A PBW basis criterion for pointed Hopf algebras*

Michael Helbig ${ }^{\dagger}$

November 2, 2010

Abstract

We give a necessary and sufficient PBW basis criterion for Hopf algebras generated by skew-primitive elements and abelian group of group-like elements with action given via characters. This class of pointed Hopf algebras has shown great importance in the classification theory and can be seen as generalized quantum groups. We apply the criterion to classical examples and liftings of Nichols algebras which were determined in [9].

Key Words: Hopf algebras, Nichols algebras, lifting, PBW basis, Gröbner basis

Introduction

In the famous Poincaré-Birkhoff-Witt theorem for universal enveloping algebras of finitedimensional Lie algebras a class of new bases appeared. Since then many PBW theorems for more general situations were discovered. We want to name those for quantum groups: Lusztig's axiomatic approach [13, 14] and Ringel's approach via Hall algebras [17]. Let us also mention the work of Berger [4], Rosso [18], and Yamane [19].

Our starting point of view is the following: Part of the classification program of finitedimensional pointed Hopf algebras with the lifting method of Andruskiewitsch and Schneider [1] is the knowledge of the dimension resp. a basis of the deformations of a Nichols algebra (the so-called liftings). Another aspect is to find the redundant relations in the ideal. These liftings are among the class we consider here. We want to present a necessary and sufficient PBW basis criterion for Hopf algebras generated by skew-primitive elements and abelian group of group-like elements with action given via characters. This class contains all quantum groups, Nichols algebras and their liftings and it is conjectured that any finite-dimensional pointed Hopf algebra over the complex numbers is of that form.

The very general and for us important work is [11], where a PBW theorem for the here considered class of Hopf algebras is formulated: Kharchenko shows in [11, Thm. 2]

[^0]these Hopf algebras have a PBW basis in special q-commutators, namely the hard super letters coming from the theory of Lyndon words, see Section 3. However, the definition of hard is not constructive (see also [7,6] for the word problem for Lie algebras) and in view of treating concrete examples there is a lack of deciding whether a given set of iterated q-commutators establishes a PBW basis.

On the other hand the diamond lemma [5] (see also Section 6, Theorem 6.1) is a very general method to check whether an associative algebra given in terms of generators and relations has a certain basis, or equivalently the relations form a Gröbner basis. As mentioned before, we construct such a Gröbner basis for a character Hopf algebra in Theorem 3.1 and give a necessary and sufficient criterion for a set of super letters being a PBW basis, see Theorem 4.2. The PBW Criterion 4.2 is formulated in the languague of q-commutators. This seems to be the natural setting, since the criterion involves only q-commutator identities of Proposition 1.2; as a side effect we find redundant relations.

The main idea is to combine the diamond lemma with the combinatorial theory of Lyndon words resp. super letters and the q-commutator calculus of Section 1. In order to apply the diamond lemma we give a general construction to identify a smash product with a quotient of a free algebra, see Proposition 5.5 in Section 5.

Further the PBW Criterion 4.2 is a generalization of [4] and [3, Sect. 4] in the following sense: In [4] a condition involving the q-Jacoby identity for the generators x_{i} occurs (it is called " q-Jacobi sum"). However, this condition can be formulated more generally for iterated q-commutators (not only for x_{i}), so also higher than quadratic relations can be considered. The intention of [4] was a q-generalization of the classical PBW theorem, so powers of q-commutators are not covered at all and also his algebras do not contain a group algebra. On the other hand, $[3$, Sect. 4] deals with powers of q-commutators (root vector relations) and also involves the group algebra. But here it is assumed that the powers of the commutators lie in the group algebra and fulfill a certain centrality condition. As mentioned above these assumptions are in general not preserved; in the PBW Criterion 4.2 the centrality condition is replaced by a more general condition involving the restricted q-Leibniz formula of Proposition 1.2.

This work is organized as follows: In Section 1 we develop a general calculus for q commutators in an arbitrary algebra, which is needed throughout the thesis; new formulas for q-commutators are found in Proposition 1.2. We recall in Section 2 the theory of Lyndon words, super letters and super words. We show that the set of all super words can be seen indeed as a set of words, i.e., as a free monoid. In Section 3 we recall the result of [10] about a structural description of the here considered Hopf algebras, in terms of generators and relations. With this result we are able to formulate in Section 4 the main result of this work, namely the PBW basis criterion. Sections 5 to 7 are dedicated to the proof of the criterion. Finally in Sections 8 and 9 we apply the PBW Criterion 4.2 to classical examples and the liftings of Nichols algebras obtained in [9].

$1 q$-commutator calculus

In this section let A denote an arbitrary algebra over a field \mathbb{k} of characteristic char $\mathbb{k}=p \geq$ 0 . The main result of this section is Proposition 1.2, which states important q-commutator formulas in an arbitrary algebra.

$1.1 \quad q$-calculus

For every $q \in \mathbb{k}$ we define for $n \in \mathbb{N}$ and $0 \leq i \leq n$ the q-numbers $(n)_{q}:=1+q+$ $q^{2}+\ldots+q^{n-1}$, the q-factorials $(n)_{q}!:=(1)_{q}(2)_{q} \ldots(n)_{q}$, and the q-binomial coefficients $\binom{n}{i}_{q}:=\frac{(n)_{q}!}{(n-i)_{q}!()_{q}!}$. Note that the latter right-handside is well-defined since it is a polynomial over \mathbb{Z} evaluated in q. We denote the multiplicative order of any $q \in \mathbb{k}^{\times}$by ord q. If $q \in \mathbb{k}^{\times}$ and $n>1$, then

$$
\binom{n}{i}_{q}=0 \text { for all } 1 \leq i \leq n-1 \Longleftrightarrow \begin{cases}\operatorname{ord} q=n, & \text { if char } \mathbb{k}=0 \tag{1.1}\\ p^{k} \operatorname{ord} q=n \text { with } k \geq 0, & \text { if char } \mathbb{k}=p>0,\end{cases}
$$

see [15, Cor. 2]. Moreover for $1 \leq i \leq n$ there are the q-Pascal identities

$$
\begin{equation*}
q^{i}\binom{n}{i}_{q}+\binom{n}{i-1}_{q}=\binom{n}{i}_{q}+q^{n+1-i}\binom{n}{i-1}_{q}=\binom{n+1}{i}_{q} \tag{1.2}
\end{equation*}
$$

and the q-binomial theorem: For $x, y \in A$ and $q \in \mathbb{k}^{\times}$with $y x=q x y$ we have

$$
\begin{equation*}
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i}_{q} x^{i} y^{n-i} \tag{1.3}
\end{equation*}
$$

Note that for $q=1$ these are the usual notions.

$1.2 \quad q$-commutators

For all $a, b \in A$ and $q \in \mathbb{k}$ we define the q-commutator

$$
[a, b]_{q}:=a b-q b a .
$$

The q-commutator is bilinear. If $q=1$ we get the classical commutator of an algebra. If A is graded and a, b are homogeneous elements, then there is a natural choice for the q. We are interested in the following special case:

Example 1.1. Let $\theta \geq 1, X=\left\{x_{1}, \ldots, x_{\theta}\right\},\langle X\rangle$ the free monoid and $A=\mathbb{k}\langle X\rangle$ the free \mathbb{k}-algebra. For an abelian group Γ let $\widehat{\Gamma}$ be the character group, $g_{1}, \ldots, g_{\theta} \in \Gamma$ and $\chi_{1}, \ldots, \chi_{\theta} \in \widehat{\Gamma}$. If we define the two monoid maps

$$
\operatorname{deg}_{\Gamma}:\langle X\rangle \rightarrow \Gamma, \operatorname{deg}_{\Gamma}\left(x_{i}\right):=g_{i} \quad \text { and } \quad \operatorname{deg}_{\widehat{\Gamma}}:\langle X\rangle \rightarrow \widehat{\Gamma}, \operatorname{deg}_{\widehat{\Gamma}}\left(x_{i}\right):=\chi_{i}
$$

for all $1 \leq i \leq \theta$, then $\mathbb{k}\langle X\rangle$ is Γ - and $\widehat{\Gamma}$-graded.
Let $a \in \mathbb{k}\langle X\rangle$ be Γ-homogeneous and $b \in \mathbb{k}\langle X\rangle$ be $\widehat{\Gamma}$-homogeneous. We set

$$
g_{a}:=\operatorname{deg}_{\Gamma}(a), \quad \chi_{b}:=\operatorname{deg}_{\widehat{\Gamma}}(b), \quad \text { and } \quad q_{a, b}:=\chi_{b}\left(g_{a}\right)
$$

Further we define \mathbb{k}-linearly on $\mathbb{k}\langle X\rangle$ the q-commutator

$$
\begin{equation*}
[a, b]:=[a, b]_{q_{a, b}} . \tag{1.4}
\end{equation*}
$$

Note that $q_{a, b}$ is a bicharacter on the homogeneous elements and depends only on the values

$$
q_{i j}:=\chi_{j}\left(g_{i}\right) \text { with } 1 \leq i, j \leq \theta
$$

For example $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-\chi_{2}\left(g_{1}\right) x_{2} x_{1}=x_{1} x_{2}-q_{12} x_{2} x_{1}$. Further if a, b are $\mathbb{Z}^{\theta}-$ homogeneous they are both Γ - and $\widehat{\Gamma}$-homogeneous. In this case we can build iterated q-commutators, like $\left[x_{1},\left[x_{1}, x_{2}\right]\right]=x_{1}\left[x_{1}, x_{2}\right]-\chi_{1} \chi_{2}\left(g_{1}\right)\left[x_{1}, x_{2}\right] x_{1}=x_{1}\left[x_{1}, x_{2}\right]-$ $q_{11} q_{12}\left[x_{1}, x_{2}\right] x_{1}$.

Later we will deal with algebras which still are $\widehat{\Gamma}$-graded, but not Γ-graded such that Eq. (1.4) is not well-defined. However, the q-commutator calculus, which we next want to develop, will be a major tool for our calculations such that we need the general definition with the q as an index.

Proposition 1.2. For all $a, b, c, a_{i}, b_{i} \in A, q, q^{\prime}, q^{\prime \prime}, q_{i}, \zeta \in \mathbb{k}, 1 \leq i \leq n$ and $r \geq 1$ we have: (1) q-derivation properties:

$$
\begin{aligned}
& {[a, b c]_{q q^{\prime}}=[a, b]_{q} c+q b[a, c]_{q^{\prime}}, \quad[a b, c]_{q q^{\prime}}=a[b, c]_{q^{\prime}}+q^{\prime}[a, c]_{q} b,} \\
& {\left[a, b_{1} \ldots b_{n}\right]_{q_{1} \ldots q_{n}}=\sum_{i=1}^{n} q_{1} \ldots q_{i-1} b_{1} \ldots b_{i-1}\left[a, b_{i}\right]_{q_{i}} b_{i+1} \ldots b_{n}} \\
& {\left[a_{1} \ldots a_{n}, b\right]_{q_{1} \ldots q_{n}}=\sum_{i=1}^{n} q_{i+1} \ldots q_{n} a_{1} \ldots a_{i-1}\left[a_{i}, b\right]_{q_{i}} a_{i+1} \ldots a_{n} .}
\end{aligned}
$$

(2) q-Jacobi identity:

$$
\left[[a, b]_{q^{\prime}}, c\right]_{q^{\prime \prime} q}=\left[a,[b, c]_{q}\right]_{q^{\prime} q^{\prime \prime}}-q^{\prime} b[a, c]_{q^{\prime \prime}}+q[a, c]_{q^{\prime \prime}} b
$$

(3) q-Leibniz formulas:

$$
\begin{aligned}
{\left[a, b^{r}\right]_{q^{r}} } & =\sum_{i=0}^{r-1} q^{i}\binom{r}{i}_{\zeta} \zeta^{i}[\ldots[[a, b \underbrace{\left.b]_{q}, b\right]_{q \zeta} \ldots, b}_{r-i}]_{q \zeta^{r-i-1}}, \\
{\left[a^{r}, b\right]_{q^{r}} } & =\sum_{i=0}^{r-1} q^{i}\binom{r}{i}_{\zeta}[\underbrace{\left.a, \ldots\left[a,[a, b]_{q}\right]_{q \zeta} \ldots\right]_{q \zeta^{r-i-1}} a^{i} .}_{r-i}
\end{aligned}
$$

(4) restricted q-Leibniz formulas: If char $k=0$ and ord $\zeta=r$, or char $\mathbb{k}=p>0$ and $p^{k} \operatorname{ord} \zeta=r$, then

$$
\begin{aligned}
& {\left[a, b^{r}\right]_{q^{r}}=[\ldots[[a, \underbrace{\left.b]_{q}, b\right]_{q \zeta} \ldots, b}_{r}]_{q \zeta^{r-1}},} \\
& \left[a^{r}, b\right]_{q^{r}}=[\underbrace{a, \ldots[a,[a}_{r}, b]_{q}]_{q \zeta} \cdots]_{q \zeta^{r-1}} .
\end{aligned}
$$

Proof. (1) The first part is a direct calculation, e.g.

$$
[a, b c]_{q q^{\prime}}=a b c-q q^{\prime} b c a=a b c-q b a c+q b a c-q q^{\prime} b c a=[a, b]_{q} c+q b[a, c]_{q^{\prime}} .
$$

The second part follows by induction.
(2) Using the \mathbb{k}-linearity and (1) we get the result immediately.
(3) By induction on $r: r=1$ is obvious, so let $r \geq 1$. Using (1) we get

$$
\left[a, b^{r+1}\right]_{q^{r+1}}=\left[a, b^{r} b\right]_{q^{r} q}=\left[a, b^{r}\right]_{q^{r}} b+q^{r} b^{r}[a, b]_{q} .
$$

By induction assumption $\left[a, b^{r}\right]_{q^{r}} b=\sum_{i=0}^{r-1} q^{i}\binom{r}{i}_{\zeta} b^{i}[\ldots[[a, \underbrace{\left.b]_{q}, b\right]_{q \zeta} \ldots, b}_{r-i}]_{q \zeta^{r-i-1}} b$, where

$$
\begin{aligned}
& b^{i}[\ldots[[a, b \underbrace{}_{r-i}, \ldots]_{q \zeta} \ldots, b]_{q \zeta^{r-i-1}} b= \\
& \quad b^{i}[\ldots[[a, \underbrace{}_{r+1-i} b]_{q}, b]_{q \zeta} \ldots, b]_{q \zeta^{r-i}}+q \zeta^{r-i} b^{i+1}[\ldots[[a, b \underbrace{b, b]_{q \zeta} \ldots, b}_{r-i}]_{q \zeta^{r-i-1}} .
\end{aligned}
$$

In total we get

$$
\begin{aligned}
& {\left[a, b^{r+1}\right]_{q^{r+1}}=\sum_{i=0}^{r} q^{i}\binom{r}{i} \zeta b^{i}[\ldots[[a, \underbrace{\left., b]_{q}, b\right]_{q \zeta} \ldots, b}_{r+1-i}]_{q \zeta^{r-i}}} \\
& \quad+\sum_{i=0}^{r-1} q^{i+1}(\begin{array}{c}
r \\
i
\end{array} \zeta_{\zeta} \zeta^{r-i} b^{i+1}[\ldots[[a, \underbrace{\left.b]_{q}, b\right]_{q \zeta} \ldots, b}_{r-i}]_{q \zeta^{r-i-1}} .
\end{aligned}
$$

Shifting the index of the second sum and using Eq. (1.2) for ζ we get the formula. The second formula is proven in the same way. (4) Follows from (3) and Eq. (1.1).

2 Lyndon words and q-commutators

In this section we recall the theory of Lyndon words [12, 16] as far as we are concerned and then introduce the notion of super letters and super words [11].

2.1 Words and the lexicographical order

Let $\theta \geq 1, X=\left\{x_{1}, x_{2}, \ldots, x_{\theta}\right\}$ be a finite totally ordered set by $x_{1}<x_{2}<\ldots<x_{\theta}$, and $\langle X\rangle$ the free monoid; we think of X as an alphabet and of $\langle X\rangle$ as the words in that alphabet including the empty word 1 . For a word $u=x_{i_{1}} \ldots x_{i_{n}} \in\langle X\rangle$ we define $\ell(u):=n$ and call it the length of u.

The lexicographical order \leq on $\langle X\rangle$ is defined for $u, v \in\langle X\rangle$ by $u<v$ if and only if either v begins with u, i.e., $v=u v^{\prime}$ for some $v^{\prime} \in\langle X\rangle \backslash\{1\}$, or if there are $w, u^{\prime}, v^{\prime} \in\langle X\rangle$, $x_{i}, x_{j} \in X$ such that $u=w x_{i} u^{\prime}, v=w x_{j} v^{\prime}$ and $i<j$. E.g., $x_{1}<x_{1} x_{2}<x_{2}$.

2.2 Lyndon words and the Shirshov decomposition

A word $u \in\langle X\rangle$ is called a Lyndon word if $u \neq 1$ and u is smaller than any of its proper endings, i.e., for all $v, w \in\langle X\rangle \backslash\{1\}$ such that $u=v w$ we have $u<w$. We denote by

$$
\mathcal{L}:=\{u \in\langle X\rangle \mid u \text { is a Lyndon word }\}
$$

the set of all Lyndon words. For example $X \subset \mathcal{L}$, but $x_{i}^{n} \notin \mathcal{L}$ for all $1 \leq i \leq \theta$ and $n \geq 2$. Also $x_{1} x_{2}, x_{1} x_{1} x_{2}, x_{1} x_{2} x_{2}, x_{1} x_{1} x_{2} x_{1} x_{2} \in \mathcal{L}$.

For any $u \in\langle X\rangle \backslash X$ we call the decomposition $u=v w$ with $v, w \in\langle X\rangle \backslash\{1\}$ such that w is the minimal (with respect to the lexicographical order) ending the Shirshov decomposition of the word u. We will write in this case

$$
\operatorname{Sh}(u)=(v \mid w) .
$$

E.g., $\operatorname{Sh}\left(x_{1} x_{2}\right)=\left(x_{1} \mid x_{2}\right), \operatorname{Sh}\left(x_{1} x_{1} x_{2} x_{1} x_{2}\right)=\left(x_{1} x_{1} x_{2} \mid x_{1} x_{2}\right), \operatorname{Sh}\left(x_{1} x_{1} x_{2}\right) \neq\left(x_{1} x_{1} \mid x_{2}\right)$. If $u \in \mathcal{L} \backslash X$, this is equivalent to w is the longest proper ending of u such that $w \in \mathcal{L}$.

Definition 2.1. We call a subset $L \subset \mathcal{L}$ Shirshov closed if $X \subset L$, and for all $u \in L$ with $\operatorname{Sh}(u)=(v \mid w)$ also $v, w \in L$.

