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GENERIC EXPANSIONS OF COUNTABLE MODELS

SILVIA BARBINA AND DOMENICO ZAMBELLA

Abstract. We compare two different notions of generic expansions of countable
saturated structures. One kind of genericity is related to model-companions and
to amalgamation constructions à la Hrushovski–Fräıssé. Another notion of generic
expansion is defined via topological properties and Baire category theory. The second
type of genericity was first formulated by Truss for automorphisms. We work with a
later generalization, due to Ivanov [Ivan], to finite tuples of predicates and functions.

Let N be a countable saturated model of some complete theory T , and let (N, σ)
denote an expansion of N to the signature L0 which is a model of some universal
theory T0. Let Tmc be the model companion of T0. We prove that (N, σ) is Truss-
generic if and only if (N, σ) is an e-atomic model of Tmc. This answers a question
in [Tru2]. When T is ω–categorical and Tmc is model-complete, the e-atomic models
are simply the atomic models of Tmc.

1. Introduction

In model theory and descriptive set theory there are two main notions of a generic

expansion of a model. In some cases, the expansions of a given model that one obtains

through these notions are similar enough that it is natural to ask whether, and how,

they are related.

Let T be a theory with quantifier elimination in a language L. Let L0 = L ∪ {f},

where f is a unary function symbol. Let T0 be T together with the sentences which say

that f is an automorphism.

One notion of genericity was introduced by Lascar in [Lasc2]. Lascar constructs

some models of T0 that have certain properties of universality and homogeneity. The

interpretations of f in these models are called beaux automorphismes in [Lasc2], and

generic automorphisms later on (e.g. [ChaHr] and [ChaPi]). When T0 has a model

companion Tmc, Tmc turns out to be the theory of these universal homogeneous models

and, in this case, all sufficiently saturated models of Tmc are generic automorphisms

(see [ChaPi]).

A second notion of genericity was introduced by Truss in [Tru1]. The interpretation

of f in a countable model M |= T0 is Truss-generic if its conjugacy class is comeagre in

the canonical topology on Aut(M). More generally, a tuple (f1, . . . , fn) ∈ Aut(M)n is

generic in this sense if {(fg
1 , . . . , f

g
n) : g ∈ Aut(M)} is comeagre in the product space

Aut(M)n. Truss-generic automorphisms populate rather different habitats: they are a

useful tool in the two main techniques for reconstructing ω–categorical structures from
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their automorphism group, namely, the small index property [Lasc1] and Rubin’s weak

∀∃-interpretations [Rubin] (see e.g. [HHLS] and [BaMac] for specific applications of

Truss generics). The existence of a comeagre conjugacy class is often interesting in its

own right: for an ω-categorical structure M , it implies that Aut(M) cannot be written

non trivially as a free product with amalgamation [MacTh]. See also a recent paper by

Kechris and Rosendal [KeRo] for a wealth of topological consequences in Polish groups.

Ivanov generalises Truss genericity so that it applies to predicates, and indeed to

arbitrary finite signatures [Ivan]. His work concerns the relation of ‘generic expansions’

of ω-categorical structures to generalized quantifiers in the context of second-order logic.

Lascar’s genericity also applies to predicates: in [ChaPi] the authors show that for a

complete L-theory T , L0 = L ∪ {r}, where r is a unary relation and T0 = T , T0 has a

model companion if and only if T eliminates the ∃∞ quantifier.

In [Ivan] the structures considered are models of ω-categorical theories. In [KeRo]

they are locally finite ultrahomogeneous structures. Both work within the framework of

Fräıssé amalgamation classes. Our context is different: we require our base theory T0 to

be small and to have a model companion which is a complete theory. By well-known

facts (see e.g. [BaZam] for a self-contained introduction), in the context of amalgamation

classes our assumptions translate as follows: the existence of a model companion (which

we require to have Lascar generics) is equivalent to the saturation of the Fräıssé limit

(see for instance Theorem 5.1 in [BaZam]. The completeness of the model companion is

a consequence of the joint embedding property and the right amount of amalgamation

(see e.g. Corollary 3.10 in [BaZam]).

