1, . . . ir, j ≤ n. Roughly speaking, these describe the
dependence of j-th parallel on the meridians of i1-th, . . . , ir-th components. The
simplest invariant µ̄i,j is just the linking number of the corresponding components.
The next one, µ̄i1i2,j, detects the Borromean-type linking of the corresponding 3
components and, together with the linking numbers, classify 3-component links up
to link-homotopy.

Multi-component links lack a semi-group structure, present for knots. Namely,
a connected sum, while well-defined for knots, is not defined for links. On the
level of invariants, this is reflected in a complicated self-recurrent indeterminacy
in the definition of µ̄-invariants (reflected in the use of notation µ̄, rather than µ).
The introduction of string links [3] remedied this situation, since a connected sum
is well-defined for string links. A version of µ̄-invariants modified for string links
is thus free of the original indeterminacy; to stress this fact, we will further use
the notation µ for these invariants. Milnor’s invariants classify string links up to
link-homotopy [3].

1.1. Brief statement of results. The notion of tangles generalizes that of links,
braids and string links. We define Milnor’s µ−invariants for tangles with ordered
components along the same lines as Milnor’s original definition, i.e. in terms of
generators of the (reduced) fundamental group of the complement of a tangle in a
cylinder, using the Magnus expansion.

On the other hand, tangles may be encoded by Gauss diagrams (see [11, 2]).
We follow the philosophy of [11] to define invariants of classical or virtual tangles
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by counting (with appropriate weights and signs) certain subdiagrams of a Gauss
diagram. Since subdiagrams used in computing these invariants correspond to
rooted planar binary trees, we call the resulting invariants Zj tree invariants.

The invariance under Reidemester moves defines equivalence relations among
the corresponding trees. We study these relations and find (Theorem 3.3) that
they could be interpreted as relations of the diassociative algebra introduced by
Loday. Diassociative algebra is a vector space with two associative operations - left
and right multiplications. The five defining axioms (equation 2) of a diassociative
algebra describe the invariance under the third Reidemeister move – a crossing in
a tangle diagram corresponds a diassociative algebra operation: the upper string
being to the left (right) from the lower string in the Gauss diagram corresponds to
the left (right) multiplication.

We explicitly write out the linear combinations of trees used in computing invari-
ants of degrees 2,3 and 4. In particular, tree invariants Z12,3 and Z123,4 are com-
puted and are later shown to coincide with the corresponding Milnor µ−invariants.

We then discuss the properties of tree invariants of (classical or virtual) tangles.
In particular, we study their dependence on orderings and orientations of strings.
Moreover, we show that these invariants satisfy some skein relations, reminicent of
those for the Conway polynomial and the Kauffman bracket. The skein relations for
Milnor invariants were found in [8]. Similarity of these skein relations allows us to
show that our tree invariants Zi1...ir ,j coincide with Milnor’s µ-invariants µi1...ir ,j

when either 1 ≤ i1 < · · · < ir < j ≤ n or 1 ≤ j < i1 < · · · < ir ≤ n. This also
allows us to extend Milnor’s µ-invariants to virtual tangles.

We then switch to algebraic/operadic properties of tangles. We introduce a
notion of a tree tangle as a tangle with only one string – the trunk – going all the
way down, and all others starting and ending on the top. For this type of tangles
there is an appropriate operation of grafting, which allows us to define the operad
of tree tangles. We show that any tangle could be mapped to a tree tangle by an
operation called capping. This requires choosing a preferred string as the trunk.
On the other hand, tree invariants are also defined with respect to a particular
string playing the role of the trunk. The tree invariant Zj takes values in the
equivalence classes of trees with the trunk on the j-th component. It turns out
that Zj defines an operad morphism between the operad of tree tangles and the
diassociative algebra operad Dias .

The paper is organized in the following way. In Section 2 the main objects and
tools are introduced: tangles, Milnor’s µ-invariants, and Gauss diagram formulas.
In Section 3 we review diassociative algebras and introduce tree invariants of tangles
and prove their invariance under Reidemeister moves. Section 4 is devoted to the
properties of the invariants and their identification with the µ-invariants. Finally,
in Section 5 we discuss the operadic structure on tree tangles and the corresponding
morphism of operads.

The authors are grateful to Frédéric Chapoton and Jean-Louis Loday for stimu-
lating discussions, and to the French Embassy in Israel for a generous travel support.

2. Preliminaries

2.1. Tangles and string links. Let D2 be a disk in xy-plane. An (ordered,
oriented) (k, l)-tangle without closed components in C = D2 × [0, 1] is an ordered
collection of n = k+l

2 disjoint oriented arcs, properly embedded in C in such a way,
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that the endpoints of each interval belong to the set P = {pi}ki=1×{1}∪{pi}li=1×{0}
in C, where pi are some prescribed points in the interior of D2. See Figure 1a.
Tangles are considered up to an oriented isotopy in C, fixed on the boundary.
We will always assume that the only singularities of the projection of a tangle to
the xz-plane are transversal double points. Such a projection, equipped with the
indication of over- and underpasses in each double point, is called a tangle diagram.
See Figure 1b.