For example \mathcal{L} is Shirshov closed, and if $X=\left\{x_{1}, x_{2}\right\}$, then $\left\{x_{1}, x_{1} x_{1} x_{2}, x_{2}\right\}$ is not Shirshov closed, whereas $\left\{x_{1}, x_{1} x_{2}, x_{1} x_{1} x_{2}, x_{2}\right\}$ is.

2.3 Super letters and super words

Let the free algebra $\mathbb{k}\langle X\rangle$ be graded as in Section 1.1. For any $u \in \mathcal{L}$ we define recursively on $\ell(u)$ the map

$$
\begin{equation*}
[.]: \mathcal{L} \rightarrow \mathbb{k}\langle X\rangle, \quad u \mapsto[u] . \tag{2.1}
\end{equation*}
$$

If $\ell(u)=1$, then set $\left[x_{i}\right]:=x_{i}$ for all $1 \leq i \leq \theta$. Else if $\ell(u)>1$ and $\operatorname{Sh}(u)=(v \mid w)$ we define $[u]:=[[v],[w]]$. This map is well-defined since inductively all $[u]$ are $\mathbb{Z}^{\theta}-$ homogeneous such that we can build iterated q-commutators; see Section 1.1. The elements
$[u] \in \mathbb{k}\langle X\rangle$ with $u \in \mathcal{L}$ are called super letters. E.g. $\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]=\left[\left[x_{1} x_{1} x_{2}\right],\left[x_{1} x_{2}\right]\right]=$ $\left[\left[x_{1},\left[x_{1}, x_{2}\right]\right],\left[x_{1}, x_{2}\right]\right]$. If $L \subset \mathcal{L}$ is Shirshov closed then the subset of $\mathbb{k}\langle X\rangle$

$$
[L]:=\{[u] \mid u \in L\}
$$

is a set of iterated q-commutators. Further $[\mathcal{L}]=\{[u] \mid u \in \mathcal{L}\}$ is the set of all super letters and the map [.]: $\mathcal{L} \rightarrow[\mathcal{L}]$ is a bijection, which follows from [10, Lem. 2.5]. Hence we can define an order \leq of the super letters $[\mathcal{L}]$ by

$$
[u]<[v]: \Leftrightarrow u<v
$$

thus $[\mathcal{L}]$ is a new alphabet containing the original alphabet X; so the name "letter" makes sense. Consequently, products of super letters are called super words. We denote

$$
[\mathcal{L}]^{(\mathbb{N})}:=\left\{\left[u_{1}\right] \ldots\left[u_{n}\right] \mid n \in \mathbb{N}, u_{i} \in \mathcal{L}\right\}
$$

the subset of $\mathbb{k}\langle X\rangle$ of all super words. Any super word has a unique factorization in super letters [10, Prop. 2.6], hence we can define the lexicographical order on $[\mathcal{L}]^{(\mathbb{N})}$, as defined above on regular words. We denote it also by \leq.

2.4 A well-founded ordering of super words

The length of a super word $U=\left[u_{1}\right]\left[u_{2}\right] \ldots\left[u_{n}\right] \in[L]^{(\mathbb{N})}$ is defined as $\ell(U):=\ell\left(u_{1} u_{2} \ldots u_{n}\right)$.
Definition 2.2. For $U, V \in[\mathcal{L}]^{(\mathbb{N})}$ we define $U \prec V$ by

- $\ell(U)<\ell(V)$, or
- $\ell(U)=\ell(V)$ and $U>V$ lexicographically in $[\mathcal{L}]^{(\mathbb{N})}$.

This defines a total ordering of $[\mathcal{L}]^{(\mathbb{N})}$ with minimal element 1 . As X is assumed to be finite, there are only finitely many super letters of a given length. Hence every nonempty subset of $[\mathcal{L}]^{(\mathbb{N})}$ has a minimal element, or equivalently, \preceq fulfills the descending chain condition: \preceq is well-founded. This makes way for inductive proofs on \preceq.

2.5 The free monoid $\left\langle X_{L}\right\rangle$

Let $L \subset \mathcal{L}$. We want to stress the two different aspects of a super letter $[u] \in[L]$:

- On the one hand it is by definition a polynomial $[u] \in \mathbb{k}\langle X\rangle$.
- On the other hand, as we have seen, it is a letter in the alphabet $[L]$.

To distinguish between these two point of views we define for the latter aspect a new alphabet corresponding to the set of super letters $[L]$: To be technically correct we regard the free monoid $\langle 1, \ldots, \theta\rangle$ of the ciphers $\{1, \ldots, \theta\}$ (telephone numbers), together with the trivial bijective monoid map $\nu:\left\langle x_{1}, \ldots, x_{\theta}\right\rangle \rightarrow\langle 1, \ldots, \theta\rangle, x_{i} \mapsto i$ for all $1 \leq i \leq \theta$. Hence
we can transfer the lexicographical order to $\langle 1, \ldots, \theta\rangle$. The image $\nu(\mathcal{L}) \subset\langle 1, \ldots, \theta\rangle$ can be seen as the set of "Lyndon telephone numbers". We define the set

$$
X_{L}:=\left\{x_{u} \mid u \in \nu(L)\right\} .
$$

Note that if $X \subset L$ (e.g. $L \subset \mathcal{L}$ is Shirshov closed), then $X \subset X_{L}$. E.g., if $X=\left\{x_{1}, x_{2}\right\} \subset$ $L=\left\{x_{1}, x_{1} x_{2}, x_{2}\right\}$ then $\nu(L)=\{1,12,2\}$ and $X \subset X_{L}=\left\{x_{1}, x_{12}, x_{2}\right\}$.

Notation 2.3. From now on we will not distinguish between L and $\nu(L)$ and write for example x_{u} instead of $x_{\nu(u)}$ for $u \in L$. In this manner we will also write $g_{\nu(u)}, \chi_{\nu(u)}$ equivalently for g_{u}, χ_{u} if $u \in L$, as defined in Example 1.1. E.g. $g_{112}=g_{x_{1} x_{1} x_{2}}=g_{x_{1}} g_{x_{1}} g_{x_{2}}=$ $g_{1} g_{1} g_{2}, \chi_{112}=\chi_{x_{1} x_{1} x_{2}}=\chi_{x_{1}} \chi_{x_{1}} \chi_{x_{2}}=\chi_{1} \chi_{1} \chi_{2}$.
As seen in [10, Prop. 2.6] we have the bijection of super words and the free monoid $\left\langle X_{L}\right\rangle$

$$
\begin{equation*}
\rho:[L]^{(\mathbb{N})} \rightarrow\left\langle X_{L}\right\rangle, \quad \rho\left(\left[u_{1}\right] \ldots\left[u_{n}\right]\right):=x_{u_{1}} \ldots x_{u_{n}} . \tag{2.2}
\end{equation*}
$$

E.g., $\left[x_{1} x_{2} x_{2}\right]\left[x_{1} x_{2}\right] \stackrel{\rho}{\mapsto} x_{122} x_{12}$. Hence we can transfer all orderings to $\left\langle X_{L}\right\rangle$: For all $U, V \in\left\langle X_{L}\right\rangle$ we set

$$
\ell(U):=\ell\left(\rho^{-1}(U)\right), \quad U<V: \Leftrightarrow \rho^{-1}(U)<\rho^{-1}(V), \quad U \prec V: \Leftrightarrow \rho^{-1}(U) \prec \rho^{-1}(V) .
$$

3 A class of pointed Hopf algebras

In this chapter we deal with the class of pointed Hopf algebras for which we give the PBW basis criterion. Let us recall the notions and results of [11, Sect. 3]: A Hopf algebra A is called a character Hopf algebra if it is generated as an algebra by elements $a_{1}, \ldots, a_{\theta}$ and an abelian group $G(A)=\Gamma$ of all group-like elements such that for all $1 \leq i \leq \theta$ there are $g_{i} \in \Gamma$ and $\chi_{i} \in \widehat{\Gamma}$ with

$$
\Delta\left(a_{i}\right)=a_{i} \otimes 1+g_{i} \otimes a_{i} \quad \text { and } \quad g a_{i}=\chi_{i}(g) a_{i} g
$$

As mentioned in the introduction this covers a wide class of examples of Hopf algebras.
Theorem 3.1. [10, Thm. 3.4] If A is a character Hopf algebra, then

$$
A \cong(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]) / I
$$

where the smash product $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ and the ideal I are constructed in the following way:

3.1 The smash product $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$

Let $\mathbb{k}\langle X\rangle$ be Γ - and $\widehat{\Gamma}$-graded as in Section 1.1 , and $\mathbb{k}[\Gamma]$ be endowed with the usual bialgebra structure $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$ for all $g \in \Gamma$. Then we define

$$
g \cdot x_{i}:=\chi_{i}(g) x_{i}, \quad \text { for all } 1 \leq i \leq \theta
$$

In this case, $\mathbb{k}\langle X\rangle$ is a $\mathbb{k}[\Gamma]$-module algebra and we calculate $g x_{i}=\chi_{i}(g) x_{i} g, g h=h g=$ $\varepsilon(g) h g$ in $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$. Further $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ is a Hopf algebra with structure determined for all $1 \leq i \leq \theta$ and $g \in \Gamma$ by

$$
\Delta\left(x_{i}\right):=x_{i} \otimes 1+g_{i} \otimes x_{i} \quad \text { and } \quad \Delta(g):=g \otimes g
$$

3.2 Ideals associated to Shirshov closed sets

In this subsection we fix a Shirshov closed $L \subset \mathcal{L}$. We want to introduce the following notation for an $a \in \mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ and $W \in[\mathcal{L}]^{(\mathbb{N})}$: We will write $a \prec_{L} W$ (resp. $a \preceq_{L} W$), if a is a linear combination of

- $U \in[L]^{(\mathbb{N})}$ with $\ell(U)=\ell(W), U>W$ (resp. $U \geq W$), and
- $V g$ with $V \in[L]^{(\mathbb{N})}, g \in \Gamma, \ell(V)<\ell(W)$.

Furthermore, we set for each $u \in L$ either $N_{u}:=\infty$ or $N_{u}:=\operatorname{ord} q_{u, u}$ (resp. $N_{u}:=$ $p^{k} \operatorname{ord} q_{u, u}$ with $k \geq 0$ if char $\mathbb{k}=p>0$) and we want to distinguish the following two sets of words depending on L :

$$
\begin{aligned}
& C(L):=\{w \in\langle X\rangle \backslash L \mid \exists u, v \in L: w=u v, u<v, \text { and } \operatorname{Sh}(w)=(u \mid v)\}, \\
& D(L):=\left\{u \in L \mid N_{u}<\infty\right\} .
\end{aligned}
$$

Note that $C(L) \subset \mathcal{L}$ and $D(L) \subset L \subset \mathcal{L}$ are sets of Lyndon words. For example, if $L=\left\{x_{1}, x_{1} x_{1} x_{2}, x_{1} x_{2}, x_{2}\right\}$, then $C(L)=\left\{x_{1} x_{1} x_{1} x_{2}, x_{1} x_{1} x_{2} x_{1} x_{2}, x_{1} x_{2} x_{2}\right\}$.

Moreover, let $c_{w} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])^{\chi_{w}}$ for all $w \in C(L)$ such that $c_{w} \prec_{L}[w]$; and let $d_{u} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])^{\chi_{u}^{N_{u}}}$ for all $u \in D(L)$ such that $d_{u} \prec_{L}[u]^{N_{u}}$. Then let I be the $\widehat{\Gamma}$ homogeneous ideal of $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ generated by the following elements:

$$
\begin{align*}
{[w]-c_{w} } & \text { for all } w \in C(L), \tag{3.1}\\
{[u]^{N_{u}}-d_{u} } & \text { for all } u \in D(L) . \tag{3.2}
\end{align*}
$$

4 A PBW basis criterion

In this section we want to state a PBW basis criterion which is applicable for any character Hopf algebra. Suppose we have a smash product $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ together with an ideal I as in Sections 3.1 and 3.2.

At first we need to define several algebraic objects for the formulation of the PBW Criterion 4.2. The main idea is not to work in the free algebra $\mathbb{k}\langle X\rangle$ but in the free algebra $\mathbb{k}\left\langle X_{L}\right\rangle$ where $\left\langle X_{L}\right\rangle$ is the free monoid of Section 2.5.

4.1 The free algebra $\mathbb{k}\left\langle X_{L}\right\rangle$ and $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$

In Section 2.5 we associated to a super letter $[u] \in[L]$ a new variable $x_{u} \in X_{L}$, where X_{L} contains X. Hence the free algebra $\mathbb{k}\left\langle X_{L}\right\rangle$ also contains $\mathbb{k}\langle X\rangle$. We define the action of Γ on $\mathbb{k}\left\langle X_{L}\right\rangle$ and q-commutators by

$$
\begin{aligned}
g \cdot x_{u} & :=\chi_{u}(g) x_{u} & & \text { for all } g \in \Gamma, u \in L, \\
{\left[x_{u}, x_{v}\right] } & :=x_{u} x_{v}-q_{u, v} x_{v} x_{u} & & \text { for all } u, v \in L .
\end{aligned}
$$

In this way $\mathbb{k}\left\langle X_{L}\right\rangle$ becomes a $\mathbb{k}[\Gamma]$-module algebra and $g x_{u}=\chi_{u}(g) x_{u} g$ in the smash product $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$.

4.2 The subspace $I_{\prec U} \subset \mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$

Via ρ of Eq. (2.2) we now define certain elements of $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$: For all $w \in C(L)$ resp. $u \in$ $D(L)$ we write $c_{w}=\sum \alpha U+\sum \beta V g \prec_{L}[w]$ resp. $d_{u}=\sum \alpha^{\prime} U^{\prime}+\sum \beta^{\prime} V^{\prime} g^{\prime} \prec_{L}[u]^{N_{u}}$, with $\alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in \mathbb{k}$ and $U, U^{\prime}, V, V^{\prime} \in[L]^{(\mathbb{N})}$ (such decompositions may not be unique; we just fix one). Then we define in $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$

$$
c_{w}^{\rho}:=\sum \alpha \rho(U)+\sum \beta \rho(V) g \quad \text { resp. } \quad d_{u}^{\rho}:=\sum \alpha^{\prime} \rho\left(U^{\prime}\right)+\sum \beta^{\prime} \rho\left(V^{\prime}\right) g^{\prime} .
$$

For all $u, v \in L$ with $u<v$ we define elements $c_{(u \mid v)}^{\rho} \in \mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$: If $w=u v$ and $\operatorname{Sh}(w)=(u \mid v)$ we set

$$
c_{(u \mid v)}^{\rho}:= \begin{cases}x_{w}, & \text { if } w \in L \\ c_{w}^{\rho}, & \text { if } w \notin L\end{cases}
$$

Else if $\operatorname{Sh}(w) \neq(u \mid v)$ let $\operatorname{Sh}(u)=\left(u_{1} \mid u_{2}\right)$. Then we define inductively on the length of $\ell(u)$

$$
\begin{equation*}
c_{(u \mid v)}^{\rho}:=\partial_{u_{1}}^{\rho}\left(c_{\left(u_{2} \mid v\right)}^{\rho}\right)+q_{u_{2}, v} c_{\left(u_{1} \mid v\right)}^{\rho} x_{u_{2}}-q_{u_{1}, u_{2}} x_{u_{2}} c_{\left(u_{1} \mid v\right)}^{\rho}, \tag{4.1}
\end{equation*}
$$

where $\partial_{u_{1}}^{\rho}$ is defined \mathbb{k}-linearly by

$$
\begin{aligned}
& \partial_{u_{1}}^{\rho}\left(x_{l_{1}} \ldots x_{l_{n}}\right):=c_{\left(u_{1} \mid l_{1}\right)}^{\rho} x_{l_{2}} \ldots x_{l_{n}}+\sum_{i=2}^{n} q_{u_{1}, l_{1} \ldots l_{i-1}} x_{l_{1}} \ldots x_{l_{i-1}}\left[x_{u_{1}}, x_{l_{i}}\right] x_{l_{i+1}} \ldots x_{l_{n}}, \\
& \partial_{u_{1}}^{\rho}(\rho(V) g):=\left[x_{u_{1}}, \rho(V)\right]_{q_{u_{1}, u_{2} v \chi u_{1}(g)}} g .
\end{aligned}
$$

For any $U \in\left\langle X_{L}\right\rangle$ let $I_{\prec U}$ denote the subspace of $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$ spanned by the elements

$$
\begin{array}{ll}
V g\left(\left[x_{u}, x_{v}\right]-c_{(u \mid v)}^{\rho}\right) W h & \text { for all } u, v \in L, u<v, \\
V^{\prime} g^{\prime}\left(x_{u}^{N_{u}}-d_{u}^{\rho}\right) W^{\prime} h^{\prime} & \text { for all } u \in L, N_{u}<\infty
\end{array}
$$

with $V, V^{\prime}, W, W^{\prime} \in\left\langle X_{L}\right\rangle, g, g^{\prime}, h, h^{\prime} \in \Gamma$ such that

$$
V x_{u} x_{v} W \prec U \quad \text { and } \quad V^{\prime} x_{u}^{N_{u}} W^{\prime} \prec U .
$$

Finally we want to define the following elements of $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$ for $u, v, w \in L, u<$ $v<w$, resp. $u \in L, N_{u}<\infty, u \leq v$, resp. $v<u$:

$$
\begin{aligned}
& J(u<v<w):=\left[c_{(u \mid v)}^{\rho}, x_{w}\right]_{q_{u v, w}}-\left[x_{u}, c_{(v \mid w)}^{\rho}\right]_{q_{u, v w}} \\
& +q_{u, v} x_{v}\left[x_{u}, x_{w}\right]-q_{v, w}\left[x_{u}, x_{w}\right] x_{v}, \\
& L(u, u<v):=[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{N_{u}-1}, c_{(u \mid v)}^{\rho}]_{q_{u, u} q_{u, v}} \ldots]_{q_{u, u}^{N_{u}-1} q_{u, v}}-\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{N_{u}}}, \\
& L(u, u \leq v):= \begin{cases}L(u, u<v), & \text { if } u<v, \\
L(u):=-\left[d_{u}^{\rho}, x_{u}\right]_{1}, & \text { if } u=v,\end{cases} \\
& L(u, v<u):=[\ldots[c_{(v \mid u)}^{\rho}, \underbrace{\left.x_{u}\right]_{q_{v, u} q_{u, u}} \ldots, x_{u}}_{N_{u}-1}]_{q_{v, u} q_{u, u}^{N_{u}-1}}-\left[x_{v}, d_{u}^{\rho}\right]_{q_{v, u} N_{u}} .
\end{aligned}
$$

Remark 4.1. Note that

$$
J(u<v<w) \in\left(\left[x_{u}, x_{v}\right]-c_{(u \mid v)}^{\rho},\left[x_{v}, x_{w}\right]-c_{(v \mid w)}^{\rho}\right)
$$

by the q-Jacobi identity of Proposition 1.2, and

$$
L(u, u \leq v) \in\left(\left[x_{u}, x_{v}\right]-c_{(u \mid v)}^{\rho}, x_{u}^{N_{u}}-d_{u}^{\rho}\right), \quad L(u, v<u) \in\left(\left[x_{v}, x_{u}\right]-c_{(v \mid u)}^{\rho}, x_{u}^{N_{u}}-d_{u}^{\rho}\right)
$$

by the restricted q-Leibniz formula of Proposition 1.2.