We work with a given countable saturated model N |= T and we consider the set

Exp(N, T0) of expansions of N that model T0. We endow Exp(N, T0) with a topology

which makes it a Polish space. Our topology is the one in [Ivan], a natural generalisation

of the canonical topology on Aut(N). Assume T0 has a model companion Tmc. We prove

that the expansions of N which model Tmc form a comeagre subset of Exp(N, T0).

In Section 2 we also define a set of ‘slightly saturated’ expansions of N which we

call smooth. A smooth expansion of N realizes all types of the form (∗) p↾L(x)∪{ϕ(x)},

where p↾L(x) is a type in the base language L and ϕ(x) is a quantifier-free formula in

the expanded language L0. We prove that smooth expansions are a comeagre subset of

Exp(N, T0). Finally, in Section 3 we define e-atomic expansions. An e-atomic expansion

is existentially closed, smooth, and only realizes p(x) if p↾∀(x)∪p↾∃(x) is isolated by types

of the form ∃y p(x, y), where p(x, y) is as in (∗). We show that e-atomic expansions are

exactly the expansions that are generic in the sense of [Tru1]. When T is ω-categorical

and Tmc exists, this amounts to showing that the Truss-generic expansions are the atomic

models of Tmc.
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As remarked by an anonymous referee, some of our results appear with different ter-

minology in [Hodg1], where the approach is that of Robinson forcing, so that ‘enforce-

able’ corresponds to ‘comeagre’ in our context. Our original motivation was a comparison

between more recent notions of generic automorphisms and led to a different approach.

For a smoother comparison with [Hodg1] one should take our L0 to be empty and let T0

be the theory of a pure infinite set. The Henkin constants play the role of the model N

in our context. Then the notion of ∃-atomic model translates to our e-atomic. With this

dictionary in mind the reader may compare Lemma 2.4 with Corollary 3.4.3 of [Hodg1]

and Theorem 3.6 with Theorem 4.2.6 (cf. also Theorem 5.1.6) of [Hodg1].

The first author is grateful to Alexander Berenstein for helpful initial remarks, and

to Enrique Casanovas and Dugald Macpherson for useful conversation.

2. Baire categories of first-order expansions

Let T be a complete theory in the countable language L. Let L0 be the language

L enriched with finitely many new relation and function symbols. We shall denote a

structure of signature L0 by a pair (N, σ), where N is a structure of signature L and σ

is the interpretation of the symbols in L0 r L.

Let T0 be any theory of signature L0 containing T . We define

Exp(N, T0) :=
{

σ : (N, σ) |= T0

}

.

We write Exp(N) for Exp(N, T ).

There is a canonical topology on Exp(N), cf. [Ivan]. For a sentence ϕ with param-

eters in N we define [ϕ]N := {σ : (N, σ) |= ϕ}. The topology on Exp(N) is generated

by the open sets of the form [ϕ]N where ϕ is quantifier-free. When N is countable,

this topology is completely metrizable: fix an enumeration {ai : i ∈ ω} of N , define

d(σ, τ) = 2−n, where n is the largest natural number such that for every tuple a in

{a0, . . . , an−1} and any symbols r, f in L0 r L,

a ∈ rσ ⇔ a ∈ rτ and fσ(a) = f τ (a),

where rσ is short for r(N,σ). When such an n does not exist, d(σ, τ) = 0.

The reader may easily verify that this metric is complete. We check that it induces

the topology defined above. Fix n and τ . Let ϕ be the conjunction of the formulas of

the form fa = b and ra which hold in (N, τ) for some b ∈ N and some tuple a from

{a0, . . . , an}. Then

[ϕ]N = {σ : d(σ, τ) < 2−n}.