L

D 2

D

a b

y
0

1

z

1 2

3
x x

z

1 2

3

Figure 1. A (4, 2)-tangle and its diagram

An important class of tangles are string links, which are (n, n)-tangles such that

the i-th arc ends in the points pi × {0, 1}. By the closure L̂ of a string link L we
mean the braid closure of L. It is an n-component link obtained from L by an
addition of n disjoint arcs in the plane {y = 0}, each of which meets C only at the
endpoints pi×{0, 1} of L, as illustrated in Figure 2a. The linking number lk of two

components of L is their linking number in L̂. Two tangles are link-homotopic, if

a b c d

l2

m1 m2 m3

Figure 2. A string link, its closure, and canonical meridians and parallels

one can be transformed into the other by homotopy, which fails to be isotopy only
in a finite number of instants, when a (generic) self-intersection point appears on
one of the arcs.

2.2. Milnor’s µ-invariants. Let us briefly recall the notion of Milnor’s link-homotopy
µ-invariants (see [7] for details, [5] for a modification to string links, and [8] for the
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case of tangles). We will first describe the well-studied case of string links, and
then indicate modifications needed for the general case of tangles.

Let L = ∪n
i=1Li be an n-component string link and consider the link group

π = π1(C r L) with the base point (0, 1, 1) on the upper boundary disc D2 × {1}.
Choose canonical parallels lj ∈ π, j = 1, . . . , n represented by curves going parallel
to Lj and then closed up by standard non-intersecting curves on the boundary of
C so that lk(lj , Lj) = 0; see Figure 2c. Also, denote by mi ∈ π, i = 1, . . . , n the
canonical meridians represented by the standard non-intersecting curves inD2×{1}
with lk(mi, Li) = +1, as shown in Figure 2d. If L is a braid, these meridians freely
generate π, with any other meridian of Li in π being a conjugate of mi. For general
string links, similar results hold for the reduced link group π̃.

Here by the reduced link group π̃ we mean the following. For any finitely-
generated group G, the reduced group G̃ is the factor group of G by relations
[g, w−1gw] = 1, for any g, w ∈ G. Proceeding similarly to the usual construction
of Wirtinger’s presentation, one can show (see [3]) that π̃(L) is generated by mi,
i = 1, . . . , n. Let F be the free group on n generators x1, . . . xn. The map F → π

defined by xi 7→ mi induces the isomorphism F̃ ∼= π̃ of the reduced groups [3]. We

will use the same notation for the elements of π and their images in π̃ ∼= F̃ .
Now, let Z[[X1, . . . , Xn]] be the ring of power series in n non-commuting variables

Xi and denote by Z̃ its factor by all the monomials, where at least one of the
generators appears more than once. TheMagnus expansion is a ring homomorphism
of the group ring ZF into Z[[X1, . . . , Xn]], defined by xi 7→ exp(Xi). It induces the

homomorphisms θ : ZF̃ → Z̃ and θL : Zπ̃ → Z̃ of the corresponding reduced group
rings.

Milnor’s invariants µi1...ir ,j(L) of the string link L are defined as coefficients of
the Magnus expansion θL(lj) of the parallel lj :

θL(lj) =
∑

µi1...ir ,jXi1Xi2 . . . Xir .

In particular, if Lj passes everywhere in front of the other components, all the in-
variants µi1...ir ,j vanish. Modulo lower degree invariants µi1...ir ,j(L) ≡ µ̄i1...ir ,j(L̄),
where µ̄i1...ir ,j(L̄) are the original Milnor’s link invariants [7].

The above definition of invariants µi1...ir ,j(L) may be adapted to ordered oriented
tangles without closed components in a straightforward way. A canonical meridian
mi of Li is defined as a standard curve on the boundary of C, making a small
loop around the starting point of Li (with lk(mi, Li) = +1), see Figure 3a. A
canonical parallel lj of Lj is a standard closure of a pushed-off copy of Lj (with
lk(lj , Lj) = 0), see Figure 3b. The only difference from the string link case is
that for general tangles there is no well-defined canonical closure (some additional
choices – e.g. of a marked component – are needed), so in general one cannot
directly compare values of µi1...ir ,j(L) to the original Milnor invariants.

Remark 2.1. Note that the invariants µi1...ir ,j significantly depend on the order
of indices i1, i2, . . . , ir and j (e.g., in general µi2i1...ir ,j(L) 6= µi2i1...ir ,j). Under
a transposition σ ∈ Sn σ : i → σ(i) µ-invariants change in in an obvious way:
µi1i2...ir ,j(L

′) = µσ(i1)σ(i2)...σ(ir),σ(j)(L), where L
′ is the tangle L with a transposed

ordering: L′
i = Lσ(i).

