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Abstract. The purpose of this article is to explore the optimal choice of shape parameter which
is an important and longstanding problem in the theory of radial basis functions(RBF). We already
handled it for multiquadric and Gaussian in [9, 10, 11, 12, 13]. Here we focus on shifted surface
spline and present concrete criteria for the choice of shape parameter.
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1 Introduction

The so-called shifted surface spline is defined by

h(x) := (−1)m(|x|2 + c2)
λ
2 log(|x|2 + c2)

1
2 , λ ∈ Z+, m = 1 +

λ

2
, c > 0, x ∈ Rn, λ, n even (1)

, and

h(x) := (−1)⌈λ−
n
2
⌉(|x|2 + c2)λ−

n
2 , λ ∈ Z+ = {1, 2, 3, · · ·}, n odd and λ >

n

2
(2)

, where |x| is the Euclidean norm of x, and λ, c are constants. The number ⌈λ − n
2 ⌉ denotes the

smallest integer greater than or equal to λ− n
2 .

This function was introduced by Dyn, Levin and Rippa in [4] for x ∈ R2. Then it’s extended to
Rn for n ≥ 1. For further details we refer the reader to [2, 3, 5, 18, 19, 21, 22, 23, 24].

Note that (2) is just multiquadric and will not be explored here. In this paper we only deal with
(1). As is well known, h(x) is conditionally positive definite of order m = 1 + λ

2 where λ is of our
choice. The constant c is just the so-called shape parameter whose optimal choice is of our primary
concern.

Since h(x) is c.p.d.(conditionally positive definite) of order m, there exists a unique function s(x)
of the form

s(x) = p(x) +

N
∑

j=1

cjh(x− xj) (3)
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which interpolates any scattered set of data points (x1, y1), · · · , (xN , yN) as long as {x1, · · · , xN} is
polynomial-nondegenerate in Rn. Here p(x) ∈ Pm−1 is a polynomial of degree ≤ m− 1 and c′js are
chosen so that

N
∑

j=1

cjq(xj) = 0

for all polynomials q in Pm−1.
We will show that whenever x and the data points are fixed, the upper bound of |f(x) − s(x)|

will be made minimal by a good choice of c. Here f(x) denotes the underlying function of the data
points.

1.1 Basic Ingredients

Definition 1.1 For n = 1, 2, · · · , the integers γn are defined by γ1 = 2 and γn = 2n(1 + γn−1) for
n > 1.

The numbers γn will appear in our criteria.
In this paper all approximated functions belong to a semi-Hilbert space Ch,m(Rn), abbreviated

as Ch,m, where m denotes the order of conditional positive definiteness of the function h. There is a
semi-norm on Ch,m, denoted by ‖ ·‖h. The definition and characterization of this space can be found
in [7, 8, 15, 16]. We will not repeat them. A subspace of Ch,m, denoted by Bσ, is of our special
concern and is defined as follows.

Definition 1.2 For any σ > 0,

Bσ := {f ∈ L2(Rn) : f̂(ξ) = 0 for all |ξ| > σ}

is the set of band-limited functions, where f̂ denotes the Fourier transform of f .

We need some constants as follows.

Definition 1.3 Let n, λ and m be as in (1). The constants ρ and ∆0 are defined according to the
following three cases.

(a) Suppose n− λ > 3. Let s = ⌈n−λ−3
2 ⌉. Then

ρ = 1 +
s

2m+ 3
and ∆0 =

(2m+ 2 + s)(2m+ 1 + s) · · · (2m+ 3)

ρ2m+2
.

(b) Suppose n− λ ≤ 1. Let s = −⌈n−λ−3
2 ⌉. Then

ρ = 1 and ∆0 =
1

(2m+ 2)(2m+ 1) · · · (2m− s+ 3)
.

(c) Suppose 1 < n− λ ≤ 3. Then

ρ = 1 and ∆0 = 1.