Vice versa, let ϕ be a quantifier-free sentence with parameters inN , and take an arbitrary

τ ∈ [ϕ]N . Let A be the set of parameters occurring in ϕ. Let n be large enough that

{tτ (a) : a ⊆ A and t is a subterm of a term appearing in ϕ} ⊆ {a0, . . . , an−1}.
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Clearly (N, σ) |= ϕ for any σ at distance < 2−n from τ so

{σ : d(σ, τ) < 2−n} ⊆ [ϕ]N

as required.

If g : M → N is an isomorphism and σ ∈ Exp(M) we write σg for the unique

expansion of N that makes g : (M,σ) → (N, σg) an isomorphism. Explicitly, for every

predicate r, every function f in L0 r L, and every tuple a ∈ N ,

(N, σg) |= r a ⇔ (M,σ) |= r g−1a

(N, σg) |= f a = b ⇔ (M,σ) |= g f g−1a = b

We write T0,∀ for the set of consequences of T0 that are universal modulo T . We have

Exp(N, T0) ⊆ Exp(N, T0,∀) ⊆ Exp(N).

Notation 2.1. For the rest of this section we assume T to be small and fix some N , a

countable saturated model of T . In many occasions we shall confuse σ ∈ Exp(N) with

the model (N, σ).

Lemma 2.2. Let T0 be an arbitrary expansion of T to the signature L0. Then Exp(N, T0,∀)

is the closure of Exp(N, T0) in the above topology.

Proof. Let τ ∈ Exp(N, T0,∀). We claim that τ is adherent to Exp(N, T0). Let [ϕ]N be

an arbitrary basic open set containing τ . As (N, τ) models the universal consequences

of T0, there exists some (N ′, τ ′) |= T0 such that (N, τ) ⊆ (N ′, τ ′). Let A ⊆ N be the

set of parameters occurring in ϕ. We may assume that N ′ is countable and saturated

(in L), therefore it is isomorphic to N over A, and so [ϕ]N contains some element of

Exp(N, T0).

Vice versa, suppose that τ /∈ Exp(N, T0,∀). Then for some parameter- and quantifier-

free formula ϕ(x) we have T0 ⊢ ∀xϕ(x) and (N, τ) |= ¬ϕ(a). Then the open set [¬ϕ(a)]N

separates τ from Exp(N, T0). �

Notation 2.3. For the rest of this section we fix a theory T0 that is universal modulo T

(i.e. equivalent to a universal theory in every model of T ), so the lemma above Exp(N, T0)

is a closed subset of Exp(N), hence it is complete (as a metrizable space). If not otherwise

specified, the expansions σ, τ, etc. range over Exp(N, T0).

We say that σ is existentially closed if every quantifier-free L0–formula with param-

eters in N that has a solution in some (U, υ) such that (N, σ) ⊆ (U, υ) |= T0, has a

solution in (N, σ).

Lemma 2.4. The set of existentially closed expansions is comeagre in Exp(N, T0).

Proof. Let ψ(x) be a quantifier-free formula with parameters in N . We show that the

following set is open dense:
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(⋆)
{

σ : (N, σ) |= ∃xψ(x)
}

∪
{

σ : (U, υ) 2 ∃xψ(x) for every (N, σ) ⊆ (U, υ) |= T0

}

.

The set of existentially closed expansions is the intersection of these sets as ψ(x)

ranges over the quantifier-free formulas of L0. So the lemma will follow.

Take a basic open [ϕ]N and assume it does not intersect the second set in (⋆). Then

(N, σ) ⊆ (U, υ) |= T0 ∧ ϕ ∧ ∃xψ(x). Let A ⊆ N be a finite set containing the parametes

the two formulas. As U can be taken countable and L–saturated, it is L-isomorphic to

N over A. So ψ(x) has a solution b ∈ N . Then (⋆) contains [ϕ ∧ ψ(b)]N . �

Definition 2.5. We say that σ is a smooth expansion if (N, σ) realizes every finitely

consistent type of the form p↾L(x) ∧ ψ(x) where ψ(x) is quantifier-free and p(x)↾L is a

type in L with finitely many parameters.