2.3. Gauss diagrams. Gauss diagrams provide a simple combinatorial way to
present links and tangles. Consider a tangle diagram D as an immersion of n
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Figure 3. A choice of canonical meridians and parallels for a tangle

intervals into the plane, equipped with an information about the overpass and the
underpass in each crossing. The Gauss diagram G corresponding toD is the ordered
collection of n immersing intervals with the preimages of each crossing connected
with a chord. We will usually depict these intervals as vertical lines, assuming
that they are oriented downwards and ordered from left to right. Each chord a
is oriented from the over- to the underpassing branch and equipped with the sign
sign(a) = ±1 of the corresponding crossing (its local writhe). See Figure 4.
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Figure 4. Gauss diagrams

The Gauss diagram encodes all the information about the crossings, and thus all
the essential information contained in D, in a sense that, given endpoints of each
string, D can be uniquely reconstructed from G. Reidemeister moves of tangle
diagrams may be easily translated to the language of Gauss diagrams, see Figure
5. Here fragments participating in a move may be parts of the same or different
strings, ordered in an arbitrary fashion, and the fragments in Ω1 and Ω2 may have
different orientations. It suffices to consider only one oriented move of type three,
see [1, 10].

2.4. Virtual tangles. Note that some collections of arrows connecting a set of n
strings, while they look like Gauss diagrams, cannot be realized as a Gauss diagram
of some tangle. Dropping this realization requirement leads to the theory of virtual
tangles, see [4, 9]. We may simply define a virtual tangle as an equivalence class
of virtual (i.e., not necessary realizable) Gauss diagrams modulo the Reidemeister
moves of Figure 5.

The calculation of the fundamental group π1(CrL) may be explicitly done from
a Gauss diagram of a tangle L and it is easy to check its invariance under these
Reidemeister moves. Thus the construction of Section 2.2 may be carried as well
for virtual tangles, resulting in a definition of µ-invariants of virtual tangles.
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Ω1 Ω2

Ω2

Ω3

Ω3

+ +

+

+
+

+

ε

−ε
+Ω1

Figure 5. Reidemeister moves for diagrams and Gauss diagrams

The only new feature in the virtual case is the existence of two tangle groups.
This is related to a possibility to choose the base point for the computation of the
fundamental group π = π1(C r L) either in the front half-space y > 0 (see Figure
2 and Section 2.2), or in the back half-space y < 0. While for classical tangles
Wirtinger presentations obtained using one of these base points are two different
presentations of the same group π, for virtual tangles we get two different - so-called
the upper and the lower - tangle groups. See [2] for details. The passage from the
upper to the lower group corresponds to a reversal of directions (but not signs!) of
all arrows in a Gauss diagram. Using the lower group in the construction of Section
2.2, we would end up with another definition of µ-invariants, leading to a different
set of ”lower µ-invariants” in the virtual case. We will return to this discussion in
Remark 4.9 below.

2.5. Gauss diagram formulas. An arrow diagram is a virtual Gauss diagram
in which we forget about realizability and signs of arrows. In other words, an
arrow diagram consists of an ordered set of oriented intervals (strings), with several
arrows connecting pairs of distinct points on them, see Figure 6. We consider these
diagrams up to orientation preserving diffeomorphisms of the intervals.

A1 A2 A3 A4

Figure 6. Arrow diagrams

Given an arrow diagram A on n intervals and a Gauss diagram G with the same
number of intervals, we define a map φ : A → G as a map from A to G which
maps intervals to intervals and arrows to arrows, preserving their orientations and
ordering of intervals. The sign of φ is defined as sign(φ) =

∏
a∈A sign(φ(a)). Finally,

define a pairing 〈A,G〉 as

〈A,G〉 =
∑

φ:A→G

sign(φ)
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For example, for arrow diagrams A1 – A4 of Figure 6 and Gauss diagrams G1, G2

shown in Figure 4, we have 〈A1, G1〉 = 〈A2, G1〉 = 〈A4, G1〉 = −1, 〈A2, G2〉 = 1
and 〈A3, G1〉 = 〈A1, G2〉 = 〈A3, G2〉 = 〈A4, G2〉 = 0. We extend 〈A,G〉 to a vector
space generated by all arrow diagrams on n strings by linearity.

If one picks A in an arbitrary fashion, 〈A,G〉 will change under the Reidemeister
moves of G. However, for some special linear combinations A of arrow diagrams it
will be preserved under the Reidemeister moves, thus resulting in an invariant of
(ordered) tangles. See [11] and [2] for details and a general discussion on this type
of formulas. The simplest example of such an invariant is a well-known formula for
the linking number of two components:

(1) lk(L1, L2) = 〈 � , G〉.

The right hand side is the sum
∑

φ:A→G sign(φ) over all maps of A = � to G.
In other words, it is just the sum of signs of all crossings of D, where L1 passes
under L2.

Remark 2.2. Note that for string links one has

lk(L1, L2) = 〈 � , G〉 = 〈 - , G〉 = lk(L2, L1).

For general tangles, however, these two invariants may differ. E.g., for a tangle

diagram with just one crossing, where L1 passses in front of L2, we have 〈 � , G〉 =

0 and 〈 - , G〉 = ±1 depending on the sign of the crossing. This is a simple
illustration of a general phenomenon: symmetries, which usually hold for classical
links and string links, break down for tangles and virtual links. We will return to
this observation in Section 3.