4.3 The PBW criterion

Theorem 4.2. Let $L \subset \mathcal{L}$ be Shirshov closed and I be an ideal of $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ as in Section 3.2. Then the following assertions are equivalent:
(1) The residue classes of $\left[u_{1}\right]^{r_{1}}\left[u_{2}\right]^{r_{2}} \ldots\left[u_{t}\right]^{r_{t}} g$ with $t \in \mathbb{N}, u_{i} \in L, u_{1}>\ldots>u_{t}$, $0<r_{i}<N_{u_{i}}, g \in \Gamma$, form $a \mathbb{k}$-basis of the quotient algebra $(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]) / I$.
(2) The algebra $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$ respects the following conditions:
(a) q-Jacobi condition: $\forall u, v, w \in L, u<v<w$:

$$
J(u<v<w) \in I_{\prec x_{u} x_{v} x_{w}} .
$$

(b) restricted q-Leibniz conditions: $\forall u, v \in L$ with $N_{u}<\infty, u \leq v$ resp. $v<u$:
(i) $L(u, u \leq v) \in I_{\prec x_{u}^{N u} x_{v}}$, resp.
(ii) $L(u, v<u) \in I_{\prec x_{v} x_{u}^{N u}}$,
(2') The algebra $\mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma]$ respects the following conditions:
(a) Condition (2a) only for $u v \notin L$ or $\operatorname{Sh}(u v) \neq(u \mid v)$.
(b) (i) Condition (2bi) only for $u=v$ and $u<v$ where $v \neq u v^{\prime}$ for all $v^{\prime} \in L$.
(ii) Condition (2bii) only for $v<u$ where $v \neq v^{\prime} u$ for all $v^{\prime} \in L$.

We need to formulate several statements over the next sections. Afterwards the proof of Theorem 4.2 will be carried out in Section 7 .

$5(\mathbb{k}\langle X\rangle \# H) / I$ as a quotient of a free algebra

In order to make the diamond lemma applicable for $(\mathbb{k}\langle X\rangle \# H) / I$, also not just for the regular letters X but for some super letters [L], we will define a quotient of a certain free algebra, which is the special case of the following general construction:

In this section let X, S be arbitrary sets such that $X \subset S$, and H be a bialgebra with \mathbb{k}-basis G. Then

$$
\mathbb{k}\langle X\rangle \subset \mathbb{k}\langle S\rangle \quad \text { and } \quad H=\operatorname{span}_{\mathbb{k}} G \subset \mathbb{k}\langle G\rangle,
$$

if we view the set G as variables. Further we set $\langle S, G\rangle:=\langle S \cup G\rangle$ where we may assume that the union is disjoint. By omitting \otimes

$$
\mathfrak{k}\langle X\rangle \otimes H=\operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\} \subset \mathbb{k}\langle S, G\rangle
$$

Now let $\mathbb{k}\langle X\rangle$ be a H-module algebra. Next we define the ideals corresponding to the extension of the variable set X to S, and to the smash product structure and the multiplication of H, and study their properties afterwards.

Definition 5.1. (1) Let A be an algebra, $B \subset A$ a subset. Then let $(B)_{A}$ denote the ideal generated by the set B.
(2) Let $f_{s} \in \mathbb{k}\langle X\rangle$ for all $s \in S$. Further let $1_{H} \in G$ and $f_{g h}:=g h \in H=\operatorname{span}_{\mathbb{k}} G$ for all $g, h \in G$. We then define the ideals

$$
\begin{aligned}
I_{S} & :=\left(s-f_{s} \mid s \in S\right)_{\mathbb{k}\langle S, G\rangle}, \\
I_{G} & :=\left(g s-\left(g_{(1)} \cdot f_{s}\right) g_{(2)}, g h-f_{g h}, 1_{H}-1 \mid g, h \in G, s \in S\right)_{\mathbb{k}\langle S, G\rangle}
\end{aligned}
$$

where 1 is the empty word in $\mathbb{k}\langle S, G\rangle$.
Remark 5.2. We may assume that $1_{H} \in G$, if $H \neq 0$: Suppose $1_{H} \notin G$ and write 1_{H} as a linear combination of G. Suppose all coefficients are 0 , then $1_{H}=0_{H}$ hence $H=0$; a contradiction. So there is a g with non-zero coefficient and we can exchange this g with 1_{H}.

Example 5.3. Let $H=\mathbb{k}[\Gamma]$ be the group algebra with the usual bialgebra structure $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$. Here $G=\Gamma, f_{g h} \in \Gamma$ is just the product in the group, and

$$
I_{\Gamma}=\left(g s-\left(g \cdot f_{s}\right) g, g h-f_{g h}, 1_{\Gamma}-1 \mid g, h \in \Gamma, s \in S\right) .
$$

Lemma 5.4. For any $g \in \Gamma$ we have

$$
g(\mathbb{k}\langle S, G\rangle) \subset \operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\}+I_{G} .
$$

Proof. Let $a_{1} \ldots a_{n} \in\langle S, G\rangle$. We proceed by induction on n. If $n=1$ then either $a_{1} \in S$ or $a_{1} \in G$. Then either $g a_{1} \in\left(g_{(1)} \cdot f_{a_{1}}\right) g_{(2)}+I_{G} \subset \operatorname{span}_{\mathfrak{k}}\{u g \mid u \in\langle X\rangle, g \in G\}+I_{G}$ or $g a_{1} \in f_{g a_{1}}+I_{G} \subset \operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\}+I_{G}$. If $n>1$, then let us consider $g a_{1} a_{2} \ldots a_{n}$. Again either $a_{1} \in S$ or $a_{1} \in G$ and we argue for $g a_{1}$ as in the induction basis; then by using the induction hypothesis we achieve the desired form.

Proposition 5.5. Assume the above situation. Then

$$
\mathbb{k}\langle X\rangle \# H \cong \mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}\right),
$$

and for any ideal I of $\mathbb{k}\langle X\rangle \# H$ also $I_{S}+I_{G}+I$ is an ideal of $\mathbb{k}\langle S, G\rangle$ such that

$$
(\mathbb{k}\langle X\rangle \# H) / I \cong \mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}+I\right) .
$$

Further we have the following special cases:

$$
\begin{array}{rlrl}
H \cong \mathbb{k}: & \mathbb{k}\langle X\rangle & \cong \mathbb{k}\langle S\rangle / I_{S}, & \mathbb{k}\langle X\rangle / I \\
S=X: & \mathbb{k}\langle S\rangle /\left(I_{S}+I\right) \tag{5.2}\\
S\rangle \# \# H & \cong \mathbb{k}\langle X, G\rangle / I_{G}, & (\mathbb{k}\langle X\rangle \# H) / I & \cong \mathbb{k}\langle X, G\rangle /\left(I_{G}+I\right) .
\end{array}
$$

Proof. (1) The algebra map

$$
\mathbb{k}\langle S, G\rangle \rightarrow \mathbb{k}\langle X\rangle \# H, \quad s \mapsto f_{s} \# 1_{H}, \quad g \mapsto 1_{\mathbb{k}\langle X\rangle} \# g
$$

is surjective and contains $I_{S}+I_{G}$ in its kernel; this is a direct calculation using the definitions. Hence we have a surjective algebra map on the quotient

$$
\begin{equation*}
\mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}\right) \longrightarrow \mathbb{k}\langle X\rangle \# H . \tag{5.3}
\end{equation*}
$$

In order to see that this map is bijective, we verify that a basis is mapped to a basis.
(a) The residue classes of the elements of $\{u g \mid u \in\langle X\rangle, g \in G\} \mathbb{k}$-generate $\mathbb{k}\langle S, G\rangle /\left(I_{S}+\right.$ I_{G}): Let $A \in\langle S, G\rangle$. Then either $A \in\langle S\rangle$ or it contains an element of G. In the first case $A \in \mathbb{k}\langle X\rangle+I_{S}$ by definition of I_{S}, and then $A \in \mathbb{k}\langle X\rangle 1_{H}+I_{S}+I_{G}$ since $1_{H}-1 \in I_{\Gamma}$. In the other case let $A=A_{1} g A_{2}$ with $A_{1} \in\langle S\rangle, g \in G, A_{2} \in\langle S, G\rangle$. We argue for A_{1} like before, and $g A_{2} \in \operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\}+I_{G}$ by Lemma 5.4.
(b) The residue classes of $\{u g \mid u \in\langle X\rangle, g \in G\}$ are mapped by Eq. (5.3) to the \mathbb{k}-basis $\langle X\rangle \# G$ of the right-hand side. Hence the residue classes are linearly independent, thus form a basis of $\mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}\right)$.
(2) $I_{S}+I_{\Gamma}+I$ is an ideal: Let $A \in\langle S, G\rangle$ and $a \in I \subset \operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\}$. Then by (1a) above $A \in \operatorname{span}_{\mathbb{k}}\{u g \mid u \in\langle X\rangle, g \in G\}+I_{S}+I_{G}$, and since I is an ideal of $\mathbb{k}\langle X\rangle \# H$, we have $A a, a A \in I_{S}+I_{G}+I$ by the isomorphism Eq. (5.3).

Using the isomorphism theorem and part (1) we get

$$
\mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}+I\right) \cong\left(\mathbb{k}\langle S, G\rangle /\left(I_{S}+I_{G}\right)\right) /\left(\left(I_{S}+I_{G}+I\right) /\left(I_{S}+I_{G}\right)\right) \cong(k\langle X\rangle \# H) / I
$$

where the last \cong holds since $\left(I_{S}+I_{G}+I\right) /\left(I_{S}+I_{G}\right)$ is mapped to I by the isomorphism Eq. (5.3).
(3) The special cases follow from the facts that $I_{S}=0$ if $S=X$, and if $H \cong \mathbb{k}$ then $G=\left\{1_{H}\right\}$. Hence $I_{G}=\left(1_{H}-1\right)$ and $\mathbb{k}\langle X\rangle \cong \mathbb{k}\langle X\rangle \# \mathbb{k} \cong \mathbb{k}\left\langle S,\left\{1_{H}\right\}\right\rangle /\left(I_{S}+\left(1_{H}-1\right)\right) \cong$ $\mathbb{k}\langle S\rangle / I_{S}$.

We now return to the situation of Section 3, and rewrite Proposition 5.5 for the case $S=X_{L}$ and $H=\mathbb{k}[\Gamma]$:

Corollary 5.6. Let $L \subset \mathcal{L}$ be Shirshov closed and

$$
\begin{aligned}
I_{L} & :=\left(x_{u}-\left[x_{v}, x_{w}\right] \mid u \in L, \operatorname{Sh}(u)=(v \mid w)\right)_{\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle} \\
I_{\Gamma}^{\prime} & :=\left(g x_{u}-\chi_{u}(g) x_{u} g, g h-f_{g h}, 1_{\Gamma}-1 \mid g, h \in \Gamma, u \in L\right)_{\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle} .
\end{aligned}
$$

Then for any ideal I of $\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]$ also $I_{L}+I_{\Gamma}^{\prime}+I$ is an ideal of $\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle$ such that

$$
(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]) / I \cong \mathbb{k}\left\langle X_{L}, \Gamma\right\rangle /\left(I_{L}+I_{\Gamma}^{\prime}+I\right)
$$

Further we have the analog special cases of Proposition 5.5.
Proof. We apply Proposition 5.5 to the case $S=X_{L}, H=\mathbb{k}[\Gamma], f_{x_{u}}=[u]$ for all $u \in L$. Then $I_{X_{L}}=\left(x_{u}-[u] \mid u \in L\right)_{\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle}$ and I_{Γ} is as in Example 5.3. We are left to prove $I_{L}+I_{\Gamma}^{\prime}+I=I_{X_{L}}+I_{\Gamma}+I$, which follows from the Lemma below.

Lemma 5.7. We have
(1) $[u] \in x_{u}+I_{L}$ for all $u \in L$; hence $I_{X_{L}}=I_{L}$.
(2) $I_{\Gamma} \subset I_{\Gamma}^{\prime}+I_{L}$

Proof. (2) follows from (1), which we prove by induction on $\ell(u)$: For $\ell(u)=1$ there is nothing to show. Let $\ell(u)>1$ and $\operatorname{Sh}(u)=(v \mid w)$. Then by the induction assumption we have

$$
\begin{aligned}
{[u] } & =[v][w]-q_{v, w}[w][v] \in\left(x_{v}+I_{L}\right)\left(x_{w}+I_{L}\right)-q_{v w}\left(x_{w}+I_{L}\right)\left(x_{v}+I_{L}\right) \\
& \subset\left[x_{v}, x_{w}\right]+I_{L}=x_{u}-(\underbrace{x_{u}-\left[x_{v}, x_{w}\right]}_{\in I_{L}})+I_{L}=x_{u}+I_{L} .
\end{aligned}
$$

Example 5.8. Let $X=\left\{x_{1}, x_{2}\right\} \subset L=\left\{x_{1}, x_{1} x_{2}, x_{2}\right\}$. Then $I_{L}=\left(x_{12}-\left[x_{1}, x_{2}\right]\right)$ and by Corollary $5.6 \mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \cong \mathbb{k}\left\langle x_{1}, x_{12}, x_{2} \mid x_{12}=\left[x_{1}, x_{2}\right]\right\rangle$, and

$$
\begin{aligned}
\mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \# \mathbb{k}[\Gamma] \cong \mathbb{k}\left\langle x_{1}, x_{12}, x_{2}, \Gamma\right| x_{12} & =\left[x_{1}, x_{2}\right], \\
g x_{u} & \left.=\chi_{u}(g) x_{u} g, g h=f_{g h}, 1_{\Gamma}-1 ; \forall u \in L, g, h \in \Gamma\right\rangle .
\end{aligned}
$$

6 Bergman's diamond lemma

Following Bergman [5], let Y be a set, $\mathbb{k}\langle Y\rangle$ the free \mathbb{k}-algebra and Σ an index set. We fix a subset $\mathcal{R}=\left\{\left(W_{\sigma}, f_{\sigma}\right) \mid \sigma \in \Sigma\right\} \subset\langle Y\rangle \times \mathbb{k}\langle Y\rangle$, and define the ideal

$$
I_{\mathcal{R}}:=\left(W_{\sigma}-f_{\sigma} \mid \sigma \in \Sigma\right)_{\mathbb{k}\langle Y\rangle} .
$$

An overlap of \mathcal{R} is a triple (A, B, C) such that there are $\sigma, \tau \in \Sigma$ and $A, B, C \in\langle Y\rangle \backslash\{1\}$ with $W_{\sigma}=A B$ and $W_{\tau}=B C$. In the same way an inclusion of \mathcal{R} is a triple (A, B, C) such that there are $\sigma \neq \tau \in \Sigma$ and $A, B, C \in\langle Y\rangle$ with $W_{\sigma}=B$ and $W_{\tau}=A B C$.

Let \preceq_{\diamond} be a with \mathcal{R} compatible well-founded monoid partial ordering of the free monoid $\langle Y\rangle$, i.e.:

- $\left(\langle Y\rangle, \preceq_{\diamond}\right)$ is a partial ordered set.
- $B \prec_{\diamond} B^{\prime} \Rightarrow A B C \prec_{\otimes} A B^{\prime} C$ for all $A, B, B^{\prime}, C \in\langle Y\rangle$.
- Each non-empty subset of $\langle Y\rangle$ has a minimal element w.r.t. \preceq_{\diamond}.
- f_{σ} is a linear combination of monomials $\prec_{\diamond} W_{\sigma}$ for all $\sigma \in \Sigma$; in this case we write $f_{\sigma} \prec_{\diamond} W_{\sigma}$.

For any $A \in\langle Y\rangle$ let $I_{\prec_{\odot} A}$ denote the subspace of $\mathbb{k}\langle Y\rangle$ spanned by all elements $B\left(W_{\sigma}-\right.$ $\left.f_{\sigma}\right) C$ with $B, C \in\langle Y\rangle$ such that $B W_{\sigma} C \prec_{\diamond} A$. The next theorem is a short version of the diamond lemma:

Theorem 6.1. [5, Thm 1.2] Let $\mathcal{R}=\left\{\left(W_{\sigma}, f_{\sigma}\right) \mid \sigma \in \Sigma\right\} \subset\langle Y\rangle \times \mathbb{k}\langle Y\rangle$ and $\preceq_{\text {。 be a }}$ with \mathcal{R} compatible well-founded monoid partial ordering on $\langle Y\rangle$. Then the following conditions are equivalent:
(1) (a) $f_{\sigma} C-A f_{\tau} \in I_{\prec_{0} A B C}$ for all overlaps (A, B, C).
(b) $A f_{\sigma} C-f_{\tau} \in I_{\prec_{0} A B C}$ for all inclusions (A, B, C).
(2) The residue classes of the elements of $\langle Y\rangle$ which do not contain any W_{σ} with $\sigma \in \Sigma$ as a subword form $a \mathbb{k}$-basis of $\mathbb{k}\langle Y\rangle / I_{\mathcal{R}}$.

We now define the ordering for our situation, where $L \subset \mathcal{L}$ is Shirshov closed and $Y=X_{L} \cup \Gamma$: Let $\pi_{L}:\left\langle X_{L}, \Gamma\right\rangle \rightarrow\left\langle X_{L}\right\rangle$ be the monoid map with $x_{u} \mapsto x_{u}$ and $g \mapsto 1$ for all $u \in L, g \in \Gamma\left(\pi_{L}\right.$ deletes all g in a word of $\left.\left\langle X_{L}, \Gamma\right\rangle\right)$.

Moreover, for a $A \in\left\langle X_{L}, \Gamma\right\rangle$ let $n_{\Gamma}(A)$ denote the number of letters $g \in \Gamma$ in the word A and $t(A)$ the $n_{\Gamma}(A)$-tuple of non-negative integers
(number of letters after the last $g \in \Gamma$ in A, \ldots,
\ldots, number of letters after the first $g \in \Gamma$ in $A) \in \mathbb{N}^{n_{\Gamma}(A)}$.
Definition 6.2. For $A, B \in\left\langle X_{L}, \Gamma\right\rangle$ we define $A \prec_{\diamond} B$ by

- $\pi_{L}(A) \prec \pi_{L}(B)$, or
- $\pi_{L}(A)=\pi_{L}(B)$ and $n_{\Gamma}(A)<n_{\Gamma}(B)$, or
- $\pi_{L}(A)=\pi_{L}(B), n_{\Gamma}(A)=n_{\Gamma}(B)$ and $t(A)<t(B)$ under the lexicographical order of $\mathbb{N}^{n_{\Gamma}(A)}$, i.e., $t(A) \neq t(B)$, and the first non-zero term of $t(B)-t(A)$ is positive.
\preceq_{\diamond} is a well-founded monoid partial ordering of $\left\langle X_{L}, \Gamma\right\rangle$, which is straightforward to verify, and will be compatible with the later regarded \mathcal{R}.