When T is ω-categorical, any expansion is smooth. An example of an expansion that

is not smooth. Suppose T is the theory of the algebraically closed field of some fixed

characteristic and let N be an algebraically closed fields of infinite transcendence degree.

The expansion where r(x) holds exactly for the elements of acl(∅) is not smooth.

Lemma 2.6. The set of smooth expansions is comeagre in Exp(N, T0).

Proof. The set of smooth expansions is the intersection of sets of the form

{

σ : (N, σ) |= ∃x [p(x)∧ψ(x)]
}

∪
{

σ : p↾L(x)∧ψ(x) not finitely consistent in (N, σ)
}

,

where p↾L(x) ∧ ψ(x) is as in Definition 2.5. As T is small, there are countably many

of these sets, so suffices to show that they open dense. The argument proceeds as in

Lemma 2.4. �

Example 2.7. Let T be any complete small theory with quantifier elimination in the

language L. Let L0 r L contain only a unary relation symbol r and let T0 = T . Let

acl(A) denote the algebraic closure in T . In [ChaPi] it is proved that if T eliminates

the ∃∞ quantifier, then T0 has a model companion: Tmc. In this case, Exp(N, Tmc) is

comeagre, by Lemma 2.4.

Example 2.8. Let T and L be as in Example 2.7. Let L0rL contain two unary function

symbols f and f−1 and let T0 be T together with a sentence which says that f is an

automorphism with inverse f−1. We need a symbol for the inverse of f because we want

T0 to be universal. It is considerably more difficult to find a condition which guarantees

the existence of a model-companion [BaShe]. An important example is the case where

T is the theory of algebraically closed fields [ChaHr]. Then Tmc is also kown as ACFA.

Let N be a countable algebraically closed field of infinite transcendence degree. By

Lemma 2.4, Exp(N, Tmc) is comeagre.
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3. Truss-generic expansions

The notation is as in 2.1 and 2.3. We also assume that T0 has a model companion Tmc

which is a complete theory. We shall write Y for the set of existentially closed smooth

expansions of N . From Fact 2.6 we know that Y is a comeagre subset of Exp(N, T0).

We may consider Y as a topological space in its own right with the topology inherited

from Exp(N, T0).

If ϕ(x, y) is a quantifier-free formula in L0 and p(x, y) is a type in L then in every

smooth model the infinitary formula ∃y [p↾L(x, y)∧ϕ(x, y)] is equivalent to a type. Types

of this form are called existential quasifinite.

Let b be a finite tuple in N . For any α ∈ Y we define the 1-diagram of α at b

diag↾1(α, b) :=
{

ϕ(b) : ϕ(x) universal or existential and (N,α) |= ϕ(b)
}

,

and write Db for the set of 1-diagrams at b. On Db we define a topology whose basic

open sets are of the form

[π(b) ]D =
{

diag↾1(α, b) : (N,α) |= π(b)
}

,

where π(x) is any existential quasifinite type. We say that b is an e-isolated tuple in α

if diag↾1(α, b) is an isolated point of Db. We may say b is e-isolated by π(x) in α.

It is sometimes convenient to use the syntactic counterpart of Db which we now

define. If p(x) is a complete type, we write p↾∀(x), respectively p↾∃(x) for the set of

universal, respectively existential, formulas in p(x). We write p↾1(x) for p↾L(x) ∪ p↾∀(x) ∪

p↾∃(x). We say that a type is realized in Y if it is realized in some (N, σ) for some σ ∈ Y .

Let Sx be the set of types of the form p↾1(x), where p(x) is some complete parameter-free

type realized in Y . On Sx define the topology where the basic open sets are of the form

[π(x) ]S =
{

q↾1(x) : π(x) ⊆ q(x)
}

,

where π(x) is some existential quasifinite type, and q(x) ranges over the parameter-free

types realized in Y . When [π(x)]S isolates p↾1(x) in Sx, we say that p(x) is e-isolated by

π(x).