In the next section we introduce such Gauss diagram formulas for a family of
tangle invariants which includes all Milnor’s link-homotopy µ-invariants.

3. Tangle invariants by counting trees

Throughout the paper, let I = {i1, i2 . . . , ir}, 1 ≤ i1 < i2 < · · · < ir ≤ n and
j ∈ {1, 2, . . . , n}r I.

3.1. Tree diagrams.

Definition 3.1. A tree arrow diagram A with leaves on I and a trunk on j is an
arrow diagram which satisfies the following conditions:

• An arrowtail and an arrowhead of an arrow belong to different strings;
• There is exactly one arrow with an arrowtail on i-th string, if i ∈ I, and no
such arrows if i /∈ I;

• All arrows have arrowheads on I ∪ {j} strings;
• As we follow an i-th string, i ∈ I, all arrowheads precede the (unique)
arrowtail.

Note that the total number of arrows in a tree arrow diagram is r = |I|; we will
call this number the degree of A. Our choice of the term tree arrow diagram is
explained by the following. Consider A as a graph (with vertices being heads and
tails of arrows and endpoints of the strings). Removing all strings except for I∪{j},
and cutting off the part of each of the remaining strings after the corresponding
arrowtail, we obtain a tree TA with r + 1 leaves on the beginning of each string in
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I∪{j} and the root in the endpoint of j-th string. We will also say that TA is a tree
with leaves on I and a trunk on j. See Figure 7, where some tree arrow diagrams
with r = 2, j = 1, I = {2, 3} are shown together with corresponding trees.

TAA

a b

Figure 7. Planar and non-planar tree diagrams

Note that every tree TA could be realized as a planar graph. The tree arrow
diagram A is called planar, if this can be done so that the order of the leaves of
the planar realization coincides, as we count the leaves starting clockwise from the
root clockwise, with the initial ordering i1 < i2 < · · · < il < j < il+1 < · · · < ir of
the strings. E.g., diagrams in Figure 7a are planar, while the one in Figure 7b is
not. Denote by AI,j the set of all planar tree arrow diagrams with leaves on I and
a trunk on j and by Aj the union Aj = ∪IAI,j .

3.2. Diassociative algebras and trees. Define the sign of an arrow diagram A
to be sign(A) = (−1)q, where q is the number of right-oriented arrows in A. Given
a Gauss diagram G of a tangle with a distinguished j-th component, we define the
following quantity, taking value in a free abelian group generated by planar rooted
trees1: ∑

A∈Aj

sign(A)〈A,G〉 · TA

While this formal sum of trees fails to be a tangle invariant, it becomes one after
factorizing it by certain equivalence relations on trees. Appropriate relations turn
out to be the ones of a diassociative algebra (or, as it was called in earlier literature,
an associative dialgebra; the new name was suggested by Loday to avoid confusion
with dialgebras of Gan and other structures with cobrackets):

Definition 3.2. ([6]) A diassociative algebra over a ground field k is a k-space V
equipped with two k-linear maps

⊢: V ⊗ V → V and ⊣: V ⊗ V → v,

called left and right products and satisfying the following five axioms:

(2)





(1) (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z)
(2) (x ⊣ y) ⊣ z = x ⊣ (y ⊣ z)
(3) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z)
(4) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z)
(5) (x ⊢ y) ⊢ z = x ⊢ (y ⊢ z)

Diagrammatically, one can think about a free diassociative algebra as follows.
Depict products a ⊢ b and a ⊣ b as elementary trees shown in Figure 8a, respectively.
Composition of these operations corresponds then to grafting of trees, see Figure
8b,c.

1Note that this sum is always finite, since the Gauss diagram contains a fixed number of strings.
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yx yx (( v )))t( wu (x )z)(y

vt u w x y z

x y x y

ba c

Figure 8. Diassociative operations as trees and their compositions

Axioms (2) correspond to relations on trees shown in Figure 9.

= = ===

Figure 9. Diassociative algebra relations on trees

Denote by Dias(n) the quotient of a vector space generated by planar rooted
trees with n leaves by the relations of the diassociative algebra and let Dias =
∪nDias(n). The operad structure on Dias corresponds to grafting of trees, as
illustrated in Figure 8c. See [6] for details.

3.3. tree invariants. Denote by [T ] the equivalence class of a planar tree T in
Dias and define Zj(G) ∈ Dias by

(3) Zj(G) =
∑

A∈Aj

sign(A)〈A,G〉[TA]

We call Zj(G) the tree invariant of a tangle which has G as its Gauss diagram,
since it satisfies the following

Theorem 3.3. Let L be an ordered (classical or virtual) tangle and let G be a
Gauss diagram of L. Then Zj(L) = Zj(G) is an invariant of ordered tangles.