Note that we have the following correspondence between \prec of Section 2.4 and \prec_{\diamond}, which follows from the definitions: For any $U, V \in[L]^{(\mathbb{N})}, g, h \in \Gamma$ we have $\rho(U) g, \rho(V) h \in\left\langle X_{L}\right\rangle \Gamma$ and

$$
\begin{equation*}
U \prec V \Longleftrightarrow \rho(U) g \prec_{\diamond} \rho(V) h . \tag{6.1}
\end{equation*}
$$

7 Proof of Theorem 4.2

Again suppose the assumptions of Theorem 4.2. By Corollary 5.6

$$
(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]) / I \cong \mathbb{k}\left\langle X_{L}, \Gamma\right\rangle /\left(I_{L}+I_{\Gamma}^{\prime}+I\right)
$$

thus $(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma]) / I$ has the basis $\left[u_{1}\right]^{r_{1}}\left[u_{2}\right]^{r_{2}} \ldots\left[u_{t}\right]^{r_{t}} g$ if and only if $\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle /\left(I_{L}+I_{\Gamma}^{\prime}+I\right)$ has the basis $x_{u_{1}}^{r_{1}} x_{u_{2}}^{r_{2}} \ldots x_{u_{t}}^{r_{t}} g\left(t \in \mathbb{N}, u_{i} \in L, u_{1}>\ldots>u_{t}, 0<r_{i}<N_{u}, g \in \Gamma\right)$. The latter we can reformulate equivalently in terms of the Diamond Lemma 6.1:

- We define \mathcal{R} as the set of the elements

$$
\begin{gather*}
\left(1_{\Gamma}, 1\right), \tag{7.1}\\
\left(g h, f_{g h}\right), \text { for all } g, h \in \Gamma, \tag{7.2}\\
\left(g x_{u}, \chi_{u}(g) x_{u} g\right), \text { for all } g \in \Gamma, u \in L, \tag{7.3}\\
\left(x_{u} x_{v}, c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right), \text { for all } u, v \in L \text { with } u<v, \tag{7.4}\\
\left(x_{u}^{N_{u}}, d_{u}^{\rho}\right), \text { for all } u \in L \text { with } N_{u}<\infty, \tag{7.5}
\end{gather*}
$$

where we again see $c_{(u \mid v)}^{\rho}, d_{u}^{\rho} \in \mathbb{k}\left\langle X_{L}\right\rangle \otimes \mathbb{k}[\Gamma] \subset \operatorname{span}_{\mathbb{k}}\left\{U g \mid U \in\left\langle X_{L}\right\rangle, g \in \Gamma\right\} \subset \mathbb{k}\left\langle X_{L}, \Gamma\right\rangle$. Then the residue classes of $c_{(u \mid v)}^{\rho}, d_{u}^{\rho}$ modulo $I_{L}+I_{\Gamma}^{\prime}$ correspond to $c_{(u \mid v)}$ and d_{u} by the isomorphism of Corollary 5.6, and we have $I_{\mathcal{R}}=I_{L}+I_{\Gamma}^{\prime}+I$.

- Note that \prec_{\diamond} is compatible with \mathcal{R} : In Eq. (7.1) resp. (7.2) we have $1 \prec_{\diamond} 1_{\Gamma}$ resp. $f_{g h} \prec_{\diamond}$ $g h$ since $n_{\Gamma}(1)=0<1=n_{\Gamma}\left(1_{\Gamma}\right)$ resp. $n_{\Gamma}\left(f_{g h}\right)=1<2=n_{\Gamma}(g h)\left(f_{g h} \in \Gamma\right)$. Eq. (7.3): $t\left(x_{u} g\right)=(0)<(1)=t\left(g x_{u}\right)$, hence $x_{u} g \prec_{\diamond} g x_{u}$. Moreover, by [10, Lem. 3.6] we have $c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u} \prec_{\diamond} x_{u} x_{v}$, and $d_{u}^{\rho} \prec_{\diamond} x_{u}^{N_{u}}$ by assumption.
- By the Diamond Lemma 6.1 we have to consider all possible overlaps and inclusions of \mathcal{R}. The only inclusions happen with Eq. (7.1), namely $\left(1,1_{\Gamma}, h\right),\left(g, 1_{\Gamma}, 1\right),\left(1,1_{\Gamma}, x_{u}\right)$. But they all fulfill the condition (1b) of the Diamond Lemma 6.1: for example $h-f_{1_{\Gamma} h}=$ $h-h=0 \in I_{\prec_{\diamond} 1_{\Gamma} h}$, and $x_{u}-\chi_{u}\left(1_{\Gamma}\right) x_{u} 1_{\Gamma}=x_{u}\left(1_{\Gamma}-1\right) \in I_{\prec_{\diamond} 1_{\Gamma} x_{u}}$.

So we are left to check the conditon (1a) for all overlaps: (g, h, k) with $g, h, k \in \Gamma$ fulfills it by the associativity of Γ; for $\left(g, h, x_{u}\right)$ we have

$$
f_{g h} x_{u}-\chi_{u}(h) g x_{u} h=\chi_{u}(g h) x_{u} f_{g h}-\chi_{u}(h) \chi_{u}(g) x_{u} g h=0,
$$

calculating modulo $I_{\prec_{\bullet} g h x_{u}}$ and using $\chi_{u}\left(f_{g h}\right)=\chi_{u}(g h)$ since $f_{g h} \in \Gamma$. The next overlap is (g, x_{u}, x_{v}) where $u<v$: Calculating modulo $I_{\prec_{\circ} g x_{u} x_{v}}$ we get

$$
\begin{aligned}
& \chi_{u}(g) x_{u} g x_{v}-g\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right)=\chi_{u}(g) \chi_{v}(g) x_{u} x_{v} g- \\
& \quad \chi_{u v}(g)\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right) g=\chi_{u v}(g)\left(x_{u} x_{v}-\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right)\right) g=0
\end{aligned}
$$

since $c_{(u \mid v)} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])^{\chi_{u v}}$ and $x_{u} x_{v} g \prec_{\diamond} g x_{u} x_{v}$. For the overlap $\left(g, x_{u}, x_{u}^{N_{u}-1}\right)$ we obtain modulo $I_{\prec \diamond g x_{u}^{N u}}$

$$
\chi_{u}(g) x_{u} g x_{u}^{N_{u}-1}-g d_{u}^{\rho}=\chi_{u}(g)^{N_{u}}\left(x_{u}^{N_{u}}-d_{u}^{\rho}\right) g=0
$$

because $d_{u} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])^{\chi_{u}^{N_{u}}}$ and $x_{u}^{N_{u}} \vartheta_{g} \prec_{\diamond} \vartheta_{g} x_{u}^{N_{u}}$. The remaining overlaps are those with Eqs. (7.4) and (7.5); for these we formulate the following three Lemmata which are equivalent to (2) of the Theorem 4.2:
Lemma 7.1. The overlap $\left(x_{u}, x_{v}, x_{w}\right), u<v<w$, fulfills condition 6.1(1a), i.e., $a:=$ $\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right) x_{w}-x_{u}\left(c_{(v \mid w)}^{\rho}+q_{v, w} x_{w} x_{v}\right) \in I_{\prec_{\circ} x_{u} x_{v} x_{w}}$, if and only if $J(u<v<w) \in$ $I_{\prec_{\diamond} x_{u} x_{v} x_{w}}$.

Proof. We calculate in $\mathbb{k}\left\langle X_{L}, \Gamma\right\rangle$

$$
\begin{aligned}
J(u<v<w)= & c_{(u \mid v)}^{\rho} x_{w}-q_{u v, w} x_{w} c_{(u \mid v)}^{\rho}-\left(x_{u} c_{(v \mid w)}^{\rho}-q_{u, v w} c_{(v \mid w)}^{\rho} x_{u}\right) \\
& +q_{u, v} x_{v}\left(x_{u} x_{w}-q_{u, w} x_{w} x_{u}\right)-q_{v, w}\left(x_{u} x_{w}-q_{u, w} x_{w} x_{u}\right) x_{v}, \\
a= & c_{(u \mid v)}^{\rho} x_{w}+q_{u, v} x_{v} x_{u} x_{w}-x_{u} c_{(v \mid w)}^{\rho}-q_{v, w} x_{u} x_{w} x_{v},
\end{aligned}
$$

and show that the difference is zero modulo $I_{\prec_{\diamond} x_{u} x_{v} x_{w}}$:

$$
\begin{aligned}
J(u<v<w)-a & =q_{u v, w} x_{w}\left(x_{u} x_{v}-c_{(u \mid v)}^{\rho}\right)+q_{u, v w}\left(c_{(v \mid w)}^{\rho}-x_{v} x_{w}\right) x_{u} \\
& =q_{u v, w} x_{w}\left(q_{u, v} x_{v} x_{u}\right)-q_{u, v w}\left(q_{v, w} x_{w} x_{v}\right) x_{u}=0 .
\end{aligned}
$$

since $x_{w} x_{u} x_{v}, x_{v} x_{w} x_{u} \prec_{\diamond} x_{u} x_{v} x_{w}$.
Lemma 7.2. The overlaps $\left(x_{u}^{N_{u}-1}, x_{u}, x_{v}\right)$ resp. $\left(x_{u}, x_{v}, x_{v}^{N_{v}-1}\right)$ fulfill condition 6.1(1a), i.e., $d_{u}^{\rho} x_{v}-x_{u}^{N_{u}-1}\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right) \in I_{\prec_{0} x_{u}^{N u} x_{v}} \operatorname{resp} . \quad\left(c_{(u \mid v)}^{\rho}+q_{u v} x_{v} x_{u}\right) x_{v}^{N_{v}-1}-x_{u} d_{v}^{\rho} \in$ $I_{\prec_{\diamond} x_{u} x_{v}^{N v}}$ if and only if $L(u, u<v) \in I_{\prec_{\diamond} x_{u}^{N_{u}} x_{v}} \operatorname{resp} . L(u, u>v) \in I_{\prec_{\diamond} x_{v} x_{u}^{N_{u}}}$.
Proof. We prove it for $\left(x_{u}^{N_{u}-1}, x_{u}, x_{v}\right)$; the other overlap is proved analogously. We set $r:=N_{u}-1$, then ord $q_{u, u}=r+1$. Using the q-Leibniz formula of Proposition 1.2 we get

$$
\begin{aligned}
& x_{u}^{r}\left(c_{(u \mid v)}^{\rho}+q_{u, v} x_{v} x_{u}\right)-d_{u}^{\rho} x_{v}= \\
& =\left[x_{u}^{r}, c_{(u \mid v)}^{\rho}\right]_{q_{u, u}^{r} q_{u, v}}+q_{u, u}^{r} q_{u, v} c_{(u \mid v)}^{\rho} x_{u}^{r} \\
& \\
& \quad+q_{u, v}\left[x_{u}^{r}, x_{v}\right]_{q_{u, v}^{r}} x_{u}+q_{u, v}^{r+1} x_{v} x_{u}^{r+1}-d_{u}^{\rho} x_{v} \\
& =\sum_{i=0}^{r} q_{u, u}^{i} q_{u, v}^{i}\binom{r}{i}_{q_{u, u}} \\
& \quad[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r-i}, c_{(u \mid v)}^{\rho}]_{q_{u, u} q_{u, v}} \ldots]_{q_{u, u}^{r-i} q_{u, v}} x_{u}^{i} \\
& \quad+\sum_{i=0}^{r-1} q_{u, v}^{i+1}\left(\begin{array}{l}
r \\
{ }_{i} \\
i
\end{array}\right)_{q_{u, u}} \\
& [\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r-i}, x_{v}]_{q_{u, v}} \ldots]_{q_{u, u}^{r-i-1} q_{u, v}} x_{u}^{i+1}+q_{u, v}^{r+1} x_{v} x_{u}^{r+1}-d_{u}^{\rho} x_{v} .
\end{aligned}
$$

Because of $x_{u}^{r-i} x_{v} x_{u}^{i+1} \prec_{\diamond} x_{u}^{r+1} x_{v}$ for all $0 \leq i \leq r$, this is modulo $I_{\prec_{\diamond} x_{u}^{r+1} x_{v}}$ equal to

$$
\begin{aligned}
& \sum_{i=0}^{r} q_{u, u}^{i} q_{u, v}^{i}\binom{r}{i}_{q_{u, u}}[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r-i}, c_{(u \mid v)}^{\rho}]]_{q_{u, u} q_{u, v}} \ldots]_{q_{u, u}^{r-i} q_{u, v}} x_{u}^{i} \\
& \quad+\sum_{i=0}^{r-1} q_{u, v}^{i+1}\binom{r}{i}_{q_{u, u}}[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r-i-1}, c_{(u \mid v)}^{\rho}]_{q_{u, u} q_{u, v}} \ldots]_{q_{u, u}^{r-i-1} q_{u, v}} x_{u}^{i+1}-\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{r+1}} .
\end{aligned}
$$

Now shifting the index of the second sum, we obtain

$$
\begin{aligned}
& [\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r}, c_{(u \mid v)}^{\rho}]_{q_{u, u} q_{u, v}} \cdots]_{q_{u, u}^{r} q_{u, v}}-\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{r+1}} \\
& \quad+\sum_{i=1}^{r} q_{u, v}^{i}\left(q_{u, u}^{i}\binom{r}{i}_{q_{u, u}}+\binom{r}{i-1}_{q_{u, u}}\right)[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{r-i}, c_{(u \mid v)}^{\rho}]]_{q_{u, u} q_{u, v}} \ldots]_{q_{u, u}^{r-i} q_{u, v}} x_{u}^{i} .
\end{aligned}
$$

Finally we obtain the claim, since $q_{u, u}^{i}\binom{r}{i}_{q_{u, u}}+\binom{r}{i-1}_{q_{u, u}}=\binom{r+1}{i}_{q_{u, u}}=0$ for all $1 \leq i \leq r$, by Eq. (1.2) and ord $q_{u, u}=r+1$.

Lemma 7.3. The overlaps $\left(x_{u}^{N_{u}-i}, x_{u}^{i}, x_{u}^{N_{u}-i}\right)$ fulfill condition 6.1 (1a) for all $1 \leq i<N_{u}$, if and only if the overlap $\left(x_{u}^{N_{u}-1}, x_{u}, x_{u}^{N_{u}-1}\right)$ fulfills condition 6.1(1a), if and only if $L(u) \in$ $I_{\prec_{\diamond} x_{u}^{N_{u}+1}}$.

Proof. This is evident.

- We are left to prove the equivalence of (2) to its weaker version (2') of Theorem 4.2: For (2'a) we show that if $u v \in L$ and $\operatorname{Sh}(u v)=(u \mid v)$, then conditon (2a) is already fulfilled: By definition $c_{(u \mid v)}^{\rho}=x_{u v}$ and

$$
\left[c_{(u \mid v)}^{\rho}, x_{w}\right]_{q_{u v, w}}=\left[x_{u v}, x_{w}\right]=c_{(u v \mid w)}^{\rho}
$$

modulo $I_{\prec x_{u} x_{v} x_{w}}$. Now certainly $\operatorname{Sh}(u v w) \neq(u v \mid w)$, thus

$$
c_{(u v \mid w)}^{\rho}=\partial_{u}^{\rho}\left(c_{(v \mid w)}^{\rho}\right)+q_{v, w} c_{(u \mid w)}^{\rho} x_{v}-q_{u, v} x_{v} c_{(u \mid w)}^{\rho}
$$

by Eq. (4.1). Hence in this case the q-Jacobi condition is fulfilled by the q-derivation formula of Proposition 1.2.

For (2'b) of Theorem 4.2 it is enough to show the following: Let condition (2bi) hold for $u=v$, i.e., $\left[x_{u}, d_{u}^{\rho}\right]_{1} \in I_{\prec x_{u}^{N u}+1}$. Then, if condition (2bi) holds for some $u<v$ with $N_{u}<\infty$, then (2bi) also holds for $u<u v$ (whenever $u v \in L$). Analogously, if (2bii) holds for $v<u$ with $N_{u}<\infty$, then also (2bii) holds for $v u<u$ (whenever $v u \in L$).

Note that if $u<v$, then $u v<v$: Either v does not begin with u, then $u v<v$; or let $v=u w$ for some $w \in\langle X\rangle$. Then $u<v=u w<w$ since $v \in \mathcal{L}$. Hence $u v=u u w<u w=v$.

We will prove the first part ($2^{\prime} \mathrm{bi}$), ($2^{\prime} \mathrm{bii}$) is the same argument. But before we formulate the following

Lemma 7.4. Let $a \in \mathbb{k}\left\langle X_{L}\right\rangle \# \mathbb{k}[\Gamma], A, W \in\left\langle X_{L}\right\rangle$ such that $a \preceq_{L} A \prec W$. Then $a \in I_{\prec W}$ if and only if $a \in I_{\preceq A}$.

Proof. Clearly $I_{\preceq A} \subset I_{\prec W}$, since $A \prec W$. So denote by $\left\{\left(W_{\sigma}, f_{\sigma}\right) \mid \sigma \in \Sigma\right\}$ the set of Eqs. (7.4) and (7.5) with $f_{\sigma} \prec_{L} W_{\sigma}$, and let $a \in I_{\prec W}$, i.e., a is a linear combination of $U g\left(W_{\sigma}-f_{\sigma}\right) V h$ with $U, V \in\left\langle X_{L}\right\rangle$ such that $U W_{\sigma} V \prec W$. Denote by E the \prec-biggest word of all $U W_{\sigma} V$ with non-zero coefficient. $E \succ A$ contradicts the assumption $a \preceq_{L} A \prec W$. Hence $E \preceq A$ and therefore $f \in I_{\preceq A}$.