Fact 3.1. Let b be a tuple in N and let p↾L(x) be the parameter-free type of b in the

language L. There is a homeomorphism h : Db → [p↾L(x)]S . For every existential

quasifinte type π(x) containing p↾L(x), the image under h of the set [π(b)]D is the set

[π(x)]S .

Proof. Let h be the function that takes the universal diagram diag↾1(α, b) to the universal

type {ϕ(x) : ϕ(b) ∈ diag↾1(α, b)}.

It is clear that h maps Db injectively to Sx. For surjecivity, let q(x) be a complete

parameter-free type realized in Y , say (N, σ) |= q(a) for some σ ∈ Y , and suppose

that q↾1(x) belongs to [π(x)]S . As p↾L(x) ⊆ q(x), there is an isomorphism g : N → N
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such that g(a) = b. Then q↾1(x) is the image of diag↾1(σ
g, b) under h. This proves

surjectivity. �

From this fact it is clear that b is e-isolated in α if and only if p(x), the parameter-free

type of b in (N,α), is e-isolated. The following lemma is also clear.

Lemma 3.2. Let p(x) be a complete parameter-free type realized in Y and let π(x)

be an existential quasifinite type such that p↾L ⊆ π(x) ⊆ p(x). Then the following are

equivalent

1. p(x) is e-isolated by π(x);

2. π(x) → p↾1(x) holds in every σ ∈ Y .

Definition 3.3. Let α ∈ Y . We say that (N,α) is an e-atomic model, or, for short,

that α is e-atomic, if every finite tuple in N is e-isolated. In other words, (N,α) realizes

p↾1(x) only if p(x) is e-isolated.

The notion of e-atomic is close to Ivanov’s notion of (A, ∃)–atomic in [Ivan] but,

since the context is different, a circumstantial comparison is not straightforward.

Remark 3.4. As remarked in Section 2, when T is ω–categorical, every expansion is

smooth. In this case, if the model companion Tmc of T0 exists, the e-atomic expansions

are exactly the atomic models of Tmc.

Theorem 3.5. Any two e-atomic expansions are conjugate.

Proof. Let α and β be e-atomic. We prove the following claim: any finite 1–elementary

partial map f : (N,α) → (N, β) can be extended to an isomorphisms. Since Tmc is as-

sumed to be complete, the empty map between existentially closed models is elementary,

so the theorem follows from the claim.

To prove the claim it suffices to show that for any finite tuple b we can extend f

to some 1–elementary map defined on b. The claim then follows by back and forth. Let

a be an enumeration of dom f . The tuple a b is e-isolated in α, say by some existential

quasifinite type π(v, x). Let p(v, x) = tp(a, b). By fattening π if necessary, we may assume

that it contains p↾L(v, x). Since β is smooth and f is 1–elementary, the type π(fa, x) is

realized in β, say by c. By lemma 3.2, π(v, x) → p↾1(v, x) holds both in α and β, so

f ∪ {〈b, c〉} gives the required extension. �

Theorem 3.6. If an e-atomic expansion exists, then the set of e-atomic expansions is

comeagre in Exp(N, T0).

Proof. We prove that the set of e-atomic expansions is a dense Gδ subset of Y , hence

comeagre in Exp(N, T0).

To prove density, let ψ(x) be a parameter- and quantifier-free formula. Let a ∈ N

be such that ψ(a) is consistent with T0. We show that (N,α) |= ψ(a) for some e-atomic
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α. Write p↾L(x) for the parameter-free type of a in the signature L. Let β be any e-

atomic expansion and let c be a realization of p↾L(x) ∧ ψ(x) in (N, β). Let g be an

automorphism of N such that g(c) = a. Then α := βg is the required expansion. Hence

the set of e-atomic expansions is dense.

We now prove that the set of e-atomic expansions is a Gδ subset of Y . Let b be a

finite tuple and denote by Xb the set of expansions in Y where b is e-isolated. It suffices

to prove that Xb is an open subset of Y .

Let α ∈ Xb and let [πα(b)]D be the basic open subset of Db that isolates diag↾1(α, b).