Proof. It suffices to prove that Zj(G) is preserved under the Reidemeister moves
Ω1–Ω3 for Gauss diagrams, shown in Figure 5. The invariance under Ω1 and Ω2
follows immediately from the definition of A. Indeed, a new arrow appearing in
Ω1 has both its arrowhead and its arrowtail on the same string, so cannot be in
the image of a tree diagram. Similarly, two new arrows which appear in Ω2 have
their arrowtails on the same string, so cannot simultaneously be in an image of
a tree diagram, while maps which contain one of them cancel out in pairs due to
opposite signs of the two arrows. It remains to verify the invariance under the third
Reidemeister move Ω3 depicted in Figure 5. Denote by G and G′ Gauss diagrams
related by Ω3. Note that there is a bijective correspondence between terms of Zj(G)
and Zj(G

′). Indeed, since only the relative position of the three arrows participating
in the move changes, all terms which involve only one of these arrows do not change.
No terms involve all three arrows, since such a diagram can not be a tree diagram.
It remains to compare terms which involve exactly two arrows. Note that a diagram
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which involves two arrows can be a tree diagram only if the fragments participating
in the move belong to different strings. There is a number of cases, depending on
the ordering σ1, σ2, σ3 of these three strings. Using for simplicity indices 1, 2, 3 for
such an ordering, we can summarize the correspondence of these terms in the table
below.

σ1σ2

σ3

+ +
+

σ2 σ1

σ3

++

+
_ _

σ1 σ2 σ3 1 2 3 3 1 2 3 2 1 1 3 2 2 3 12 1 3

We see that the invariance is assured exactly by the diassociative algebra rela-
tions, see Figure 9. For four orderings out of six the correspondence is bijective,
while for the two last orderings, pairs of trees appearing in the bottom row have
opposite signs (due to a different number of right-oriented arrows), so their contri-
butions to Zj(G

′) cancel out. �

4. Properties of the tree invariants

The tree invariant Zj(L) takes values in the quotient Dias of the free abelian
group generated by trees by the diassociative algebra relations. An equivalence
class [TA] of a tree TA with the trunk on j depends only on the set of its leaves,
so it is the same for all arrow diagrams A in the set AI,j of all planar tree arrow
diagrams with leaves on I and a trunk on j.

Let ZI,j be the coefficient of Zj corresponding to trees with leaves on I, i.e.,
ZI,j =

∑
A∈AI,j

sign(A)〈A,G〉. For I = ∅ we set Z∅,j = 1.

4.1. Invariants of low degrees. Let us start with invariants ZI,j for small values
of r = |I|.

Counting tree diagrams with one arrow we get

(4) Z2,1(L) = 〈 � , G〉 , Z1,2(L) = 〈 - , G〉.

Note that for string links Z2,1(L) = Z1,2(L) = lk(L1, L2).
For digrams with two arrows we obtain

(5) Z23,1(L) = 〈
�

� +
�

� −
-

� , G〉 , Z13,2(L) = 〈
-

� +
�

- , G〉 ,

Z12,3(L) = 〈
-

- +
-

- −
�

- , G〉

In particular, Z13,2(L) = Z1,2(L) · Z3,2(L). Also, Z12,3(L) = Z23,1(L̄), where L̄ is
the tangle L with a reflected ordering L̄i = L4−i of strings.

Example 4.1. Consider a tangle L with a diagram D2 depicted in Figure 4 and
let us compute Z23,1(L) using formula (5). The corresponding Gauss diagram G2

contains three subdiagrams of the type
�

� , two of which cancel out, while the
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remaining one contributes +1; there are no subdiagrams of other types appearing
in (5). Hence Z23,1(L) = 1.

When an orientation of a component is reversed, invariants ZI,j change sign and
jump by a combination of lower degree invariants. E.g., denote by L′ a 3-string
tangle obtained from L by the reversal of orientations of L1. Then

Z23,1(−L) = 〈−
�

� +
�

� +
-

� , G〉.

But it is easy to see that 〈
�

� +
�

� , G〉 = 〈
�

, G〉 · 〈 � , G〉, thus we
obtain

Z23,1(L
′) = −Z23,1(L) + Z2,1(L) · Z3,1(L).

Due to a large number of tree diagrams with 3 arrows, let us write down explicitly
only diagrams with the trunk on the first string:

(6)

Z234,1(L) = 〈
�

�

�
− � -

�
+

-

-

�
+

�

�

�
−

�

-

�
−

-

�

�

+ � �

�
−

-

�

�
−

�

-

�
+

-

-

�
+

�

�

�
+

�

�

�
−

-

�

�
, G〉

For diagrams with the trunk on the second or third strings we have Z134,2(L) =

Z1,2(L) · Z34,2(L), Z124,3(L) = Z12,3(L) · Z4,3(L). Finally, for j = 4 we again have
Z123,4(L) = Z432,1(L̄), where L̄ is obtained from L by a reflection L̄i = L5−i of the
ordering.