Finally, the Fourier transform [6] of (1) should also be introduced. It’s of the form

ĥ(ξ) = l(λ, n)|ξ|−λ−nK̃n+λ
2

(c|ξ|) (4)

where l(λ, n) = (2π)−
n
2 ·2 λ

2 · (λ2 !) [16] and K̃ν(t) = tνKν(t), Kν(t) being the modified Bessel function
of the second kind [1].
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2 Fundamental Theory

The cornerstone of our theory is the exponential-type error bound raised by the author in [14]. We
cite it directly with a slight modification to make it easier to understand.

In the following theorem
d = d(E,X) := sup

y∈E
inf
x∈X

|y − x|

denotes fill distance.

Theorem 2.1 Suppose h is defined as in (1). Then, given any positive number b0, there are positive
constants d0 and ω, 0 < ω < 1, which depend on b0, for which the following is: If f ∈ Ch,m and s

is the h spline defined in (3) that interpolates f on a subset X of Rn, then

|f(x) − s(x)| ≤
√

l(λ, n) · (2π) 1
4 · √nαn ·

√

∆0 · c
λ
2 · ω 1

d · ‖f‖h (5)

holds for all x in a cube E ⊆ Ω, where Ω is a set which can be expressed as the union of rotations
and translations of a fixed cube of side b0, provided that (a)E has side b ≥ b0 and (b)0 < d ≤ d0.
Here, αn denotes the volume of the unit ball in Rn, c was defined in (1) and ∆0 was defined in
Definition1.3.

The numbers d0 and ω can be expressed specifically as

d0 =
1

6Cγn(m+ 1)
, ω =

(

2

3

)
1

6Cγn

where

C = max

{

2ρ′
√
ne2nγn ,

2

3b0

}

, ρ′ =
ρ

c
.

The numbers γn and ρ were defined in Definition1.1 and 1.3, respectively, and m = 1+ λ
2 as in (1).

Remark: (a)The seemingly complicated theorem is in fact not difficult to understand. We expressed
each constant specifically for later use. (b)The set X of centers is usually contained in the cube
E. However it’s harmless to extend it to a more general form as a subset of Rn. (c)‖f‖h is the
semi-norm of f mentioned in subsection1.1.

On the right-hand side of the inequality (5), the only things dependent of the shape parameter

c are c
λ
2 , ω

1
d and ‖f‖h. Also, d0 is dependent of c. It’s not hard to imagine a good choice of c

will minimize the error bound (5). However it’s nontrivial to express this error bound by an explicit
function of c, and clarify the relation between d0 and c. Further treatment of (5) is necessary.

Lemma 2.2 Let σ > 0 and h be as in (1). For any f ∈ Bσ,

‖f‖h ≤ C0(m,n) ·
(

2

π

)
1
4

· σ 1+n+λ
4 · c 1−n−λ

4 · e cσ
2 · ‖f‖L2 (6)

, where

C0(m,n) =
(2π)−n

√
m!

√

l(λ, n)
.
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Proof. By Corollary3.3 of [16],

‖f‖h =







∑

|α|=m

m!

α!
‖(Dαf)ˆ‖2L2(ρ)







1/2

=







∑

|α|=m

m!

α!

∫

|(Dαf)ˆ(ξ)|2 · 1

(2π)2n|ξ|2mĥ(ξ)
dξ







1/2

= (2π)−n







∑

|α|=m

m!

α!

∫

ξ2α|f̂(ξ)|2
|ξ|2ml(λ, n)|ξ|−λ−nK̃n+λ

2

(c|ξ|)
dξ







1/2

≤ (2π)−n
√
m!

√

l(λ, n)
·
{

∫ |f̂(ξ)|2
|ξ|−λ−nK̃n+λ

2

(c|ξ|)
dξ

}1/2

=
(2π)−n

√
m!

√

l(λ, n)
·







∫ |f̂(ξ)|2

|ξ|−λ−n(c|ξ|)n+λ
2 Kn+λ

2

(c|ξ|)
dξ







1/2

≤ C0(m,n)c
−n−λ

4







∫

|f̂(ξ)|2|ξ|n+λ
2 · 1

√

π
2 · e−c|ξ|√

c|ξ|

dξ







1/2

by [20] where

C0(m,n) :=
(2π)−n

√
m!