Suppose (2bi) for $u<v$ with $N_{u}<\infty$ and $u v \in L$, i.e.,

$$
\begin{aligned}
& {[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{N_{u}-1}, x_{u v}]_{q_{u, u} q_{u, v}} \cdots]_{q_{u, u}^{N u-1} q_{u, v}}-\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{N u}} \in I_{\prec x_{u}^{N_{u}} x_{v}} } \\
\Leftrightarrow & {[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{N_{u}-2}, c_{(u \mid u v)}^{\rho})]_{q_{u, u}^{2}} q_{u, v} \cdots]_{q_{u, u}^{N u-1} q_{u, v}}-\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{N u}} \in I_{\underline{x_{u}}{ }_{u}^{N u-1} x_{w} U x_{v}}, }
\end{aligned}
$$

for some $w \in L$ with $w>u$ and $U \in\left\langle X_{L}\right\rangle$ such that $\ell(U)+\ell(w)=\ell(u)$. Here we used the relation $\left[x_{u}, x_{u v}\right]_{q_{u, u v}}-c_{(u \mid u v)}^{\rho}$, and Lemma 7.4 since the above polynomial is $\preceq x_{u}^{N_{u}-1} x_{w} U x_{v}$ (by assumption $c_{(u \mid u v)} \preceq_{L}[u u v], d_{u} \prec_{L}[u]^{N_{u}}$). Hence the condition (2bi) for $u<u v$ reads

$$
\begin{aligned}
& {[\underbrace{x_{u}, \ldots\left[x_{u}\right.}_{N_{u}-1}, c_{(u \mid u v)}^{\rho}]_{q_{u, u}^{2}, q_{u, v}} \cdots]_{q_{u, u}^{N u} q_{u, v}}-\left[d_{u}^{\rho}, x_{u v}\right]_{q_{u, u} N_{u} q_{u, v}^{N_{u}}} \in I_{\prec x_{u}^{N_{u}} x_{u v}} } \\
\Leftrightarrow & {\left[x_{u},\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{N}}\right]_{q_{u, u} N_{u}, q_{u, v}}-\left[d_{u}^{\rho}, x_{u v}\right]_{q_{u, u}^{N u} q_{u, v}^{N,}} \in I_{\prec x_{u}^{N u} x_{u v}}, }
\end{aligned}
$$

since $x_{u} I_{\preceq x_{u}^{N u-1} x_{w} U x_{v}}, I_{\preceq x_{u}^{N u-1} x_{w} U x_{v}} x_{u} \subset I_{\prec x_{u}^{N u} x_{u v}}(w>u$ and w cannot begin with u since $\ell(w) \leq \ell(u)$, hence $w>u v$. By the q-Jacobi identity

$$
\begin{aligned}
{\left[x_{u},\left[d_{u}^{\rho}, x_{v}\right]_{q_{u, v}^{N}}^{N_{u}}\right]_{q_{u, u}^{N_{u}} q_{u, v}} } & =\left[\left[x_{u}, d_{u}^{\rho}\right]_{q_{u, u}^{N u}}, x_{v}\right]_{q_{u, v}^{N_{u}+1}}+q_{u, u}^{N_{u}} d_{u}^{\rho}\left[x_{u}, x_{v}\right]-q_{u, v}^{N_{u}}\left[x_{u}, x_{v}\right] d_{u}^{\rho} \\
& =\left[\left[x_{u}, d_{u}^{\rho}\right]_{1}, x_{v}\right]_{q_{u, v}^{N_{u}+1}}+\left[d_{u}^{\rho}, x_{u v}\right]_{q_{u, v}^{N_{u}}}=\left[d_{u}^{\rho}, x_{u v}\right]_{q_{u, v}^{N_{u}}} .
\end{aligned}
$$

For the last two " $=$ " we used $q_{u, u}^{N_{u}}=1$, the relation $\left[x_{u}, x_{v}\right]-x_{u v}$ and $\left[x_{u}, d_{u}^{\rho}\right]_{1} \in I_{\prec x_{u}^{N u}+1}$ (We can use this condition: Note that $\left[x_{u}, d_{u}^{\rho}\right]_{1} \preceq x_{u}^{N_{u}} x_{w^{\prime}} U^{\prime}$ for some $w^{\prime} \in L, w^{\prime}>u$, $U^{\prime} \in\left\langle X_{L}\right\rangle, \ell\left(U^{\prime}\right)+\ell\left(w^{\prime}\right)=\ell(u)$, hence $\left[x_{u}, d_{u}^{\rho}\right]_{1} \in I_{\preceq x_{u}^{N u} x_{w^{\prime}} U^{\prime}}$ by Lemma 7.4. Therefore $x_{v} I_{\preceq x_{u}^{N u} x_{w^{\prime}} U^{\prime}}, I_{\preceq x_{u}^{N u} x_{w^{\prime}} U^{\prime}} x_{v} \subset I_{\prec x_{u}^{N u} x_{u v}}$, like before).

8 PBW basis in rank one

We want to apply the PBW basis criterion to Hopf algebras of rank one and two for some fixed $L \subset \mathcal{L}$. Especially we want to treat liftings of Nichols algebras. Therefore we define the following scalars which will guarantee a $\widehat{\Gamma}$-graduation:

Definition 8.1. Let $L \subset \mathcal{L}$. Then we define coefficients $\mu_{u} \in \mathbb{k}$ for all $u \in D(L)$, and $\lambda_{w} \in \mathbb{k}$ for all $w \in C(L)$ by

$$
\mu_{u}=0, \text { if } g_{u}^{N_{u}}=1 \text { or } \chi_{u}^{N_{u}} \neq \varepsilon, \quad \lambda_{w}=0, \text { if } g_{w}=1 \text { or } \chi_{w} \neq \varepsilon,
$$

and otherwise they can be chosen arbitrarily.
In this section let V be a 1-dimensional vector space with basis x_{1} and ord $q_{11}=N \leq \infty$. Since $T(V) \cong \mathbb{k}\left[x_{1}\right]$ we have $\mathcal{L}=\left\{x_{1}\right\}$. We give the condition when $(T(V) \# \mathbb{k}[\Gamma]) /\left(x_{1}^{N}-d_{1}\right)$ has the PBW basis $\left\{x_{1}\right\}$. By the PBW Criterion 4.2 the only condition in $\mathbb{k}\left[x_{1}\right] \# \mathbb{k}[\Gamma]$ is

$$
\left[d_{1}^{\rho}, x_{1}\right]_{1} \in I_{\prec x_{1}^{N+1}} .
$$

Examples 8.2. Let char $\mathbb{k}=0$ and $q \in \mathbb{k}^{\times}$with ord $q=N \geq 2$.

1. Nichols algebra $A_{1} . T(V) /\left(x_{1}^{N}\right)$ has basis $\left\{x_{1}^{r} \mid 0 \leq r<N\right\}$.
2. Taft Hopf algebra. Let $\mathbb{Z} /(N)=\left\langle g_{1}\right\rangle$ and $\chi_{1}\left(g_{1}\right):=q$. The set $\left\{x_{1}^{r} g \mid 0 \leq r<N, g \in\right.$ $\mathbb{Z} /(N)\}$ is a basis of $T(q) \cong\left(\mathbb{k}\left[x_{1}\right] \# \mathbb{k}[\mathbb{Z} /(N)]\right) /\left(x_{1}^{N}\right)$.
3. Radford Hopf algebra. Let $\mathbb{Z} /\left(N^{2}\right)=\left\langle g_{1}\right\rangle$ and $\chi_{1}\left(g_{1}\right):=q$. The set $\left\{x_{1}^{r} g \mid 0 \leq r<\right.$ $\left.N, g \in \mathbb{Z} /\left(N^{2}\right)\right\}$ is a basis of $r(q) \cong\left(\mathbb{k}\left[x_{1}\right] \# \mathbb{k}\left[\mathbb{Z} /\left(N^{2}\right)\right]\right) /\left(x_{1}^{N}-\left(1-g_{1}^{N}\right)\right)$.
4. Liftings A_{1}. The set $\left\{x_{1}^{r} g \mid 0 \leq r<N, g \in \Gamma\right\}$ is a basis of $(T(V) \# \mathbb{k}[\Gamma]) /\left(x_{1}^{N}-\mu_{1}(1-\right.$ $\left.g_{1}^{N}\right)$),

Proof. (1) and (2) clearly fulfill the only condition above, since $d_{1}=0$.
(3) is a special case of (4): It is $d_{1} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])^{\chi_{1}^{N}}$ by Definition 8.1 of μ_{1}. Further

$$
\left[\mu_{1}\left(1-g_{1}^{N}\right), x_{1}\right]_{1}=\mu_{1}\left[1, x_{1}\right]_{1}-\mu_{1}\left[g_{1}^{N}, x_{1}\right]_{1}=-\mu_{1}\left(q_{11}^{N}-1\right) x_{1} g_{1}^{N}=0
$$

since ord $q_{11}=N$.

9 PBW basis in rank two and redundant relations

Let V be a 2-dimensional vector space with basis x_{1}, x_{2}, hence $T(V) \cong \mathbb{k}\left\langle x_{1}, x_{2}\right\rangle$. In this chapter we apply the PBW Criterion 4.2 to verify for certain $L \subset \mathcal{L}$ that the algebra

$$
(T(V) \# \mathbb{k}[\Gamma]) / I
$$

with I as in Section 3.2, has the PBW basis [L]. In particular, we examine the Nichols algebras and their liftings of [9]. Moreover, we will see how to find the redundant relations, and in addition, we will treat some classical examples.

9.1 PBW basis for $L=\left\{x_{1}<x_{2}\right\}$

This is the easiest case and covers the Cartan Type $A_{1} \times A_{1}$, as well as many other examples. We are interested when $[L]$ builds up a PBW Basis of

$$
(T(V) \# \mathbb{k}[\Gamma]) /\left(\left[x_{1} x_{2}\right]-c_{12}, x_{1}^{N_{1}}-d_{1}, x_{2}^{N_{2}}-d_{2}\right)
$$

with $N_{1}=\operatorname{ord} q_{11}, N_{2}=\operatorname{ord} q_{22} \in\{2,3, \ldots, \infty\}$. If $N_{1}=N_{2}=\infty$, then by the PBW Criterion 4.2 there is no condition in $\mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ such that we can choose c_{12} arbitrarily with $c_{12} \prec_{L}\left[x_{1} x_{2}\right]$ and $\operatorname{deg}_{\widehat{\Gamma}}\left(c_{12}\right)=\chi_{1} \chi_{2}$:

Examples 9.1.

1. Quantum plane. The set $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} \mid r_{2}, r_{1} \geq 0\right\}$ is a basis of $Q\left(q_{12}\right) \cong T(V) /\left(\left[x_{1} x_{2}\right]\right)$.
2. Weyl algebra. If $q_{12}=1$, then $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} \mid r_{2}, r_{1} \geq 0\right\}$ is a basis of $W \cong T(V) /\left(\left[x_{1} x_{2}\right]-1\right)$.

If $\operatorname{ord} q_{11}=N_{1}<\infty$ or $\operatorname{ord} q_{22}=N_{2}<\infty$, then by the PBW Criterion 4.2 we have to check

$$
\begin{align*}
& {\left[d_{1}^{\rho}, x_{1}\right]_{1} \in I_{\prec x_{1}^{N_{1}+1}}, \quad \text { or } \quad\left[d_{2}^{\rho}, x_{2}\right]_{1} \in I_{\prec x_{2}^{N_{2}+1}}, \text { and }} \tag{9.1}\\
& [\underbrace{x_{1}, \ldots\left[x_{1}\right.}_{N_{1}-1}, c_{12}^{\rho}]_{q_{11} q_{12}} \ldots]_{q_{11}^{N_{1}-1} q_{12}}-\left[d_{1}^{\rho}, x_{2}\right]_{q_{12}^{N_{1}}} \in I_{\prec x_{1}^{N_{1}} x_{2}} \text {, or } \tag{9.2}\\
& {[\ldots[c_{12}^{\rho}, \underbrace{\left.x_{2}\right]_{q_{12} q_{22}} \ldots, x_{2}}_{N_{2}-1}]_{q_{12} q_{22}^{N_{2}-1}}-\left[x_{1}, d_{2}^{\rho}\right]_{q_{12}^{N_{2}}} \in I_{\prec x_{1} x_{2}^{N_{2}}} .} \tag{9.3}
\end{align*}
$$

Examples 9.2. Let $\lambda_{12}, \mu_{1}, \mu_{2} \in \mathbb{k}$ as in Definition 8.1.

1. Nichols algebra $A_{1} \times A_{1}$. Let $q_{12} q_{21}=1$, then $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} \mid 0 \leq r_{i}<N_{i}\right\}$ is a basis of

$$
T(V) /\left(\left[x_{1} x_{2}\right], x_{1}^{N_{1}}, x_{2}^{N_{2}}\right)
$$

2. Liftings $A_{1} \times A_{1}$. Let $q_{12} q_{21}=1$, then $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} g \mid 0 \leq r_{i}<N_{i}, g \in \Gamma\right\}$ is a basis of

$$
(T(V) \nexists \mathbb{k}[\Gamma]) /\left(\left[x_{1} x_{2}\right]-\lambda_{12}\left(1-g_{12}\right), x_{1}^{N_{1}}-\mu_{1}\left(1-g_{1}^{N_{1}}\right), x_{2}^{N_{2}}-\mu_{2}\left(1-g_{2}^{N_{2}}\right)\right)
$$

3. Book Hopf algebra. Let $q \in \mathbb{k}^{\times}$with ord $q=N>2, \mathbb{Z} /(N)=\left\langle g_{1}\right\rangle, g:=g_{2}:=g_{2}$, and $\chi_{1}\left(g_{i}\right):=q^{-1}, \chi_{2}\left(g_{i}\right):=q$ for $i=1,2$. Then $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} g \mid 0 \leq r_{i}<N, g \in \Gamma\right\}$ is a basis of $h(1, q) \cong\left(\mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \# \mathbb{k}[\mathbb{Z} /(N)]\right) /\left(\left[x_{1} x_{2}\right], x_{1}^{N}, x_{2}^{N}\right)$.
4. Frobenius-Lusztig kernel. Let $q \in \mathbb{k}^{\times}$with ord $q=N>2, \mathbb{Z} /(N)=\left\langle g_{1}\right\rangle, g:=g_{2}:=$ g_{1}, and $\chi_{1}\left(g_{i}\right):=q^{-2}, \chi_{2}\left(g_{i}\right):=q^{2}$ for $i=1,2$. Then $\left\{x_{2}^{r_{2}} x_{1}^{r_{1}} g \mid 0 \leq r_{i}<N, g \in \Gamma\right\}$ is a basis of $u_{q}\left(\mathfrak{s l}_{2}\right) \cong\left(\mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \# \mathbb{k}[\mathbb{Z} /(N)]\right) /\left(\left[x_{1} x_{2}\right]-\left(1-g^{2}\right), x_{1}^{N}, x_{2}^{N}\right)$.

Proof. In (1) it is $d_{1}=d_{2}=c_{12}=0$. (3) and (4) are special cases of (2): By definition of $\lambda_{12}, \mu_{1}, \mu_{2}$ the elements have the required $\widehat{\Gamma}$-degree. As in Example 9.1 we show conditions Eq. (9.1). Eq. (9.2): We have $\chi_{1} \chi_{2}=\varepsilon$ if $\lambda_{12} \neq 0$, hence $q_{11} q_{12}=1$ and then $q_{11}=$ $q_{11} q_{12} q_{21}=q_{21}$, since $q_{12} q_{21}=1$. Using these equations we calculate

$$
[\underbrace{x_{1}, \ldots\left[x_{1}\right.}_{N_{1}-1}, \lambda_{12}\left(1-g_{1} g_{2}\right)]_{q_{11} q_{12}} \ldots]_{q_{11}^{N_{1}-1}{ }_{q_{12}}}=-\lambda_{12}\left(1-q_{11}^{2}\right) \ldots\left(1-q_{11}^{N_{1}}\right) x_{1}^{N_{1}-1} g_{1} g_{2}=0
$$

Further $\chi_{i}^{N_{i}}=\varepsilon$ if $\mu_{1} \neq 0$, thus $q_{21}^{N_{1}}=1$; by taking $q_{12} q_{21}=1$ to the N_{1}-th power, we deduce $q_{12}^{N_{1}}=1$. Then $\left[\mu_{1}\left(1-g_{1}^{N_{1}}\right), x_{2}\right]_{q_{12}^{N_{1}}}=\mu_{1}\left(1-q_{12}^{N_{1}}\right) x_{2}=0$. The remaining condition Eq. (9.3) works in a similar way.

9.2 PBW basis for $L=\left\{x_{1}<x_{1} x_{2}<x_{2}\right\}$

We now examine the case when $[L]$ is a PBW Basis of $(T(V) \# \mathbb{k}[\Gamma]) / I$, where I is generated by the following elements

$$
\begin{array}{rr}
{\left[x_{1} x_{1} x_{2}\right]-c_{112},} & x_{1}^{N_{1}}-d_{1}, \\
{\left[x_{1} x_{2} x_{2}\right]-c_{122},} & {\left[x_{1} x_{2}\right]^{N_{12}}-d_{12},} \\
x_{2}^{N_{2}}-d_{2},
\end{array}
$$

with ord $q_{11}=N_{1}, \operatorname{ord} q_{12,12}=N_{12}, \operatorname{ord} q_{22}=N_{2} \in\{2,3, \ldots, \infty\}$. We have in $\mathbb{k}\left\langle x_{1}, x_{12}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ the elements

$$
c_{(1 \mid 12)}^{\rho}=c_{112}^{\rho}, \quad c_{(1 \mid 2)}^{\rho}=x_{12}, \quad c_{(12 \mid 2)}^{\rho}=c_{122}^{\rho} .
$$

At first we want to study the conditions in general. By Theorem 4.2(2') we have to check the following: The only Jacobi condition is for $1<12<2$, namely

$$
\begin{equation*}
\left[c_{112}^{\rho}, x_{2}\right]_{q_{112,2}}-\left[x_{1}, c_{122}^{\rho}\right]_{q_{1,122}}+\left(q_{1,12}-q_{12,2}\right) x_{12}^{2} \in I_{\prec x_{1} x_{12} x_{2}} \tag{9.4}
\end{equation*}
$$

There are the following restricted q-Leibniz conditions: If $N_{1}<\infty$, then we have to check Eqs. (9.1) and (9.2) for $1<2$; note that we can omit the restricted Leibniz condition for $1<12$ in (2') of Theorem 4.2. In the same way if $N_{2}<\infty$, then there are the conditions Eqs. (9.1) and (9.3) for $1<2$; we can omit the condition for $12<2$. Further Eq. (9.2) resp. (9.3) is equivalent to

$$
\begin{align*}
& [\underbrace{x_{1}, \ldots\left[x_{1}\right.}_{N_{1}-2}, c_{112}^{\rho}]_{q_{11}^{2} q_{12}} \ldots]_{q_{11}^{N_{1}-1}{ }_{q_{12}}}-\left[d_{1}^{\rho}, x_{2}\right]_{q_{12}^{N_{1}}} \in I_{\prec x_{1}^{N_{1}} x_{2}}, \tag{9.5}\\
& {[\ldots[c_{122}^{\rho}, \underbrace{\left.x_{2}\right]_{q_{12} q_{22}^{2}} \ldots, x_{2}}_{N_{2}-2}]_{q_{12} q_{22}^{N_{2}-1}}-\left[x_{1}, d_{2}^{\rho}\right]_{q_{12}^{N_{2}}} \in I_{\prec x_{1} x_{2}^{N_{2}}} .} \tag{9.6}
\end{align*}
$$