4.2. Elementary properties of the tree invariants. Unlike µ-invariants dis-
cussed in Section 2.2, which had a simple behavior under a change of ordering (see
Remark 2.1), tree invariants ZI,j(L) significantly depend on the order of i1, . . . , ir
and j. I.e., if L′

i = Lσ(i) for some σ ∈ Sn, σ : i → σ(i), then in general ZI,j(L
′)

is not directly related to Zσ(I),σ(j)(L). However, in some simple cases their de-
pendence on orderings and their behavior under simple changes of ordering and
reflections of orientation can be deduced directly from their definition via planar
trees:

Proposition 4.2. Let L be an ordered (classical or virtual) tangle on n strings and
let I = {i1, i2, . . . , ir}, with 1 ≤ i1 < i2 < · · · < ir ≤ n.

(1) For 1 < k < r we have

ZIrik,ik(L) = ZI
−

k
,ik

(L) · ZI
+

k
,ik

(L)

where I−k = I ∩ [1, ik − 1] = {i1, . . . , ik−1} and I+k = I ∩ [ik + 1, n] =
{ik+1, . . . , ir}.

(2) Denote by L̄ the tangle L with a reflected ordering: L̄i = Lī, i = 1, . . . , n,
where ī = n+ 1− i, so Ī = {īr, . . . , ī2, ī1}. Then

ZI,j(L̄) = (−1)rZĪ,j̄(L)

(3) Finally, denote by Lσ the tangle L with an ordering shifted by a transposi-
tion σ = (i1i2 . . . ir) (i.e.: Lσ

ik
= Lik+1

for k = 1, . . . , r − 1 and Lσ
ir

= Li1),
followed by a reflection of orientation of Lσ

ir
= Li1 . Then

ZIrir,ir (L
σ) = ZIri1,i1(L)
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Proof. Indeed, a planar tree with a trunk on j consists of the “left half-tree” with
leaves in I ∩ [1, j − 1] and the “right half-tree” with leaves in I ∩ [j + 1, n]. Thus
the first equality follows directly from the definition of the invariants.

Also, the reflection i → ī of ordering simply reflects a planar tree with respect to
its trunk, exchanging the left and the right half-trees and changing all right-oriented
arrows into left-oriented ones and vice versa, so the second equality follows (since
the total number of arrows is r).

Finally, let us compare planar tree subdiagrams in a Gauss diagram G of L and
in the corresponding Gauss diagram Gσ of Lσ. An application of the shift σ of
ordering, followed by the reversal of orientation of the trunk, establishes a bijective
correspondence between planar tree dagrams with leaves on I r ii and a trunk
on i1 and planar tree diagrams with leaves on I r ir and a trunk on ir. Given a
diagram A ∈ Ai1 , we can get the corresponding diagram Aσ ∈ Air in two steps: (1)
redraw the trunk i1 of A on the right of all strings, with an upwards orientation;
(2) reverse the orientation of the trunk so that it is directed downwards. See Figure
10. Signs of these diagrams are related as follows: sign(A) = (−1)q sign(Aσ), where

1 2 3 4 5 6 r 1 2 3 4 5 6 r 1 2 3 4 5 6 rr 1 2 3 4 5   − 1r

shift the
ordering

redraw,

new ordering
using the

orientation
reverse the

Figure 10. Reordering strings and reversing the orientation of the trunk

q is the number of arrows with arrowheads on the trunk (since all such arrows
become right-oriented instead of left-oriented). Now note, that when we pass from
G to Gσ, the reflection of orientation of Lσ

ir
has a similar effect on signs of arrows,

namely the sign of each arrow in Gσ with one end on the trunk (and the other end
on some other string) is reversed, so 〈A,G〉 = (−1)q〈Aσ , Gσ〉. These two factors of
(−1)q cancel out to give sign(A)〈A,G〉 = sign(Aσ)〈Aσ, Gσ〉 and the last statement
follows. �

tree invariants ZI,j(L) satisfy the following skein relations. Let L+, L−, L0 and
L∞ be four tangles which differ only in a neighborhood of a single crossing d, where
they look as shown in Figure 11. In other words, L+ has a positive crossing, L−

has a negative crossing, L0 is obtained from L± by smoothing, and L∞ is obtained
from L± by the reflection of orientation of Lik , followed by smoothing. Orders of
strings of L±, L0 and L∞ coincide in the beginning of each string. See Figures 11
and 12. We will call L±, L0 and L∞ a skein quadruple.

L jL ik

L−

L jL ik

L+

L jL ik

L0

L j

L ik

L

Figure 11. Skein quadruple of tangles
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Theorem 4.3. Let j < i1 < i2 < · · · < ir and 1 ≤ k ≤ r. Let L+, L−, L0 and L∞

be a skein quadruple of tangles on n strings which differ only in a neighborhood of
a single crossing d of j-th and ik-th components, see Figure 11. For m = 1, . . . , k
denote I−m = {i1, . . . , im−1}, I+m = I r I−m r ik = {im, . . . , ik−1, ik+1, . . . , ir}. Then

(7) ZI,j(L+)− ZI,j(L−) = ZI
−

k
,j(L∞) · ZI

+

k
,ik

(L0) ;

(8) ZI,j(L+)− ZI,j(L−) =

k∑

m=1

ZI
−

m,j(L±) · ZI
+
m,ik

(L0) .