√

l(λ, n)

= C0(m,n)

(

2

π

)
1
4

c
1−n−λ

4

{
∫

|f̂(ξ)|2|ξ| 1+n+λ
2 ec|ξ|dξ

}1/2

.

If f ∈ Bσ, then

‖f‖h ≤ C0(m,n)

(

2

π

)
1
4

σ
1+n+λ

4 c
1−n−λ

4 e
cσ
2 ‖f‖L2.

♯

Corollary 2.3 Let σ > 0. If f ∈ Bσ, then (5) can be transformed into

|f(x)− s(x)| ≤
√
m!(2π)−n

√
2nαnσ

1+n+λ
4

√

∆0c
1−n+λ

4 e
cσ
2 ω

1
d ‖f‖L2. (7)

Proof. Bσ ⊆ Ch,m is a simple result of Corollary3.3 of [16]. Now (7) is just a combination of (5) and
(6). ♯

On the right-hand side of (7), the only things dependent of c are c
1−n+λ

4 , e
cσ
2 and ω

1
d , where d

denotes fill distance. It seems that one can abstract a function of c from the long expression of (7)
after every thing independent of c is fixed, including d.

However as c changes, the upper bound d0 of d changes also. As required by Theorem2.1, d ≤ d0
where

d0 =
1

6Cγn(m+ 1)
.

4



The number C → ∞, and hence d0 → 0, as c → 0+. In order to keep d ≤ d0, the minimal possible
choice of c is

c0 := 12ρ
√
ne2nγnγn(m+ 1)d (8)

where d is fixed. Therefore, we can choose c from the interval [c0,∞) only.
There is a logical problem about d, d0, c and b0. Before c and b0 are given, d0 is unknown and we

do not know whether d is eligible. This question is not difficult to resolve. For any b0 > 0, we require
d < 1

6Cγn(m+1) where we let C = 2
3b0

temporarily. Then d < b0
4γn(m+1) . Note that 2ρ′

√
ne2nγn = 2

3b0

iff c = 3b0ρ
√
ne2nγn . With the same b0 and c ≥ 3b0ρ

√
ne2nγn , we have

C = max

{

2ρ′
√
ne2nγn ,

2

3b0

}

=
2

3b0

and

d0 =
b0

4γn(m+ 1)
.

Then d < d0 is satisfied.
With the same b0 and c < 3b0ρ

√
ne2nγn , we have

C = max

{

2ρ′
√
ne2nγn ,

2

3b0

}

= 2ρ′
√
ne2nγn

and

d0 =
1

6Cγn(m+ 1)
=

c

12ρ
√
ne2nγnγn(m+ 1)

.

In order to keep d < d0, we require

c ≥ c0 := 12ρ
√
ne2nγnγn(m+ 1)d

where d was given above satisfying d < b0
4γn(m+1) . Therefore, once the cube side b0 is given, we first

choose d < b0
4γn(m+1) . Then put the restriction c ∈ [c0,∞) where c0 = 12ρ

√
ne2nγnγn(m+ 1)d. The

condition d < d0 will always be satisfied.
Theoretically d, and hence c0, can be arbitrarily small. However practically the problem of ill-

conditioning when constructing s(x) has to be considered. In this paper we explore theoretically the
optimal choice of c for c0 ≤ c < ∞.

3 Criteria of Choosing c

In the long expression of (7) the only things dependent of c are c
1−n+λ

4 , e
cσ
2 and ω

1
d . Let’s define

MN(c) := c
1−n+λ

4 · e cσ
2 · ω 1

d (9)

and call it an MN function. The optimal choice of c will then be the number minimizing MN(c),
when every thing independent of c is fixed.