We may assume πα(b) has the form ∃y [ pα↾L(b, y) ∧ ϕα(b, y) ]. So let aα be a witness of

the existential quantifier. We have that Y ∩ [ϕα(aα, b)]N ⊆ Xb. It follows that

Y ∩
⋃

α∈Xb

[ϕα(aα, b)]N = Xb.

Hence Xb is an open subset of Y . �

In [Tru1], a notion of generic automorphisms is introduced and a number of exam-

ples are given of countable, ω–categorical structures that have generic automorphisms.

The following definition, which appears in [Ivan], generalizes the notion of generic au-

tomorphisms to arbitrary expansions.

Definition 3.7. We say that an expansion τ is Truss-generic if {τg : g ∈ Aut(N)} is

a comeagre subset of Exp(N, T0).

Remark 3.8. There is at most one comeagre subset of Exp(N, T0) of the form {τg :

g ∈ Aut(N)}. This is because any two sets of this form are either equal or disjoint, and

two comeagre sets in a Baire space have nonempty intersection.

Theorem 3.9. Let α be any expansion. Then the following are equivalent:

1. α is e-atomic;

2. α is Truss-generic.

Proof. Let α be e-atomic. By Theorem 3.6, the set X of e-atomic expansions is comeagre.

By Corollary 3.5, and because X is closed under conjugacy by elements of Aut(N), X

is of the form {τg : g ∈ Aut(N)} for any e-atomic τ . By Remark 3.8, X is exactly the

set of Truss-generic expansions.

Vice versa, let α be Truss-generic. As smoothness and existential closure are guaran-

teed by Fact 2.6, we only need to prove that α omits p↾1(x) for any complete parameter-

free type p(x) that is not e-isolated. It suffices to prove that the set of expansions in

Y that omit p↾1(x) is dense Gδ in Y , hence comeagre in Exp(N, T0). Then some Truss-

generic expansion omits it and, as Truss-generic expansions are conjugated, the same

holds for α.
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Denote by Xb the set of expansions in Y that model ¬p↾1(b). The set of expansions

in Y that omit p↾1(x) is the intersection of Xb as the tuple b ranges over N . So it suffices

to show that Xb is open dense in Y .

First we prove density. Let ψ(a, b) be a quantifier-free formula where a and b are

disjoint tuples. We need to show that there is an expansion in Y that models ψ(a, b) ∧

¬p↾1(b). Let q↾L(z, x) be the parameter-free type of a, b in the language L. We claim

that ψ(z, x) ∧ q↾L(z, x) ∧ ¬p↾1(x) is consistent in Y , say it is realized by a′, b′ in some

expansion σ ∈ Y . If not, then ψ(z, x) ∧ q↾L(z, x) → p↾1(x) holds in every expansion

in Y , which contradicts that p(x) is not e-isolated and proves the claim. There is an

automorphism g : N → N such that g(a′ b′) = a b. We conclude that ψ(a, b) ∧ ¬p↾1(b)

holds in (N, σg).

Now we prove that Xb is open in Y . Let σ ∈ Xb. We shall show that σ belongs to a

basic open set contained in Xb. If (N, σ) |= ¬p↾∀(b) the claim is obvious, so suppose that

(N, σ) |= ¬ϕ(b) for some existential formula ϕ(x). The expansions in Y are existentially

closed, hence (see, for instance, Theorem 7.2.4 in [Hodg2]) there is an existential formula

ψ(x), consistent in (N, σ), such that ψ(x) → ϕ(x) holds for every τ ∈ Y . Then σ ∈

[∃xψ(x)]N ⊆ Xb as required. �

Theorem 3.10. The following are equivalent:

1. Truss-generic expansions exist;

2. for every finite b, the isolated points are dense in Db;

3. for every finite x, the isolated points are dense in Sx.

Proof. The equivalence 2 ⇔ 3 is clear by Fact 3.1. Since the existence of e-atomic

models implies that isolated points are dense in Sx, the implication 1 ⇒ 3 follows from

Theorem 3.9. To prove the converse we assume 2 and construct a set ∆ which is the

quantifier-free diagram of an e-atomic model.