Here we used the notation ZI
−

m,j(L±) to stress that ZI
−

m,j(L+) = ZI
−

m,j(L−).

Remark 4.4. Note that for m = 1 we have I−1 = ∅ and I+1 = I r ik, which
corresponds to the summand ZIrik,ik(L0) in the right hand side of (8). Also, in a
particular case k = 1 both equations (8), (7) simplify to

(9) ZI,j(L+)− ZI,j(L−) = ZIri1,i1(L0) (k = 1)

Finally, for and k = r equation (7) becomes

ZI,j(L+)− ZI,j(L−) = ZIrir,j(L∞) (k = r)

Example 4.5. Consider a tangle L = L+ depicted in Figure 12 and let us compute
Z23,1(L). Notice that if we switch the indicated crossing of L1 with L2 to the
negative one, we get a link L− with L3 unlinked from L1 and L2, so Z23,1(L−) = 0.
We have i1 = 2, i2 = 3 and k = 1, thus we can use equation (9) and get

Z23,1(L) = Z23,1(L)− Z23,1(L−) = Z3,2(L0) = 1,

in agreement with calculations of Exercise 4.1.

8

1 2 3 1 2 3 31 2 3

2

1

L+ L− L 0 L

Figure 12. Computation of µ23,1 for Borromean rings

Proof. Consider Gauss diagrams Gε of Lε, ε = ± in a neighborhood of the arrow
a± corresponding to the crossing d of L±, see Figure 13a.

i1 ik ir i1 ik ir

−ε

i1 ik ir

a ε

i1 ik ir j

......

j

......

a b

j

......

j

......

a −ε

Figure 13. Gauss diagrams which participate in skein relations
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Here ε = + if Lj passes under Lik in the crossing d of L+, and ε = − other-
wise. There is an obvious bijective correspondence between tree subdiagrams of
G+ and G− which do not include a±, so these subdiagrams cancel out in pairs in
〈A,G+〉− 〈A,G−〉. Since we count only trees with the root on j-th string, the only
subdiagrams which contribute to ZI,j(L+)−ZI,j(L−) are subdiagrams of G+ which
contain a+ if ε = +, and subdiagrams of G− which contain a− if ε = −. Note that
in both cases, the arrow a± is counted with the positive sign (since if ε = −1, it
appears in −ZI,j(L−)). Without a loss of generality we may assume that ε = +.
Thus

ZI,j(L+)− ZI,j(L−) =
∑

A∈AI,j

〈A,G+〉a+
,

where we used the notation 〈A,G〉a for the sum of all maps φ : A → G such that
a ∈ Im(φ). See the left hand side of Figure 14.

i1 imim−1 ik irj

i1 im−1j im ik ir

i1 imim−1j ik ir

a

Figure 14. Skein relations on Gauss diagrams

Interpreting L0 and L∞ in terms of Gauss diagrams as shown in Figure 13b, and
using Proposition 4.2, we immediately get equality (7). See the top row of Figure
14.

Subdiagrams which participate in equality (8) are shown in the botom row of
Figure 14. To establish (8), it remains to understand why subdiagrams which

contain arrows with arrowheads on j under a+ cancel out in
∑k

m=1 ZI
−

m,j(L±) ·

ZI
+
m,ik

(L0). Fix 1 ≥ m ≤ k and let G1 ∈ AI
−

m,j and A2 ∈ AI
+
m,ik

be a pair of tree
arrow diagrams together with maps φ1 : A1 → G+, φ2 : A2 → G0. Suppose that
one of the subdiagrams G1 = Im(φ1(A1)) and G2 = Im(φ2(A2)) of G+ contains an
arrow, which ends on j under a. Denote by abot the lowest such arrow in G1 ∪G2

(as we follow j along the orientation). Without a loss of generality, suppose that it
belongs to G1. See Figure 15. Since abot ends on a common part of the trunk of G+

im−1

bota

is ikim

G’2

i −1s

G’1

j

a

bota

ikim−1 imj i −1iss

a

G1 G2U

i −1s im−1

bota

is

G1

j

a

im ik

G2

Figure 15. Cancellation of subdiagrams with arrows under a

and G0, we may rearrange pieces of G1 to get another pair of tree diagrams with the
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same set of arrows as G1 ∪G2. Namely, a removal of abot from G1 splits it into two
connected components G′

1 and G′′
1 , so that G′

1 contains strings j, i1, . . . , is−1 and
G′′

1 contains strings is, . . . , im−1 for some 1 ≤ s ≤ m. Then G′
1 is a tree subdiagram

of G+ (with the trunk on j and leaves on I−s ), and G′
2 := G′′

1 ∪ abot ∪ G2 is a
tree subdiagram of G0 (with the trunk on ik and leaves on I+s ). See Figure 15.
Their contribution to ZI