The value of ω highly depends on the cube side b0. Theoretically, ω → 0 and is very influential
as c → ∞ and b0 → ∞ simultaneously. However, a lot of time b0 is fixed and cannot approach ∞.
Therefore we divide our criteria into two classes.
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3.1 b0 fixed

Recall that C = max{2ρ′√ne2nγn , 2
3b0

} and ρ′ = ρ
c . The two values 2ρ′

√
ne2nγn and 2

3b0
are equal

if and only if
c = 3b0ρ

√
ne2nγn =: c1 (10)

Then, for c ∈ [c0, c1), C = 2ρ′
√
ne2nγn . For c ∈ [c1,∞), C = 2

3b0
. So we have

ω
1
d =

(

2

3

)
1

6Cγnd

=

{

(

2
3

)
c

12ρ
√

ne2nγnγnd if c ∈ [c0, c1),
(

2
3

)

b0
4γnd if c ∈ [c1,∞)

=







e
c·ln 2

3

12ρ
√

ne2nγnγnd if c ∈ [c0, c1),

e
b0ln 2

3
4γnd if c ∈ [c1,∞).

Putting this result into MN(c), we thus have

MN(c) =











c
1−n+λ

4 · e
c

(

σ
2
+

ln 2
3

12ρ
√

ne2nγnγnd

)

if c ∈ [c0, c1),

c
1−n+λ

4 · e cσ
2 · e

b0ln 2
3

4γnd if c ∈ [c1,∞)

(11)

which is a continuous function. Our goal is to find c which minimizes MN(c).
As for the fill distance d, we require d < b0

4γn(m+1) once the cube side b0 is given, as mentioned

in the end of section2.
We have the following cases where n, λ, m, σ, γn, ρ and d were defined in (1), Definition1.1,

1.2, 1.3 and Theorem 2.1. Moreover we introduce a constant

k :=
σ

2
+

ln 2
3

12ρ
√
ne2nγnγnd

.

Case1. 1− n+ λ > 0 and k ≥ 0 Let f ∈ Bσ be the approximated function, b0 > 0 be the

cube side as in Theorem2.1, and d < b0
4γn(m+1) be the fill distance. If 1− n+ λ > 0 and k ≥ 0, the

optimal choice of c for c ∈ [c0,∞) is c = 12ρ
√
ne2nγnγn(m+ 1)d .

Reason: In this case MN(c) is an increasing function in its domain [c0,∞). We therefore choose
c = c0, defined in (8), which minimizes MN(c) in (11) and the error bound in (7).

Case2. 1− n+ λ > 0 and k < 0 Let f ∈ Bσ be the approximated function, b0 > 0 be the

cube side as in Theorem2.1, and d < b0
4γn(m+1) be the fill distance. If 1− n+ λ > 0 and k < 0, the

optimal choice of c for c ∈ [c0,∞) is the value minimizing MN(c) over the interval [c0, c1] where c1
was defined in (10).

Reason. In this case MN(c) is increasing on [c1,∞). Therefore the minimum value of MN(c)
in [c0,∞) must happen in [c0, c1].
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Remark:(a)This case rarely happens because k is usually positive. (b)In fact, the optimal c in

Case2 can be obtained exactly. Let g(c) := c
1−n+λ

4 eck which is just MN(c) on [c0, c1]. Then g(c)
is increasing on (0, 1−n+λ

−4k ] and decreasing on [ 1−n+λ
−4k ,∞). So the optimal c is (i)c0 if c1 ≤ 1−n+λ

−4k ,

(ii)c1 if 1−n+λ
−4k ≤ c0, and (iii)c1 if g(c1) ≤ g(c0), and c0 if g(c0) ≤ g(c1), for c0 < 1−n+λ

−4k < c1.

Case3. 1− n+ λ < 0 and k = 0 Let f ∈ Bσ be the approximated function, b0 > 0 be the

cube side as in Theorem2.1, and d < b0
4γn(m+1) be the fill distance. If 1− n+ λ < 0 and k = 0, the

optimal choice of c for c ∈ [c0,∞) is the value minimizing c
1−n+λ

4 e
cσ
2 on the interval [c1,∞).

Reason: In this case MN(c) is decreasing on [c0, c1). Therefore the minimum value of MN(c)

happens on the interval [c1,∞) where the essential part of MN(c) is c
1−n+λ

4 e
cσ
2 .