In the case $N_{1}=2$ resp. $N_{2}=2$ then condition Eq. (9.5) resp. (9.6) is

$$
c_{112}^{\rho}-\left[d_{1}^{\rho}, x_{2}\right]_{q_{12}^{2}} \in I_{\prec x_{1}^{2} x_{2}} \quad \text { resp. } \quad c_{122}^{\rho}-\left[x_{1}, d_{2}^{\rho}\right]_{q_{12}^{2}} \in I_{\prec x_{1} x_{2}^{2}} .
$$

Here we see with Corollary 5.6 that by the restricted q-Leibniz formula $\left[x_{1} x_{1} x_{2}\right]-c_{112} \in$ $\left(x_{1}^{2}-d_{1}\right)$ resp. $\left[x_{1} x_{2} x_{2}\right]-c_{122} \in\left(x_{2}^{2}-d_{2}\right)$, hence these two relations are redundant. Suppose $\left[d_{1}, x_{2}\right]_{q_{12}^{2}} \prec_{L}\left[x_{1} x_{1} x_{2}\right]$ resp. $\left[x_{1}, d_{2}\right]_{q_{12}^{2}} \prec_{L}\left[x_{1} x_{2} x_{2}\right]$. Thus if we define

$$
\begin{equation*}
c_{112}^{\rho}:=\left[d_{1}^{\rho}, x_{2}\right]_{q_{12}^{2}} \quad \text { resp. } \quad c_{122}^{\rho}:=\left[x_{1}, d_{2}^{\rho}\right]_{q_{12}^{2}}, \tag{9.7}
\end{equation*}
$$

then condition Eq. (9.5) resp. (9.6) is fulfilled.
Finally, if $N_{12}<\infty$, then there are the conditions

$$
\begin{array}{r}
{\left[d_{12}^{\rho}, x_{12}\right]_{1} \in I_{\prec x_{12}^{N_{12}+1}},} \\
{[\ldots[c_{112}^{\rho}, \underbrace{x_{12}}_{N_{12}-1}]_{q_{1,12} q_{12,12} \ldots, x_{12}}]_{q_{1,12} q_{12,12}^{N_{12}-1}}-\left[x_{1}, d_{12}^{\rho}\right]_{q_{1,12}^{N_{12}}} \in I_{\prec x_{1} x_{12}^{N_{12}}},} \tag{9.8}\\
[\underbrace{x_{12}, \ldots\left[x_{12}\right.}_{N_{12}-1}, c_{122}^{\rho}]_{q_{12,12} q_{12,2}} \ldots]_{q_{12,12}^{N_{12}-1} q_{12,2}}-\left[d_{12}^{\rho}, x_{2}\right]_{q_{12,2}^{N_{12}}} \in I_{\prec x_{12}^{N_{12} x_{2}}} .
\end{array}
$$

Now we want to take a closer look at Eq. (9.4). Essentially, there are two cases: If $q_{11}=q_{22}$ we set $q:=q_{112,2}=q_{1,122}$ and then Eq. (9.4) reads

$$
\begin{equation*}
\left[c_{112}^{\rho}, x_{2}\right]_{q}-\left[x_{1}, c_{122}^{\rho}\right]_{q} \in I_{\left\langle x_{1} x_{12} x_{2}\right.} . \tag{9.9}
\end{equation*}
$$

Else if $q_{11} \neq q_{22}$. Suppose $N_{12}=\operatorname{ord} q_{12,12}=2$, then we define

$$
d_{12}:=-\left(q_{1,12}-q_{12,2}\right)^{-1}\left(\left[c_{112}, x_{2}\right]_{q_{1,2} q_{12,2}}-\left[x_{1}, c_{122}\right]_{q_{1,122}}\right) .
$$

It is $\left[x_{1} x_{2}\right]^{2}-d_{12} \in\left(\left[x_{1} x_{1} x_{2}\right]-c_{112},\left[x_{1} x_{2} x_{2}\right]-c_{122}\right)$ by the q-Jacobi identity, see Eq. (9.4) and Corollary 5.6, i.e., this relation is redundant. Further $\left.d_{12} \in(\mathbb{k}\langle X\rangle \# \mathbb{k}[\Gamma])\right)^{\chi_{12}^{2}}$. Let us assume that $d_{12} \prec_{L}\left[x_{1} x_{2}\right]^{2}$, e.g., c_{122}, c_{112} are linear combinations of monomials of length <3. Then for

$$
\begin{equation*}
d_{12}^{\rho}:=-\left(q_{1,12}-q_{12,2}\right)^{-1}\left(\left[c_{112}^{\rho}, x_{2}\right]_{q_{1,2} q_{12,2}}-\left[x_{1}, c_{122}^{\rho}\right]_{q_{1,122}}\right) \tag{9.10}
\end{equation*}
$$

condition Eq. (9.4) is fulfilled.
As a demonstration we want to proof that the Hopf algebras coming from liftings of a Nichols algebra with Cartan matrix A_{2} [9, Thm. 5.9], admit a PBW basis [L] (this is already known for liftings of Nichols algebras of Cartan type $A_{2}[2]$, but not for non-Cartan type):

Proposition 9.3 (Liftings A_{2}). Consider the Hopf algebras $\left(\mathbb{k}\left\langle x_{1}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]\right) / I$ where I depends upon $\left(q_{i j}\right)$ as follows:
(1) Cartan type $A_{2}: q_{12} q_{21}=q_{11}^{-1}=q_{22}^{-1}$.
(a) If $q_{11}=-1$, then let I be generated by

$$
x_{1}^{2}-\mu_{1}\left(1-g_{1}^{2}\right), \quad\left[x_{1} x_{2}\right]^{2}-4 \mu_{1} q_{21} x_{2}^{2}-\mu_{12}\left(1-g_{12}^{2}\right), \quad x_{2}^{2}-\mu_{2}\left(1-g_{2}^{2}\right) .
$$

(b) If $\operatorname{ord} q_{11}=3$, then let I be generated by

$$
\begin{aligned}
{\left[x_{1} x_{1} x_{2}\right] } & -\lambda_{112}\left(1-g_{112}\right), \quad\left[x_{1} x_{2} x_{2}\right]-\lambda_{122}\left(1-g_{122}\right), \\
x_{1}^{3} & -\mu_{1}\left(1-g_{1}^{3}\right), \\
{\left[x_{1} x_{2}\right]^{3} } & +\left(1-q_{11}\right) q_{11} \lambda_{112}\left[x_{1} x_{2} x_{2}\right] \\
& \quad-\mu_{1}\left(1-q_{11}\right)^{3} x_{2}^{3}-\mu_{12}\left(1-g_{12}^{3}\right), \\
x_{2}^{3} & -\mu_{2}\left(1-g_{2}^{3}\right) .
\end{aligned}
$$

(c) If $N:=\operatorname{ord} q_{11} \geq 4$, then then let I be generated by, see [2],

$$
\begin{aligned}
& {\left[x_{1} x_{1} x_{2}\right], } {\left[x_{1} x_{2} x_{2}\right] } \\
& x_{1}^{N}-\mu_{1}\left(1-g_{1}^{N}\right) \\
& {\left[x_{1} x_{2}\right]^{N}-\mu_{1}\left(q_{11}-1\right)^{N} q_{21}^{\frac{N(N-1)}{2}} x_{2}^{N}-\mu_{12}\left(1-g_{12}^{N}\right), } \\
& x_{2}^{N}-\mu_{2}\left(1-g_{2}^{N}\right) .
\end{aligned}
$$

(2) Let $q_{12} q_{21}=q_{11}^{-1}, q_{22}=-1$.
(a) If $4 \neq N:=\operatorname{ord} q_{11} \geq 3$, then let I be generated by

$$
\left[x_{1} x_{1} x_{2}\right], \quad x_{1}^{N}-\mu_{1}\left(1-g_{1}^{N}\right), \quad x_{2}^{2}-\mu_{2}\left(1-g_{2}^{2}\right) .
$$

(b) If ord $q_{11}=4$, then let I be generated by

$$
\left[x_{1} x_{1} x_{2}\right]-\lambda_{112}\left(1-g_{112}\right), \quad x_{1}^{4}-\mu_{1}\left(1-g_{1}^{4}\right), \quad x_{2}^{2}-\mu_{2}\left(1-g_{2}^{2}\right) .
$$

(3) Let $q_{11}=-1, q_{12} q_{21}=q_{22}^{-1}$.
(a) If $4 \neq N:=\operatorname{ord} q_{22} \geq 3$, then let I be generated by

$$
\left[x_{1} x_{2} x_{2}\right], \quad x_{1}^{2}-\mu_{1}\left(1-g_{1}^{2}\right), \quad x_{2}^{N}-\mu_{2}\left(1-g_{2}^{N}\right)
$$

(b) If $\operatorname{ord} q_{22}=4$, then let I be generated by

$$
\left[x_{1} x_{2} x_{2}\right]-\lambda_{122}\left(1-g_{122}\right), \quad x_{1}^{2}-\mu_{1}\left(1-g_{1}^{2}\right), \quad x_{2}^{4}-\mu_{2}\left(1-g_{2}^{4}\right) .
$$

(4) Let $q_{11}=q_{22}=-1$ and $N:=\operatorname{ord} q_{12} q_{21} \geq 3$.
(a) If $q_{12} \neq \pm 1$, then let I be generated by

$$
x_{1}^{2}-\mu_{1}\left(1-g_{1}^{2}\right), \quad\left[x_{1} x_{2}\right]^{N}-\mu_{12}\left(1-g_{12}^{N}\right), \quad x_{2}^{2} .
$$

(b) If $q_{12}= \pm 1$, then let I be generated by

$$
x_{1}^{2}, \quad\left[x_{1} x_{2}\right]^{N}-\mu_{12}\left(1-g_{12}^{N}\right), \quad x_{2}^{2}-\mu_{2}\left(1-g_{2}^{2}\right)
$$

All of these Hopf algebras have basis $\left\{x_{2}^{r_{2}}\left[x_{1} x_{2}\right]^{r_{12}} x_{1}^{r_{1}} g \mid 0 \leq r_{u}<N_{u}\right.$ for all $\left.u \in L, g \in \Gamma\right\}$. Proof. Note that all defined ideals are $\widehat{\Gamma}$-homogeneous by the definition of the coefficients. The conditions Eq. (9.1) are exactly as in Example 9.1.
(1a) We have $N_{1}=N_{2}=N_{12}=2$. Since $d_{1}^{\rho}=\mu_{1}\left(1-g_{1}^{2}\right)$ we have by the argument preceding Eq. (9.7), that necessarily

$$
c_{112}=\left[\mu_{1}\left(1-g_{1}^{2}\right), x_{2}\right]_{q_{12}^{2}} \quad \text { and } \quad c_{122}=\left[x_{1}, \mu_{2}\left(1-g_{2}^{2}\right)\right]_{q_{12}^{2}}
$$

and the conditions Eqs. (9.5) and (9.6) are fulfilled. Note that $c_{112}=\mu_{1}\left(1-q_{12}^{2}\right) x_{2}=0$: either $\mu_{1}=0$ or else $\mu_{1} \neq 0$, but then $\chi_{1}^{2}=\varepsilon$ and $q_{21}^{2}=1$. By squaring the assumption $q_{12} q_{21}=-1$, we obtain $q_{12}^{2}=1$. In the same way $c_{122}=0$.

Then the conditions Eq. (9.8) are

$$
\begin{aligned}
& {\left[4 \mu_{1} q_{21} x_{2}^{2}+\mu_{12}\left(1-g_{12}^{2}\right), x_{12}\right]_{1} } \in I_{\prec x_{12}^{3}} \\
& {\left[0, x_{12}\right]_{q_{1,12} q_{12,12}}-\left[x_{1}, 4 \mu_{1} q_{21} x_{2}^{2}+\mu_{12}\left(1-g_{12}^{2}\right)\right]_{q_{1,12}^{2}} \in I_{\prec x_{1} x_{12}^{2}}, } \\
& {\left[x_{12}, 0\right]_{q_{12,12} q_{12,2}}-\left[4 \mu_{1} q_{21} x_{2}^{2}+\mu_{12}\left(1-g_{12}^{2}\right), x_{2}\right]_{q_{12,2}^{2}}^{2} } \in I_{\prec x_{12}^{2} x_{2}} .
\end{aligned}
$$

Again, if $\mu_{1} \neq 0$, then $q_{12}^{2}=q_{21}^{2}=1$, hence $q_{1,12}^{2}=1$ and $q_{2,12}^{2}=1$. If $\mu_{12} \neq 0$, then $\chi_{12}^{2}=\varepsilon$ and $q_{1,12}^{2}=1$; in this case also $q_{12}^{2}=q_{21}^{2}=1$. Thus modulo $I_{\prec x_{12}^{3}}$ we have

$$
\begin{aligned}
{\left[4 \mu_{1} q_{21} x_{2}^{2}+\mu_{12}\left(1-g_{12}^{2}\right), x_{12}\right]_{1} } & =4 \mu_{1} q_{21}\left[x_{2}^{2}, x_{12}\right]_{1}-\mu_{12}\left(q_{12,12}^{2}-1\right) x_{12} g_{12}^{2} \\
= & 4 \mu_{1} \mu_{2} q_{21}\left[1-g_{2}^{2}, x_{12}\right]_{1}=-4 \mu_{1} \mu_{2} q_{21}\left(q_{2,12}^{2}-1\right) x_{12} g_{2}^{2}=0
\end{aligned}
$$

Further modulo $I_{\prec x_{1} x_{12}^{2}}$ we get

$$
\begin{aligned}
{\left[x_{1}, 4 \mu_{1} q_{21} x_{2}^{2}+\mu_{12}\left(1-g_{12}^{2}\right)\right]_{1} } & =4 \mu_{1} q_{21}\left[x_{1}, x_{2}^{2}\right]_{1}+\mu_{12}\left[x_{1}, 1-g_{12}^{2}\right]_{1} \\
& =4 \mu_{1} q_{21} c_{122}^{\rho}-\mu_{12}\left(1-q_{12,1}^{2}\right) x_{1} g_{12}^{2}=0
\end{aligned}
$$

which means that the second condition is fulfilled. The third one of Eq. (9.8) works analogously.

The last condition is Eq. (9.4), or equivalently condition Eq. (9.9) since $q_{11}=q_{22}$:

$$
\left[0, x_{2}\right]_{q}-\left[x_{1}, 0\right]_{q}=0 \in I_{\prec x_{1} x_{12} x_{2}}
$$

(1b) Either $\lambda_{112}=\lambda_{122}=0$, or $\chi_{112}=\varepsilon$ and/or $\chi_{122}=\varepsilon$, from where we conclude $q:=q_{11}=q_{12}=q_{21}=q_{22}$. We start with Eq. (9.4): Since $q^{3}=1$ we have $\left[\lambda_{112}(1-\right.$ $\left.\left.g_{112}\right), x_{2}\right]_{1}-\left[x_{1}, \lambda_{122}\left(1-g_{122}\right)\right]_{1}=0$. We continue with Eq. (9.5): Either $\mu_{1}=0$ or $\chi_{1}^{3}=\varepsilon$, hence $q_{21}^{3}=1$ and then also $q_{12}^{3}=\left(q_{12} q_{21}\right)^{3}=q_{11}^{-3}=1$. Then $\left[x_{1}, \lambda_{112}\left(1-g_{112}\right)\right]_{1}-$ $\left[\mu_{1}\left(1-g_{1}^{3}\right), x_{2}\right]_{1}=0$. Next, Eq. (9.6): In the same way, $\mu_{2} \neq 0$ or $q_{21}^{3}=q_{12}^{3}=1$. Then $\left[\lambda_{122}\left(1-g_{122}\right), x_{2}\right]_{1}-\left[x_{1}, \mu_{2}\left(1-g_{2}^{3}\right)\right]_{1}=0$. For Eq. (9.8) we have $q_{1,12}^{3}=1$ if $\mu_{12} \neq 0$. Thus $q_{12}^{3}=1$, moreover $q_{21}^{3}=\left(q_{12} q_{21}\right)^{3}=q_{11}^{-3}=1$. Hence modulo $I_{\prec x_{1} x_{12}^{3}}$ we have

$$
\begin{aligned}
& {\left[\left[\lambda_{112}\left(1-g_{112}\right), x_{12}\right]_{q_{1,12} q_{12,12}}, x_{12}\right]_{q_{1,12} q_{12,12}^{2}}} \\
& \quad-\left[x_{1},-\left(1-q_{11}\right) q_{11} \lambda_{112} \lambda_{122}\left(1-g_{122}\right)+\mu_{1}\left(1-q_{11}\right)^{3} x_{2}^{3}+\mu_{12}\left(1-g_{12}^{3}\right)\right]_{q_{1,12}^{3}}=0
\end{aligned}
$$

since each summand is zero. Further a straightforward calculation shows

$$
\begin{aligned}
& {\left[x_{12},\left[x_{12}, \lambda_{122}\left(1-g_{122}\right)\right]_{q_{12,12} q_{12,2}}\right]_{q_{12,12}^{2} q_{12,2}}} \\
& \quad-\left[-\left(1-q_{11}\right) q_{11} \lambda_{112} \lambda_{122}\left(1-g_{122}\right)+\mu_{1}\left(1-q_{11}\right)^{3} x_{2}^{3}+\mu_{12}\left(1-g_{12}^{3}\right), x_{2}\right]_{q_{12,2}^{2}}=0 .
\end{aligned}
$$

Finally, an easy calculation shows that

$$
\left[-\left(1-q_{11}\right) q_{11} \lambda_{112} \lambda_{122}\left(1-g_{122}\right)+\mu_{1}\left(1-q_{11}\right)^{3} x_{2}^{3}+\mu_{12}\left(1-g_{12}^{3}\right), x_{12}\right]_{1}=0
$$

modulo $I_{\prec x_{12}^{4}}$, again by definition of the coefficients.
(1c) is a generalization of (1a) (and (1b) if $\lambda_{112}=\lambda_{122}=0$) and works completely in the same way (only the Serre-relations $\left[x_{1} x_{1} x_{2}\right]=\left[x_{1} x_{2} x_{2}\right]=0$ are not redundant, as they are (1a)). We leave this to the reader.
(2a) We leave this to the reader and prove the little more complicated (2b): Since we have $N_{2}=2$, as in (1a) we deduce from Eq. (9.7), that $c_{122}=\left[x_{1}, \mu_{2}\left(1-g_{2}^{2}\right)\right]_{q_{12}^{2}}=$ $\mu_{2}\left(q_{21}^{2}-1\right) x_{1} g_{2}^{2}$ and the condition Eq. (9.6) is fulfilled.

If $\lambda_{112} \neq 0$ then $q_{11}=q_{21}$ of order $4, q_{12}=q_{22}=-1$; if $\mu_{1} \neq 0$ then $q_{12}^{4}=1$. Then Eq. (9.5) is fulfilled: $\left[x_{1},\left[x_{1}, \lambda_{112}\left(1-g_{112}\right)\right]_{1}\right]_{q_{11}}-\left[\mu_{1}\left(1-g_{1}^{4}\right), x_{2}\right]_{1}=0$, since both summands are zero.