The diagram ∆ is defined by finite approximations. Assume that at stage i we have

a finite set ∆i of quantifier-free sentences with parameters in N which is consistent with

T0. Below we define ∆i+1. The definition uses a fixed arbitrary enumeration of length ω

of all the types of the form p↾L(x) ∪ {ϕ(x)} with finitely many parameters in N , where

ϕ(x) quantifier-free. This enumeration exists because T is small by assumption.

If i is even, consider the i/2-th type in the given enumeration. If this type is consistent

with T0 ∪ ∆i, let c be such that T0 ∪ p↾L(c) ∪ {ϕ(c)} holds for some expansion and

define ∆i+1 := ∆i ∪ {ϕ(c)}. Otherwise let ∆i+1 := ∆i. If i is odd, let b a tuple that

enumerates all the parameters in ∆i. Recall that we have assumed 2, so there is an

expansion α which models ∆i and such that diag↾1(α, b) is isolated in Db, say by the

type ∃y [p↾L(b, y)∧ϕ(b, y)] where ϕ(b, y) is quantifier-free. Let a satisfy p↾L(b, x)∧ϕ(b, x)

and define ∆i+1 := ∆i ∪ {ϕ(b, a)}.
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Let (N,α) be the model with diagram ∆. We claim that even stages guarantee both

smoothness and existential closure. Smoothness is clear. To prove existential closure

observe that if ϕ(x) is a quantifier-free formula with parameters in N that has a solution

in some extension of (N,α), then in particular it is consistent with T0 ∪∆i for every i,

so at some stage ϕ(c) is added to the diagram of (N,α). Odd stages ensure that every

type p↾1(x) realized in (N,α) is e-isolated so 1 follows by Theorem 3.9. �

Example 3.11. Truss-generic automorphisms of the random graph. Let L be the lan-

guage of graphs and let T be the theory of the random graph. Let L0 and T0 be as

in Example 2.8. It is known [Kik] that T0 has no model companion. The existence

of Truss-generic automorphisms of the random graph has been first proved in [Tru1]

and extended to generic tuples in [HHLS], essentially using [Hru2]. These proofs use

amalgamation properties of finite structures.

In the case of the random graph we can give a precise description of the isolated

tuples. The existence of Truss-generic automorphisms of the random graph follows by

the proposition below and Theorem 3.10. This proof is by no means shorter than the

one in [HHLS], and it still uses [Hru2].

Proposition 3.12. Let T be the theory of the random graph and let N be a countable

random graph. Let L0 and T0 be as above (i.e. as in Example 2.8). Then for every finite

tuple b in N , the e-isolated points in Db are dense.

Proof. By the main result in [Hru2], for every finite set B of a random graph N there

is a finite set A such that B ⊆ A ⊆ N and every partial isomorphism g : N → N with

dom g, rng g ⊆ B has an extension to an automorphism of A.

Let ψ(b) be any existential formula consistent with T0. Let (N,α) be a model that re-

alizes ψ(b). We shall show that [ψ(b)]D contains an isolated point. By the result in [Hru2]

mentioned above, there is a model (N, σ) which has a finite substructure (A, σ ↾ A) that

models ψ(b). We may assume that σ is rich. Let ϕ(a, b) be the quantifier-free diagram

of A in (N, σ). We claim that ∃z ϕ(z, b) isolates a point of Db, namely diag↾1(σ, b).

To prove the claim, let τ ∈ Y model ∃z ϕ(z, b) and prove that (N, τ) ≡1,b (N, σ).

As ϕ(a, b) is a diagram of a substructure we can assume (N, τ) and (N, σ) overlap on

A so, as they both are existentially closed and can be amalgamated over A, they are

1-elementarily equivalent. �

Example 3.13. Cycle-free automorphisms of the random graph. Let L, T , N , and L0 be

as in Example 3.11. The theory T0 says that f is an automorphism with inverse f−1, and

moreover for every positive integer n it contains the axiom ∀x fnx 6= x. These axioms

claim that f has no finite cycles. It is known [KuMac] that T0 has a model-companion.