Remark:(a)Although k rarely equals zero, we can make it zero by choosing σ in an appropriate
way. It will make things easier for the optimal choice of c. (b)If 1− n+λ < 0, it can be shown that

g(c) := c
1−n+λ

4 e
cσ
2 is decreasing on (0, −1+n−λ

2σ ] and increasing on [−1+n−λ
2σ ,∞), with g′(−1+n−λ

2σ ) = 0.

Therefore the optimal choice of c for c ∈ [c0,∞) in Case3 is in fact max
{−1+n−λ

2σ , c1
}

.

Case4. 1− n+ λ < 0 and k > 0 Let f ∈ Bσ be the approximated function, b0 > 0 be the

cube side as in Theorem2.1, and d < b0
4γn(m+1) be the fill distance. Let g1(c) := MN(c)|c∈[c0,c1) and

g2(c) := MN(c)|c∈[c1,∞). If 1− n+ λ < 0 and k > 0, then

(i) g′1(
1−n+λ
−4k ) = 0, g′1(c) < 0 for c ∈ (0, 1−n+λ

−4k ), and g′1(c) > 0 for c ∈ (1−n+λ
−4k ,∞), and

(ii) g′2(
−1+n−λ

2σ ) = 0, g′2(c) < 0 for c ∈ (0, −1+n−λ
2σ ), and g′2(c) > 0 for c ∈ (−1+n−λ

2σ ,∞).

In this case the minimum value of g1(c) on [c0, c1) happens at (a)c = c0 if 1−n+λ
−4k ≤ c0, (b)c =

1−n+λ
−4k

if c0 < 1−n+λ
−4k < c1, and (c)c = c1 if c1 ≤ 1−n+λ

−4k . Also, the minimum value of g2(c) on [c1,∞)

happens at (a)c = c1 if −1+n−λ
2σ < c1, and (b)c = −1+n−λ

2σ if c1 ≤ −1+n−λ
2σ .

Let c∗ ∈ [c0, c1) minimize g1(c) and c∗∗ ∈ [c1,∞) minimize g2(c). Then the optimal choice of
c ∈ [c0,∞) is (a)c∗ if g1(c

∗) ≤ g2(c
∗∗), and (b)c∗∗ if g2(c

∗∗) ≤ g1(c
∗).

Reason: By direct differentiation, we get

g′1(c) = c
1−n+λ

4
−1eck

(

1− n+ λ

4
+ ck

)

and

g′2(c) = c
1−n+λ

4
−1e

cσ
2 e

b0ln 2
3

4γnd

(

1− n+ λ

4
+

cσ

2

)

.

The seemingly complicated criterion is then just a simple result of the two derivatives. ♯

Case5. 1− n+ λ < 0 and k < 0 Let f ∈ Bσ be the approximated function, b0 > 0 be the

cube side as in Theorem2.1, and d < b0
4γn(m+1) be the fill distance. If 1− n+ λ < 0 and k < 0, the

optimal choice of c for c ∈ [c0,∞) is (a)c = c1 if −1+n−λ
2σ < c1, and (b)c = −1+n−λ

2σ if c1 ≤ −1+n−λ
2σ .

Reason: In this case MN(c) is decreasing on [c0, c1) and its minimum value happens at a number in
[c1,∞) which minimizes g2 of Case4. Our criterion thus follows immediately from Case4. ♯
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3.2 b0 not fixed

In Theorem2.1 one can easily find that if b0 is not fixed and can be made arbitrarily large, C will
become arbitrarily small by letting c → ∞. This will make ω → 0 and d0 → ∞, a very beneficial
situation. In fact some domain Ω does allow b0 → ∞. For example Ω = Rn or

Ω = {(x1, · · · , xn)| xi > 0 for i = 1, 2, · · · , n}.

This kind of domain is called dilation-invariant by Madych in [17]. For this kind of domain we
have a different set of criteria of choosing c.