−

s ,j(L±) · ZI
+
s ,ik

(L0) cancels out with that of G1 and G2

to ZI
−

m,j(L±) · ZI
+
m,ik

(L0). Indeed, while G′
1 ∪ G′

2 contain the same set of arrows

as G1 ∪ G2, the arrow abot is now right-oriented, so is counted with an additional
factor of −1. This completes the proof of the theorem. �

4.3. Identification with Milnor’s µ-invariants. It turns out, that for j either
smaller or larger than all indices in I, the tree invariant ZI,j coincides with a
Milnor’s µ-invariant:

Theorem 4.6. Let L be an ordered (classical or virtual) tangle on n strings and
let 1 ≤ i1 < i2 < · · · < ir ≤ n. Then for any j such that either 1 ≤ j < i1, or
ir < j ≤ n we have

ZI,j(L) = µi1...ir ,j(L)

Proof. Theorem 3.1 of [8] (together with Remark 2.1) implies that µi1...ir ,j(L) sat-
isfies the same skein relation as (7), i.e.

µI,j(L+)− µI,j(L−) = µI
−

k
,j(L∞) · µI

+

k
,ik

(L0) .

Moreover, these invariants have the same normalization ZI,j(L) = µI,j(L) = 0 for
any tangle L with j-th component passing everywhere in front of all other compo-
nents. The skein relation, together with this normalization, completely determines
the invariant. �

Corollary 4.7. Formulas (5) and (6) define invariants µ23,1 and µ234,1 respec-
tively.

Example 4.8. If we return to the tangle L of Examples 4.1 and 4.5, shown in
Figure 12, we get µ12,3(L) = Z12,3(L) = µ23,1(L) = Z23,1 = 1, in agreement with

the fact that the closure L̂ of L is the Borromean link.

Remark 4.9. Note that in the proof of Theorem 3.3 we did not use the realizability
of Gauss diagrams in our verification of the invariance under Reidemeister moves of
Figure 5, so Theorems 3.3 and 4.6 hold for virtual tangles as well. Recall, however,
that in the virtual case there is an alternative definition of ”lower” µ-invariants
of virtual tangles via the lower tangle group, see Section 2.4. To recover these
invariants using Gauss diagram formulas we simply reverse directions of all arrows
in the definition of Aj .

5. Operadic structure of the invariants

5.1. Tree tangles.

Definition 5.1. A tree tangle L is a (k, 1)-tangle without closed components. The
string ending on the bottom (i.e. D2 × {0}) is called the trunk of L.

We will assume that tree tangles are oriented in such a way, that the trunk starts
on the topD2×{1} and ends on the bottomD2×{0} of C. To simplify the notation,
for a tree tangle L with a trunk on j-th string we will denote Z(L) = Zj(L). There
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is a natural way to associate to a (k, l)-tangle with a distinguished component a
tree tangle by pulling up all but one of its strings. Namely, suppose that the j-th
string of a (k, l)-tangle L starts on the top and ends on the bottom. Then L can

be made into a tree (k + l− 1, 1)-tangle L̂j with the trunk on j by an operation of
j−capping shown in Figure 16.

L j
^L

j
L

L̂ 2

1 24

3

1 243

Figure 16. Capping a tangle

Gauss diagrams of L and L̂j are the same (since crossings of L̂j are the same as

in L), so their tree invariants coincide: Zj(L) = Z(L̂j).

5.2. Operadic structure on tree tangles. Denote by T (n) the set of tree tangles
on n strings. Tree tangles form an operad T . The operadic product

T (n)× T (m1)× · · · × T (mn) → T (m1 + · · ·+mn)

is defined as follows. A partial composition ◦i : T (n) × T (m) → T (n + m − 1)
corresponds to taking a satellite of the i-th component of a tangle:

Definition 5.2. Let L ∈ T (n) and L′ ∈ T (m) be tree tangles, and let 1 ≤ i ≤ n.
Define a satellite tangle L◦iL′ ∈ T (n+m−1) as follows. Cut out of C = D2× [0, 1]
a tubular neighborhood N(Li) of the i-th string Li of L. Glue back into CrN(Li)
a copy of a cylinder C which contains L′, identifying the boundary ∂D2× [0, 1] with
the boundary of N(Li) in C rN(Li) using the zero framing2 of Li. See Figure 17.
Reorder components of the resulting tree tangle appropriately.

N(L )i

L

C

L

C

Figure 17. Taking a satellite L ◦i L′ of the i-th component of a
tree tangle L

Now, given a tangle L ∈ T (n) and a collection of n tree tangles L1 ∈ T (m1),. . . ,
Ln ∈ T (mn), we define the composite tangle L(L1, . . . , Ln) ∈ T (m1 + · · ·+mn) by

2In fact, the result does not depend on the framing since only one component of L′ ends on
the bottom of the cylinder.
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taking the relevant satellites of all components of L (and reordering the components
of the resulting tangle appropriately).

The following theorem directly follows from the definition of the operadic struc-
ture on T and the construction of the map Z from tangles to diassociative trees
given by equation (3), Section 3.3.

Theorem 5.3. The map Z : T → Dias is a morphism of operads.
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