It is $q_{11} \neq q_{22}$, ord $q_{12,12}=2$ and c_{112}^{ρ} resp. c_{122}^{ρ} are linear combinations of monomials of length 0 resp. 1. By the discussion before Eq. (9.10), we see that $\left[x_{1} x_{2}\right]^{2}-d_{12}$ is redundant and for

$$
\begin{aligned}
d_{12}^{\rho} & :=-\left(q_{1,12}-q_{12,2}\right)^{-1}\left(\left[\lambda_{112}\left(1-g_{112}\right), x_{2}\right]_{-1}-\left[x_{1}, \mu_{2}\left(q_{21}^{2}-1\right) x_{1} g_{2}^{2}\right]_{q_{11}}\right) \\
& =-q_{12}^{-1}\left(q_{11}+1\right)^{-1}(\lambda_{112} 2 x_{2}-\mu_{2} \underbrace{\left(q_{21}^{2}-1\right)\left(1-q_{11} q_{21}^{2}\right)}_{=: q} x_{1}^{2} g_{2}^{2})
\end{aligned}
$$

the condition Eq. (9.4) is fulfilled. We are left to show the conditions Eq. (9.8) $\left[d_{12}^{\rho}, x_{12}\right]_{1} \in$ $I_{\prec x_{12}^{3}}$,

$$
\left[c_{112}^{\rho}, x_{12}\right]_{q_{112,12}}-\left[x_{1}, d_{12}^{\rho}\right]_{q_{1,12}^{2}} \in I_{\prec x_{1} x_{12}^{2}} \quad \text { and } \quad\left[x_{12}, c_{122}^{\rho}\right]_{q_{12,122}}-\left[d_{12}^{\rho}, x_{2}\right]_{q_{12,2}^{2}} \in I_{\prec x_{12}^{2} x_{2}} .
$$

We calculate the first one: Modulo $I_{\prec x_{12}^{3}}$ we get

$$
\left[d_{12}^{\rho}, x_{12}\right]_{1}=-q_{12}^{-1}\left(q_{11}+1\right)^{-1}(-\lambda_{112} 2 \underbrace{\left[x_{12}, x_{2}\right]_{1}}_{=c_{122}^{\rho}}-\mu_{2} q \underbrace{\left[x_{1}^{2} g_{2}^{2}, x_{12}\right]_{1}}_{=q_{21}^{2}\left[x_{1}^{2}, x_{12}\right]_{q_{1,12}^{2}} g_{2}^{2}}) .
$$

Now by the q-derivation property $\left[x_{1}^{2}, x_{12}\right]_{q_{1,12}^{2}}=x_{1} c_{112}^{\rho}+q_{1,12} c_{112}^{\rho} x_{1}=\lambda_{112}\left(1-q_{11}\right) x_{1}$. Because of the coefficient λ_{112} the two summands in the parentheses have the coefficient $\pm 4 \lambda_{112} \mu_{2}$, hence cancel. (3) works exactly as (2).
(4a) Since we have $N_{1}=N_{2}=2$, as in (1a) we deduce from Eq. (9.7), that

$$
c_{112}=\left[\mu_{1}\left(1-g_{1}^{2}\right), x_{2}\right]_{q_{12}^{2}}=\mu_{1}\left(1-q_{12}^{2}\right) x_{2} \quad \text { and } \quad c_{122}=\left[x_{1}, 0\right]_{q_{12}^{2}}=0
$$

and the conditions Eqs. (9.5) and (9.6) are fulfilled.
For the second condition of Eq. (9.8) one can easily show by induction

$$
\begin{aligned}
& {[\ldots[c_{112}^{\rho}, \underbrace{\left.x_{12}\right]_{q_{1,12} q_{12,12}} \ldots, x_{12}}_{N-1}]_{q_{1,12} q_{12,12}^{N-1}}} \\
& \quad=\mu_{1}\left(1-q_{12}^{2}\right)[\ldots[x_{2}, \underbrace{\left.x_{12}\right]_{q_{11} q_{12}^{2}=q_{21}} \ldots, x_{12}}_{N-1}]_{q_{11} q_{12}^{N} q_{21}^{N-1}}=\mu_{1} \prod_{i=0}^{N-1}\left(1-q_{12}^{i+2} q_{21}^{i}\right) x_{2} x_{12}^{N-1}=0 .
\end{aligned}
$$

The last equation holds since for $i=N-2$ we have $1-q_{12}^{N} q_{21}^{N-2}=0$: if $\mu_{1} \neq 0$ then $q_{21}^{2}=1$ and $\left(q_{12} q_{21}\right)^{N}=q_{12,12}^{N}=1$. Further also $\left[x_{1}, d_{12}^{\rho}\right]_{q_{1,12}^{N}}=\left[x_{1}, \mu_{12}\left(1-g_{12}^{N}\right)\right]_{1}=$
$-\mu_{12}\left(1-q_{12,1}^{N}\right) x_{1} g_{12}^{N}=0$, since either $\mu_{12}=0$ or $q_{12}^{N}=q_{21}^{N}=(-1)^{N}$ such that $q_{12,1}^{N}=$ $(-1)^{N}(-1)^{N}=1$. This proves the second condition of Eq. (9.8). The third of Eq. (9.8) is easy since $c_{122}=0$, and the first of Eq. (9.8) is a direct computation.

Finally, Eq. (9.4) is Eq. (9.9), since $q_{11}=q_{22}:\left[\mu_{1}\left(1-q_{12}^{2}\right) x_{2}, x_{2}\right]_{q_{112,2}}-\left[x_{1}, 0\right]_{q_{1,122}}=0$ because of the relation $x_{2}^{2}=0$.
(4b) works analogously to (4a). Note that here $c_{112}=0$ and $c_{122}=\left[x_{1}, \mu_{2}\left(1-g_{2}^{2}\right)\right]_{1}=$ $\mu_{2}\left(q_{21}^{2}-1\right) x_{1} g_{2}^{2}$.

9.3 PBW basis for $L=\left\{x_{1}<x_{1} x_{1} x_{2}<x_{1} x_{2}<x_{2}\right\}$

This PBW basis [L] occurs in the Nichols algebras with Cartan matrix B_{2} and their liftings [9, Prop. 5.11,Thm. 5.13]. More generally, we list the conditions when $[L]$ is a PBW Basis of $(T(V) \# \mathbb{k}[\Gamma]) / I$ where I is generated by

$$
\begin{array}{rr}
{\left[x_{1} x_{1} x_{1} x_{2}\right]-c_{1112},} & x_{1}^{N_{1}}-d_{1}, \\
{\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212},} & {\left[x_{1} x_{1} x_{2}\right]^{N_{112}}-d_{112},} \\
{\left[x_{1} x_{2} x_{2}\right]-c_{122},} & {\left[x_{1} x_{2}\right]^{N_{12}}-d_{12}} \\
& x_{2}^{N_{2}}-d_{2}
\end{array}
$$

In $\mathbb{k}\left\langle x_{1}, x_{112}, x_{12}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ we have the following $c_{(u \mid v)}^{\rho}$ ordered by $\ell(u v), u, v \in L$: If $\operatorname{Sh}(u v)=(u \mid v)$ then

$$
\begin{aligned}
& c_{(1 \mid 2)}^{\rho}=x_{12}, \quad c_{(12 \mid 2)}^{\rho}=c_{122}^{\rho}, \quad c_{(112 \mid 12)}^{\rho}=c_{11212}^{\rho}, \\
& c_{(1 \mid 12)}^{\rho}=x_{112}, \quad c_{(1 \mid 112)}^{\rho}=c_{1112}^{\rho},
\end{aligned}
$$

and for $\operatorname{Sh}(1122) \neq(112 \mid 2)$ by Eq. (4.1)

$$
\begin{aligned}
c_{(112 \mid 2)}^{\rho} & =\partial_{1}^{\rho}\left(c_{(12 \mid 2)}^{\rho}\right)+q_{12,2} c_{(1 \mid 2)}^{\rho} x_{12}-q_{1,12} x_{12} c_{(1 \mid 2)}^{\rho}, \\
& =\partial_{1}^{\rho}\left(c_{122}^{\rho}\right)+\left(q_{12,2}-q_{1,12}\right) x_{12}^{2} .
\end{aligned}
$$

We have for $1<112<2,1<112<12$ and $112<12<2$ the following q-Jacobi conditions (note that we can leave out $1<12<2$):

$$
\begin{align*}
& {\left[c_{1112}^{\rho}, x_{2}\right]_{q_{1112,2}}-\left[x_{1}, c_{(112 \mid 2)}^{\rho}\right]_{q_{1,1122}}} \\
& +q_{1,112} x_{112}\left[x_{1}, x_{2}\right]-q_{112,2}\left[x_{1}, x_{2}\right] x_{112} \in I_{\prec x_{1} x_{112} x_{2}} \\
& \Leftrightarrow\left[c_{1112}^{\rho}, x_{2}\right]_{q_{1112,2}}-\left[x_{1}, \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)\right]_{q_{1,1122}} \\
& -\left(q_{12,2}-q_{1,12}\right) c_{11212}^{\rho}-\left(q_{12,2}-q_{1,12}\right) q_{1,12}\left(q_{12,12}+1\right) x_{12} x_{112} \\
& +q_{1,112} c_{11212}^{\rho}+q_{112,2}\left(q_{1,112} q_{112,1}-1\right) x_{12} x_{112} \in I_{\prec x_{1} x_{112} x_{2}} \tag{9.11}\\
& \Leftrightarrow\left[c_{1112}^{\rho}, x_{2}\right]_{q_{1112,2}}-\left[x_{1}, \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)\right]_{q_{1,1122}}+\underbrace{q_{12}\left(q_{11}^{2}-q_{22}+q_{11}\right)}_{=: q} c_{11212}^{\rho} \\
& +\underbrace{q_{12}^{2}\left(q_{22}\left(q_{11}^{4} q_{12} q_{21}-1\right)-q_{11}\left(q_{22}-q_{11}\right)\left(q_{12,12}+1\right)\right)}_{=: q^{\prime}} x_{12} x_{112} \in I_{\prec x_{1} x_{112} x_{2}}
\end{align*}
$$

If $q \neq 0$, we see that $\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212} \in\left(\left[x_{1} x_{1} x_{1} x_{2}\right]-c_{1112},\left[x_{1} x_{2} x_{2}\right]-c_{122}\right)$ is redundant with

$$
c_{11212}=-q^{-1}\left(\left[c_{1112}, x_{2}\right]_{q_{1112,2}}-\left[x_{1}, \partial_{1}\left(c_{122}\right)\right]_{q_{1,1122}}+q^{\prime}\left[x_{1} x_{2}\right]\left[x_{1} x_{1} x_{2}\right]\right)
$$

by Corollary 5.6 and the q-Jacobi identity of Proposition 1.2. We have $\operatorname{deg}_{\widehat{\Gamma}}\left(c_{11212}\right)=$ χ_{11212}; suppose that $c_{11212} \prec_{L}\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]$ (e.g. c_{1112} resp. c_{122} are linear combinations of monomials of length <4 resp. <3) then condition Eq. (9.11) is fulfilled for

$$
c_{11212}^{\rho}:=-q^{-1}\left(\left[c_{1112}^{\rho}, x_{2}\right]_{q_{1112,2}}-\left[x_{1}, \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)\right]_{q_{1,1122}}+q^{\prime} x_{12} x_{112}\right)
$$

There are three cases, where the coefficients q, q^{\prime} are of a better form for our setting: Since

$$
q=q_{12}\left((3)_{q_{11}}-(2)_{q_{22}}\right), \quad q^{\prime}=q_{12}\left(q\left(1+q_{11}^{2} q_{12} q_{21} q_{22}\right)-q_{11} q_{12}(2)_{q_{22}}\right),
$$

we have

$$
\begin{array}{lll}
q=q_{12} q_{11} \neq 0, & q^{\prime}=-q_{12} q_{11}^{2} q\left(1-q_{11}^{2} q_{12} q_{21}\right), & \text { if } q_{11}^{2}=q_{22} \\
q=q_{12}(3)_{q_{11}}, & q^{\prime}=q_{12} q\left(1-q_{11}^{2} q_{12} q_{21}\right), & \text { if } q_{22}=-1 \\
q=-q_{12}(2)_{q_{22}}, & q^{\prime}=-q_{12} q\left(1+q_{11}+q_{11}^{2} q_{12} q_{21} q_{22}\right), & \text { if ord } q_{11}=3
\end{array}
$$

The second q-Jacobi condition for $1<112<12$ reads

$$
\begin{align*}
& {\left[c_{1112}^{\rho}, x_{12}\right]_{q_{1112,12}}-\left[x_{1}, c_{11212}^{\rho}\right]_{q_{1,11212}} } \\
& +q_{1,112} x_{112}\left[x_{1}, x_{12}\right]-q_{112,12}\left[x_{1}, x_{12}\right] x_{112} \in I_{\prec x_{1} x_{112} x_{12}} \tag{9.12}\\
\Leftrightarrow & {\left[c_{1112}^{\rho}, x_{12}\right]_{q_{1112,12}}-\left[x_{1}, c_{11212}^{\rho}\right]_{q_{1,11212}}+\underbrace{q_{11}^{2} q_{12}\left(1-q_{12} q_{21} q_{22}\right)}_{=: q^{\prime \prime}} x_{112}^{2} \in I_{\prec x_{1} x_{112} x_{12}} }
\end{align*}
$$

If $q^{\prime \prime} \neq 0$ then we see that $\left[x_{1} x_{1} x_{2}\right]^{2}-d_{112} \in\left(\left[x_{1} x_{1} x_{1} x_{2}\right]-c_{11212},\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212}\right)$ is redundant with $d_{112}=-q^{\prime \prime-1}\left(\left[c_{1112},\left[x_{1} x_{2}\right]\right]_{q_{1112,12}}-\left[x_{1}, c_{11212}\right]_{q_{1,11212}}\right)$ by Corollary 5.6 and the q-Jacobi identity of Proposition 1.2. It is $\operatorname{deg}_{\widehat{\Gamma}}\left(d_{112}\right)=\chi_{112}^{2}$; suppose that $d_{112} \prec_{L}$ $\left[x_{1} x_{1} x_{2}\right]^{2}$ then condition Eq. (9.13) is fulfilled for

$$
d_{112}^{\rho}:=-q^{\prime \prime-1}\left(\left[c_{1112}^{\rho}, x_{12}\right]_{q_{1112,12}}-\left[x_{1}, c_{11212}^{\rho}\right]_{q_{1,11212}}\right)
$$

If further ord $q_{112,112}=2$ then we have to consider the restricted q-Leibniz conditions for d_{112}^{ρ} (see below).

The last q-Jacobi condition for $112<12<2$ is

$$
\begin{align*}
& {\left[c_{11212}^{\rho}, x_{2}\right]_{q_{11212,2}}-\left[x_{112}, c_{122}^{\rho}\right]_{q_{112,122}}} \\
& \quad+q_{112,12} x_{12}\left[x_{112}, x_{2}\right]-q_{12,2}\left[x_{112}, x_{2}\right] x_{12} \in I_{\prec x_{112} x_{12} x_{2}} \\
& \Leftrightarrow\left[c_{11212}^{\rho}, x_{2}\right]_{q_{11212,2}}-\left[x_{112}, c_{122}^{\rho}\right]_{q_{112,122}} \tag{9.13}\\
& +q_{112,12} x_{12} \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)-q_{12,2} \partial_{1}^{\rho}\left(c_{122}^{\rho}\right) x_{12} \\
& \quad+\underbrace{q_{12}^{2} q_{22}\left(q_{22}-q_{11}\right)\left(q_{11}^{2} q_{12} q_{21}-1\right)}_{=: q^{\prime \prime \prime}} x_{12}^{3} \in I_{\prec x_{112} x_{12} x_{2}}
\end{align*}
$$

If $q^{\prime \prime \prime} \neq 0$ then we see that $\left[x_{1} x_{2}\right]^{3}-d_{12} \in\left(\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212},\left[x_{1} x_{2} x_{2}\right]-c_{122}\right)$ is redundant with $d_{12}:=-q^{\prime \prime \prime-1}\left(\left[c_{11212}, x_{2}\right]_{q_{11212,2}}-\left[\left[x_{1} x_{1} x_{2}\right], c_{122}\right]_{q_{112,122}}+q_{112,12}\left[x_{1} x_{2}\right] \partial_{1}\left(c_{122}\right)-\right.$ $\left.q_{12,2} \partial_{1}\left(c_{122}\right)\left[x_{1} x_{2}\right]\right)$ by Corollary 5.6 and the q-Jacobi identity of Proposition 1.2. It is $\operatorname{deg}_{\widehat{\Gamma}}\left(d_{12}\right)=\chi_{12}^{3}$; suppose that $d_{12} \prec_{L}\left[x_{1} x_{1}\right]^{3}$ (e.g., c_{11212} resp. c_{122} are linear combinations of monomials of length <5 resp. <3) then condition Eq. (9.13) is fulfilled for

$$
\begin{aligned}
d_{12}^{\rho}:=-q^{\prime \prime-1} & \left(\left[c_{11212}^{\rho}, x_{2}\right]_{q_{11212,2}}-\left[x_{112}, c_{122}^{\rho}\right]_{q_{112,122}}\right. \\
& \left.+q_{112,12} x_{12} \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)-q_{12,2} \partial_{1}^{\rho}\left(c_{122}^{\rho}\right) x_{12}\right)
\end{aligned}
$$

If further $\operatorname{ord} q_{12,12}=3$ then we have to consider the q-Leibniz conditions for d_{12}^{ρ} (see below).
There are the following restricted q-Leibniz conditions: If $N_{1}<\infty$, then $\left[d_{1}^{\rho}, x_{1}\right]_{1} \in$ $I_{\prec x_{1}^{N_{1}+1}}$ and for $1<2$ (we can omit $1<12,1<112$)

$$
\begin{equation*}
[\underbrace{x_{1}, \ldots\left[x_{1}\right.}_{N_{1}-3}, c_{1112}^{\rho}]_{q_{11}^{3} q_{12}} \cdots]_{q_{11}^{N_{1}-1} q_{12}}-\left[d_{1}^{\rho}, x_{2}\right]_{q_{12}^{N_{1}}} \in I_{\prec x_{1}^{N_{1}} x_{2}} . \tag{9.14}
\end{equation*}
$$

If $N_{2}<\infty$, then $\left[d_{2}^{\rho}, x_{2}\right]_{1} \in I_{\prec x_{2}^{N_{2}+1}}$ and for $1<2$ (we can omit $12<2,112<2$)

$$
\begin{equation*}
[\ldots[c_{122}^{\rho} \underbrace{\left.x_{2}\right]_{q_{12} q_{22}^{2}} \ldots, x_{2}}_{N_{2}-2}]_{q_{12} q_{22}^{N_{2}-1}}-\left[x_{1}, d_{2}^{\rho}\right]_{q_{12}^{N_{2}}} \in I_{\prec x_{1} x_{2}^{N_{2}}} \tag{9.15}
\end{equation*}
$$