By increasing the cube side b0, one can always keep C = 2ρ′
√
ne2nγn in Theorem2.1. Thus

MN(c) = c
1−n+λ

4 e
c

(

σ
2
+

ln 2
3

12ρ
√

ne2nγnγnd

)

for all c ∈ [c0,∞).
Note that we never decrease b0 because it will make the error bound (7) worse.
As for the choice of d, there is no restriction. Once d > 0 is given, c0 will be fixed. For any

c ∈ [c0,∞), the condition d < d0 in Theorem2.1 will be satisfied. However the smaller d is, the
larger [c0,∞) is, making the criteria more meaningful.

Once c is chosen, we let b0 = c
3ρ

√
ne2nγn

such that 2ρ′
√
ne2nγn = 2

3b0
in the definition of C.

Further increasing b0 is not to be expected because more data points will be involved to keep the
fill distance d fixed.

Note that by letting k := σ
2 +

ln 2
3

12ρ
√
ne2nγnd

, we have a more simple expression for MN(c) as

MN(c) = c
1−n+λ

4 eck.

The way of choosing c is then divided in the following cases.

Case1. 1− n+ λ > 0 and k ≥ 0 Let f ∈ Bσ be the approximated function, and the domain
Ω in Theorem2.1 be dilation-invariant. For any fill distance d > 0, if 1 − n+ λ > 0 and k ≥ 0, the
optimal choice of c for c ∈ [c0,∞) is c = c0.

Reason: In this caseMN(c) is increasing on [c0,∞). ♯

Case2. 1− n+ λ > 0 and k < 0 Let f ∈ Bσ be the approximated function, and the domain
Ω in Theorem2.1 be dilation-invariant. For any fill distance d > 0, if 1 − n+ λ > 0 and k < 0, the
larger c is, the better it is.

Reason: In this situation,

MN ′(c) = c
1−n+λ

4
−1eck

(

1− n+ λ

4
+ kc

)

= 0

iff

c =
1− n+ λ

−4k
.

The function MN(c) is increasing and decreasing, respectively, depending on c < 1−n+λ
−4k or c >

1−n+λ
−4k . Note that MN(c0) is a finite value and MN(c) → 0 as c → ∞. Our criterion thus follows.♯
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Remark:(a)Usually k ≥ 0. Hence Case2 rarely happens. (b)If c0 < 1−n+λ
−4k , MN(c0) may be

small enough to be accepted. If it happens, c = c0 is also a good choice.

Case3. 1− n+ λ < 0 and k > 0 Let f ∈ Bσ be the approximated function, and the domain
Ω in Theorem2.1 be dilation-invariant. For any fill distance d > 0, if 1 − n+ λ < 0 and k > 0, the
optimal choice of c for c ∈ [c0,∞) is (a)c = 1−n+λ

−4k if c0 ≤ 1−n+λ
−4k and (b)c = c0 if c0 > 1−n+λ

−4k .

Reason: By the structure of MN ′(c), one sees easily MN(c) is decreasing on (0, 1−n+λ
−4k ] and in-

creasing on [ 1−n+λ
−4k ,∞). Our criterion thus follows immediately. ♯

Case4: 1− n+ λ < 0 and k ≤ 0 Let f ∈ Bσ be the approximated function, and the domain
Ω in Theorem2.1 be dilation-invariant. For any fill distance d > 0, if 1 − n+ λ < 0 and k ≤ 0, the
larger c is, the better it is.

Reason: In this caseMN(c) is decreasing on (0,∞). Moreover,MN(c) → 0 as c → ∞. ♯

Remark:(a)Case1-4 are all based on Theorem2.1. Although c and b0 appear before d in Theo-
rem2.1, in the four cases d is given before c and b0 are chosen. Once d is fixed, we chose c according
to the four criteria. After c is chosen, we let b0 = c

3ρ
√
ne2nγn

.(b)In order to keep the fill distance

d fixed, more data points have to be added when the cube side b0 increases. (c)Although in this
paper we only explore c over the interval [c0,∞), the curve of MN(c) can be used as a conjecture
for c ∈ (0, c0]. It probably holds even if we cannot prove it.
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