Now we prove that there is no Truss-generic expansion in Exp(N, T0).
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Suppose for a contradiction that there exists a Truss-generic expansion (N, τ). Let

b be an element of N . As T is ω-categorical, existential quasifinite types are equivalent

to existential formulas. So, by Theorem 3.10, there is an existential formula ϕ(b) that

isolates diag↾1(τ, b) in Db. As the symbol f−1 can be eliminated at the cost of a few extra

existential quantifiers, we can assume that it does not occur in ϕ(b). Let n be a positive

integer which is larger than the number of occurrences of the symbol f in ϕ(b). Denote by

fτ the interpretation of f in (N, τ). Let A ⊆ N be a finite set containing b and such that

the sets {c, fτc, . . . , f
n−1
τ c}, for c ∈ A, are pairwise disjoint and let B be the union of all

these sets. Clearly we can choose A such that B contains witnesses of all the existential

quantifiers in ϕ(b). The latter requirement guarantees that if α is an expansion such

that α ↾ B = τ ↾ B, then (N,α) |= ϕ(b). Define d := fn
τ b and e := fτd. Let e

′ ∈ N

realize the type tp↾L(e/fτ [B]) and be such that r(b, e) = r(b, e′). As b /∈ fτ [B], the

theory of random graph ensures the existence of such an e′. Let g := fτ ↾ B ∪ {〈d, e′〉}.

We claim that g : N → N is a partial isomorphism. To prove the claim it suffices to

check that r(a, d) ↔ r(ga, e′) for every a ∈ B. We know that r(a, d) ↔ r(ga, e). As

ga ∈ fτ [B], by the choice of e′ we have r(ga, e) ↔ r(ga, e′). Then r(a, d) ↔ r(ga, e′)

follows. Finally, it is easy to see that the homogeneity of N yields an extension of g to

a cycle-free automorphism of N , hence an expansion α. By construction, α ↾ B = τ ↾ B

so, as observed above, (N,α) |= ϕ(b). But (N, τ) and (N,α) disagree on the truth of

r(b, fn+1b). This contradicts that ϕ(b) isolates diag↾1(τ, b).

Example 3.13 shows that the existence of a model companion is not sufficient to guar-

antee the existence of Truss-generic expansions. The following corollary of Theorem 3.10

gives a sufficient condition.

Corollary 3.14. If T0 is small and Tmc exists, then N has a Truss-generic expansion.

Proof. Modulo Tmc every formula is equivalent to an existential (or, equivalently, to a

universal) one, then Sx is the set of all complete parameter-free types consistent with

Tmc. Though the topology on Sx is not the standard one, the usual argument (e.g.

Theorem 4.2.11 of [Mark]) suffices to prove that the isolated types are dense. �

Remark 3.15. Question 4 in Section 4 of [Tru2] asks what the precise relation is be-

tween Lascar-generic automorphisms (beaux automorphismes) and Truss generics. Let

T be a theory with quantifier elimination in a language L. Let L0 = L ∪ {f}, where

f is a unary function symbol. Let T0 be T together with the sentences which say that

f is an automorphism. A Lascar-generic automorphism is the interpretation of f in

models that have certain properties of universality, homogeneity and saturation. The

existence of Lascar generics is equivalent, under technical hypotheses, to the existence

of the model companion of T0. We refer to [Lasc2], [ChaPi], and [BaZam] for details.

So Corollary 3.14 says that, when T0 is small, the existence of Lascar generics implies



GENERIC EXPANSIONS 12

the existence of Truss generics. The assumption that T0 is small is necessary by Exam-

ple 3.13. Then Theorem 3.9 implies that Truss generic automorphisms are the e-atomic

models of the theory of Lascar generics. In particular, when T is ω-categorical, the Truss

generic automorphisms are the atomic models of the theory of Lascar generics.
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