If $N_{12}<\infty$, then $\left[d_{12}^{\rho}, x_{12}\right]_{1} \in I_{\prec x_{12}^{N_{12}+1}}$ and for $1<12,12<2$ (we can omit $112<12$)

$$
\begin{align*}
& {[\ldots[c_{112}^{\rho}, \underbrace{\left.x_{12}\right]_{q_{1,12} q_{12,12}} \ldots, x_{12}}_{N_{12}-1}]_{q_{1,12} q_{12,12}^{N_{12}-1}}-\left[x_{1}, d_{12}^{\rho}\right]_{q_{1,12}}^{N_{12}} \in I_{\prec x_{1} x_{12}^{N_{12}}},} \tag{9.16}\\
& [\underbrace{x_{12}, \ldots\left[x_{12}\right.}_{N_{12}-1}, c_{122}^{\rho}]_{q_{12,12} q_{12,2}} \cdots]_{q_{12,12}^{N_{12}-1}},\left[d_{12,2}^{\rho}, x_{2}\right]_{q_{12,2}}^{N_{12}} \in I_{\prec x_{12}}^{N_{12} x_{2}} .
\end{align*}
$$

If $N_{112}<\infty$, then $\left[d_{112}^{\rho}, x_{112}\right]_{1} \in I_{\prec x_{112}^{N_{112}+1}}$ and for $1<112,112<12,112<2$

$$
\begin{gather*}
{[\ldots[c_{1112}^{\rho}, \underbrace{\left.x_{112}\right]_{q_{1,112} q_{112,112}} \ldots, x_{112}}_{N_{112}-1}]_{q_{1,112} q_{112,112}^{N_{112}-1}}-\left[x_{1}, d_{112}^{\rho}\right]_{q_{1,112}}^{N_{112}} \in I_{\prec x_{1} x_{112}^{N_{112}}}} \\
[\underbrace{x_{112}, \ldots\left[x_{112}\right.}_{N_{112}-1}, c_{11212}^{\rho}]_{q_{112,112} q_{112,12}} \ldots]_{q_{112,112}^{N_{112}-1} q_{112,12}}-\left[d_{112}^{\rho}, x_{12}\right]_{q_{112,12}^{N_{112}}} \in I_{\left\langle x_{112}^{N_{112}} x_{12}\right.} \tag{9.17}\\
[\underbrace{x_{112}, \ldots\left[x_{112}\right.}_{N_{112}-1}, c_{(112 \mid 2)}^{\rho}]_{q_{112,112} q_{112,2}} \ldots]_{q_{112,112}^{N_{112}-1} q_{112,2}}-\left[d_{112}^{\rho}, x_{2}\right]_{q_{112,2}^{N_{112}}} \in I_{\left\langle x_{112}^{N_{112}} x_{2}\right.}
\end{gather*}
$$

The proof that the liftings of [9, Thm. 5.13] have the PBW basis $[L]$ consists in replacing the $c_{u v}^{\rho}$ and d_{u}^{ρ} in the conditions above, like it was done before in Proposition 9.3. We leave this to the reader.

9.4 PBW basis for $L=\left\{x_{1}<x_{1} x_{1} x_{2}<x_{1} x_{2}<x_{1} x_{2} x_{2}<x_{2}\right\}$

This PBW basis $[L]$ appears in the Nichols algebras of non-standard type and their liftings of $[9$, Thm. 5.17 (1)]. Generally, we ask for the conditions when $[L]$ is a PBW Basis of $(T(V) \# \mathbb{k}[\Gamma]) / I$ where I is generated by

$$
\begin{aligned}
{\left[x_{1} x_{1} x_{1} x_{2}\right]-c_{1112}, } & x_{1}^{N_{1}}-d_{1}, \\
{\left[x_{1} x_{1} x_{2} x_{2}\right]-c_{1122}, } & {\left[x_{1} x_{1} x_{2}\right]^{N_{112}}-d_{112}, } \\
{\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212}, } & {\left[x_{1} x_{2}\right]^{N_{12}}-d_{12}, } \\
{\left[x_{1} x_{2} x_{1} x_{2} x_{2}\right]-c_{12122}, } & {\left[x_{1} x_{2} x_{2}\right]^{N_{122}}-d_{122}, } \\
{\left[x_{1} x_{2} x_{2} x_{2}\right]-c_{1222}, } & x_{2}^{N_{2}}-d_{2} .
\end{aligned}
$$

In $\mathbb{k}\left\langle x_{1}, x_{112}, x_{12}, x_{122}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ we have the following $c_{(u \mid v)}^{\rho}$ ordered by $\ell(u v), u, v \in L$: If $\operatorname{Sh}(u v)=(u \mid v)$ then

$$
\begin{aligned}
& c_{(1 \mid 2)}^{\rho}=x_{12}, \quad c_{(1 \mid 112)}^{\rho}=c_{1112}^{\rho}, \quad c_{(112 \mid 12)}^{\rho}=c_{11212}^{\rho}, \\
& c_{(1 \mid 12)}^{\rho}=x_{112}, \quad c_{(1 \mid 122)}^{\rho}=c_{1122}^{\rho}, \quad c_{(12 \mid 122)}^{\rho}=c_{12122}^{\rho}, \\
& c_{(12 \mid 2)}^{\rho}=x_{122}, \quad c_{(122 \mid 2)}^{\rho}=c_{1222}^{\rho},
\end{aligned}
$$

and for $\operatorname{Sh}(1122) \neq(112 \mid 2)$ and $\operatorname{Sh}(112122) \neq(112 \mid 122)$ by Eq. (4.1)

$$
\begin{aligned}
c_{(112 \mid 2)}^{\rho} & =\partial_{1}^{\rho}\left(c_{(12 \mid 2)}^{\rho}\right)+q_{12,2} c_{(1 \mid 2)}^{\rho} x_{12}-q_{1,12} x_{12} c_{(1 \mid 2)}^{\rho} \\
& =c_{1122}^{\rho}+\left(q_{12,2}-q_{1,12}\right) x_{12}^{2}, \\
c_{(112 \mid 122)}^{\rho} & =\partial_{1}^{\rho}\left(c_{12122}^{\rho}\right)+q_{12,122} c_{1122}^{\rho} x_{12}-q_{1,12} x_{12} c_{1122}^{\rho} .
\end{aligned}
$$

We have to check the q-Jacobi conditions for $1<112<2$ (like Eq. (9.11)), $1<112<12$ (like Eq. (9.12)), $1<112<122,1<122<2,112<12<2$ (like Eq. (9.13)), $112<12<$ $122,112<122<2,12<122<2$ (note that we can omit $1<12<2,1<12<122$). The restricted q-Leibniz conditions are treated like before (note that we can leave out those for $1<112,1<12,1<122$ if $N_{1}<\infty, 112<12,12<122$ if $N_{12}<\infty, 112<2,12<2$, $122<2$ if $\left.N_{2}<\infty\right)$.

Both types of conditions detect many redundant relations like before. The proof that the given ideals of the Nichols algebras and their liftings of [9, Thm. 5.17 (1)] admit the PBW basis $\left\{x_{1},\left[x_{1} x_{1} x_{2}\right],\left[x_{1} x_{2}\right],\left[x_{1} x_{2} x_{2}\right], x_{2}\right\}$ is again a straightforward but rather expansive calculation.

9.5 PBW basis for $L=\left\{x_{1}<x_{1} x_{1} x_{2}<x_{1} x_{1} x_{2} x_{1} x_{2}<x_{1} x_{2}<x_{2}\right\}$

This PBW basis [L] shows up in the Nichols algebras of non-standard type and their liftings of $[9$, Thm. 5.17 (2),(4)]. More generally, we examine when $[L]$ is a PBW Basis of
$(T(V) \not \# \mathbb{k}[\Gamma]) / I$ where I is generated by

$$
\begin{aligned}
& {\left[x_{1} x_{1} x_{1} x_{2}\right]-c_{1112}, } x_{1}^{N_{1}}-d_{1}, \\
& {\left[x_{1} x_{1} x_{1} x_{2} x_{1} x_{2}\right] }-c_{111212}, \\
& {\left[x_{1} x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11211212}, } {\left[x_{1} x_{1} x_{2}\right]^{N_{112}}-d_{112}, } \\
& {\left[x_{1} x_{1} x_{2} x_{1} x_{1} x_{2} x_{2} x_{2} x_{1} x_{2}\right]^{N_{11212}}-c_{1121212}, } {\left[d_{11212},\right.} \\
& {\left[x_{1} x_{2} x_{2}\right]-c_{122}, }\left.x_{1} x_{2}\right]^{N_{12}}-d_{12} \\
& x_{2}^{N_{2}}-d_{2} .
\end{aligned}
$$

In $\mathbb{k}\left\langle x_{1}, x_{112}, x_{11212}, x_{12}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ we have the following $c_{(u \mid v)}^{\rho}$ ordered by $\ell(u v), u, v \in L$: If $\operatorname{Sh}(u v)=(u \mid v)$ then

$$
\begin{aligned}
& c_{(1 \mid 2)}^{\rho}=x_{12}, \quad c_{(1 \mid 112)}^{\rho}=c_{1112}^{\rho}, \quad c_{(11212 \mid 12)}^{\rho}=c_{1121212}^{\rho}, \\
& c_{(1 \mid 12)}^{\rho}=x_{112}, \quad c_{(112 \mid 12)}^{\rho}=x_{11212}, \quad c_{(112 \mid 11212)}^{\rho}=c_{11211212}^{\rho}, \\
& c_{(12 \mid 2)}^{\rho}=c_{122}^{\rho}, \quad c_{(1 \mid 11212)}^{\rho}=c_{111212}^{\rho},
\end{aligned}
$$

and for $\operatorname{Sh}(1122) \neq(112 \mid 2)$ and $\operatorname{Sh}(112122) \neq(11212 \mid 2)$ by Eq. (4.1)

$$
\begin{aligned}
c_{(112 \mid 2)}^{\rho}= & \partial_{1}^{\rho}\left(c_{(12 \mid 2)}^{\rho}\right)+q_{12,2} c_{(1 \mid 2)}^{\rho} x_{12}-q_{1,12} x_{12} c_{(1 \mid 2)}^{\rho} \\
= & c_{1122}^{\rho}+\left(q_{12,2}-q_{1,12}\right) x_{12}^{2}, \\
c_{(11212 \mid 2)}^{\rho}= & \partial_{112}^{\rho}\left(c_{122}^{\rho}\right)+q_{12,2} c_{(112 \mid 2)}^{\rho} x_{12}-q_{112,12} x_{12} c_{(112 \mid 2)}^{\rho} \\
= & \partial_{112}^{\rho}\left(c_{122}^{\rho}\right)+q_{12,2} c_{1122}^{\rho} x_{12}-q_{112,12} x_{12} c_{1122}^{\rho} \\
& +\left(q_{12,2}-q_{112,12}\right)\left(q_{12,2}-q_{1,12}\right) x_{12}^{3} .
\end{aligned}
$$

Again we have to consider all q-Jacobi conditions and restricted q-Leibniz conditions, from where we detect again many redundant relations. Like before, we leave the concrete calculations for the cases of $[9$, Thm. 5.17 (2),(4)] to the reader.

9.6 PBW basis for $L=\left\{x_{1}<x_{1} x_{1} x_{1} x_{2}<x_{1} x_{1} x_{2}<x_{1} x_{2}<x_{2}\right\}$

The Nichols algebras of non-standard type and their liftings in [9, Thm. 5.17 (3),(5)] have this PBW basis $[L]$. We study the situation, when $[L]$ is a PBW Basis of $(T(V) \# \mathbb{k}[\Gamma]) / I$ where I is generated by

$$
\begin{array}{rr}
{\left[x_{1} x_{1} x_{1} x_{1} x_{2}\right]-c_{11112},} & x_{1}^{N_{1}}-d_{1}, \\
{\left[x_{1} x_{1} x_{1} x_{2} x_{1} x_{1} x_{2}\right]-c_{1112112},} & {\left[x_{1} x_{1} x_{1} x_{2}\right]^{N_{1112}}-d_{1112},} \\
{\left[x_{1} x_{1} x_{2} x_{1} x_{2}\right]-c_{11212},} & {\left[x_{1} x_{1} x_{2}\right]^{N_{112}}-d_{112},} \\
{\left[x_{1} x_{2} x_{2}\right]-c_{122},} & {\left[x_{1} x_{2}\right]^{N_{12}}-d_{12}} \\
x_{2}^{N_{2}}-d_{2} .
\end{array}
$$

In $\mathbb{k}\left\langle x_{1}, x_{112}, x_{11212}, x_{12}, x_{2}\right\rangle \# \mathbb{k}[\Gamma]$ we have the following $c_{(u \mid v)}^{\rho}$ ordered by $\ell(u v), u, v \in L$: If $\operatorname{Sh}(u v)=(u \mid v)$ then

$$
\begin{aligned}
& c_{(1 \mid 2)}^{\rho}=x_{12}, \quad c_{(1 \mid 112)}^{\rho}=x_{1112}, \quad c_{(1112 \mid 112)}^{\rho}=c_{1121212}^{\rho}, \\
& c_{(1 \mid 12)}^{\rho}=x_{112}, \quad c_{(112 \mid 12)}^{\rho}=c_{11212}^{\rho}, \\
& c_{(12 \mid 2)}^{\rho}=c_{122}^{\rho}, \quad c_{(1 \mid 1112)}^{\rho}=c_{11112}^{\rho},
\end{aligned}
$$

and for $\operatorname{Sh}(1122) \neq(112 \mid 2), \operatorname{Sh}(11122) \neq(1112 \mid 2)$ and $\operatorname{Sh}(111212) \neq(1112 \mid 12)$ by Eq. (4.1)

$$
\begin{aligned}
c_{(112 \mid 2)}^{\rho}= & \partial_{1}^{\rho}\left(c_{(12 \mid 2)}^{\rho}\right)+q_{12,2} c_{(1 \mid 2)}^{\rho} x_{12}-q_{1,12} x_{12} c_{(1 \mid 2)}^{\rho} \\
= & \partial_{1}^{\rho}\left(c_{122}^{\rho}\right)+\left(q_{12,2}-q_{1,12}\right) x_{12}^{2}, \\
c_{(1112 \mid 2)}^{\rho}= & \partial_{1}^{\rho}\left(c_{(112 \mid 2)}^{\rho}\right)+q_{112,2}^{\rho} c_{(1 \mid 2)}^{\rho} x_{112}-q_{1,112} x_{112} c_{(1 \mid 2)}^{\rho}, \\
= & \partial_{1}^{\rho}\left(\partial_{1}^{\rho}\left(c_{122}^{\rho}\right)\right)+\left(q_{12,2}-q_{1,12}\right)\left(x_{112} x_{12}+q_{1,12} x_{12}\left[x_{1}, x_{12}\right]\right) \\
& +q_{112,2} x_{12} x_{112}-q_{1,112} x_{112} x_{12}, \\
= & \partial_{1}^{\rho}\left(\partial_{1}^{\rho}\left(c_{122}^{\rho}\right)\right)+q_{12}\left(q_{22}-q_{11}-q_{11}^{2}\right) x_{112} x_{12} \\
& +q_{12}^{2}\left(q_{11}\left(q_{22}-q_{11}\right)+q_{22}\right) x_{12} x_{112}, \\
c_{(1112 \mid 12)}^{\rho}= & \partial_{1}^{\rho}\left(c_{11212}^{\rho}\right)+\left(q_{112,2}-q_{1,112}\right) x_{112}^{2} .
\end{aligned}
$$

Note that for the fifth equation we used the relation $\left[x_{1}, x_{12}\right]-x_{112}$. The assertion concerning the PBW basis and the redundant relations of [9, Thm. 5.17 (3),(5)] are again straightforward to verify.

References

[1] N. Andruskiewitsch and H.-J. Schneider. Lifting of quantum linear spaces and pointed Hopf algebras of order p^{3}. J. Algebra, 209:658-691, 1998.
[2] N. Andruskiewitsch and H.-J. Schneider. Lifting of Nichols algebras of type A_{2} and pointed Hopf algebras of order p^{4}. In S. Caenepeel and F. van Oystaeyen, editors, Hopf algebras and quantum groups: Proceedings of the Brussels Conference, volume 209 of Lecture Notes in Pure and Appl. Math., pages 1-14. Marcel Dekker, 2000.
[3] N. Andruskiewitsch and H.-J. Schneider. On the classification of finite-dimensional pointed Hopf algebras. 2007. to appear in Ann. Math., arXiv math.QA/0502157.
[4] R. Berger. The quantum Poincaré-Birkhoff-Witt theorem. In Communications in Mathematical Physics, volume 143, pages 215-234. Springer, 1992.
[5] G.M. Bergman. The diamond lemma for ring theory. Advances in Mathematics, 29:178-218, 1978.
[6] L.A. Bokut and G.P. Kukin. Algorithmic and Combinatorial Algebra, volume 255 of Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht-BostonLondon, 1994.
[7] L.A. Bokut. Unsolvability of the word problem and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk. Ser. Mat., 36 N6:1173-1219, 1972.
[8] M. Helbig. Lifting of Nichols algebras. Südwestdeutscher Verlag für Hochschulschriften, 2009. available at http://edoc.ub.uni-muenchen.de/10378/.
[9] M. Helbig. On the lifting of Nichols algebras. preprint, available at arxiv.org: 1003.5882, 2010.
[10] M. Helbig. On the presentation of pointed Hopf algebras. preprint, available at arxiv.org: 1003.5879, 2010.
[11] V. Kharchenko. A quantum analog of the Poincaré-Birkhoff-Witt theorem. Algebra and Logic, 38:259-276, 1999.
[12] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics. Addison-Wesley, 1983.
[13] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. of Amer. Math. Soc., 3:447-498, 1990.
[14] G. Lusztig. Introduction to quantum groups, volume 110 of Progress in Mathematics. Birkhäuser, 1993.
[15] D. Radford. Finite-dimensional simple-pointed Hopf algebras. J. Algebra, 211:686710, 1999.
[16] C. Reutenauer. Free Lie Algebras, volume 7 of London Mathematical Society Monographs, New Series. Clarendon Press, London, 1993.
[17] C.M. Ringel. PBW-bases of quantum groups. J. Reine Angew. Math., 470:51-88, 1996.
[18] M. Rosso. An anlogue of the Poincaré-Birkhoff-Witt theorem and the universal R matrix of $U_{q}(s l(N+1))$. Comm. Math. Phys., 124:307-318, 1989.
[19] H. Yamane. A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebas of type A_{N}. J. Reine Angew. Math., 470:51-88, 1996.

[^0]: *This work is part of the author's PhD thesis [8] written under the supervision of Prof. H.-J. Schneider.
 ${ }^{\dagger}$ eMail: michael@helbig123.de

