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Abstract

We give a necessary and sufficient PBW basis criterion for Hopf algebras generated by
skew-primitive elements and abelian group of group-like elements with action given
via characters. This class of pointed Hopf algebras has shown great importance in
the classification theory and can be seen as generalized quantum groups.
We apply the criterion to classical examples and liftings of Nichols algebras which
were determined in [9].
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Introduction

In the famous Poincaré-Birkhoff-Witt theorem for universal enveloping algebras of finite-
dimensional Lie algebras a class of new bases appeared. Since then many PBW theorems
for more general situations were discovered. We want to name those for quantum groups:
Lusztig’s axiomatic approach [13, 14] and Ringel’s approach via Hall algebras [17]. Let us
also mention the work of Berger [4], Rosso [18], and Yamane [19].

Our starting point of view is the following: Part of the classification program of finite-
dimensional pointed Hopf algebras with the lifting method of Andruskiewitsch and Schnei-
der [1] is the knowledge of the dimension resp. a basis of the deformations of a Nichols
algebra (the so-called liftings). Another aspect is to find the redundant relations in the
ideal. These liftings are among the class we consider here. We want to present a necessary
and sufficient PBW basis criterion for Hopf algebras generated by skew-primitive elements
and abelian group of group-like elements with action given via characters. This class con-
tains all quantum groups, Nichols algebras and their liftings and it is conjectured that any
finite-dimensional pointed Hopf algebra over the complex numbers is of that form.

The very general and for us important work is [11], where a PBW theorem for the
here considered class of Hopf algebras is formulated: Kharchenko shows in [11, Thm. 2]

∗This work is part of the author’s PhD thesis [8] written under the supervision of Prof. H.-J. Schneider.
†eMail: michael@helbig123.de
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these Hopf algebras have a PBW basis in special q-commutators, namely the hard super
letters coming from the theory of Lyndon words, see Section 3. However, the definition of
hard is not constructive (see also [7, 6] for the word problem for Lie algebras) and in view
of treating concrete examples there is a lack of deciding whether a given set of iterated
q-commutators establishes a PBW basis.

On the other hand the diamond lemma [5] (see also Section 6, Theorem 6.1) is a
very general method to check whether an associative algebra given in terms of generators
and relations has a certain basis, or equivalently the relations form a Gröbner basis. As
mentioned before, we construct such a Gröbner basis for a character Hopf algebra in
Theorem 3.1 and give a necessary and sufficient criterion for a set of super letters being
a PBW basis, see Theorem 4.2. The PBW Criterion 4.2 is formulated in the languague
of q-commutators. This seems to be the natural setting, since the criterion involves only
q-commutator identities of Proposition 1.2; as a side effect we find redundant relations.

The main idea is to combine the diamond lemma with the combinatorial theory of
Lyndon words resp. super letters and the q-commutator calculus of Section 1. In order to
apply the diamond lemma we give a general construction to identify a smash product with
a quotient of a free algebra, see Proposition 5.5 in Section 5.

Further the PBW Criterion 4.2 is a generalization of [4] and [3, Sect. 4] in the following
sense: In [4] a condition involving the q-Jacoby identity for the generators xi occurs (it
is called “q-Jacobi sum”). However, this condition can be formulated more generally for
iterated q-commutators (not only for xi), so also higher than quadratic relations can be
considered. The intention of [4] was a q-generalization of the classical PBW theorem, so
powers of q-commutators are not covered at all and also his algebras do not contain a group
algebra. On the other hand, [3, Sect. 4] deals with powers of q-commutators (root vector
relations) and also involves the group algebra. But here it is assumed that the powers
of the commutators lie in the group algebra and fulfill a certain centrality condition. As
mentioned above these assumptions are in general not preserved; in the PBW Criterion
4.2 the centrality condition is replaced by a more general condition involving the restricted
q-Leibniz formula of Proposition 1.2.

This work is organized as follows: In Section 1 we develop a general calculus for q-
commutators in an arbitrary algebra, which is needed throughout the thesis; new formulas
for q-commutators are found in Proposition 1.2. We recall in Section 2 the theory of
Lyndon words, super letters and super words. We show that the set of all super words
can be seen indeed as a set of words, i.e., as a free monoid. In Section 3 we recall the
result of [10] about a structural description of the here considered Hopf algebras, in terms
of generators and relations. With this result we are able to formulate in Section 4 the
main result of this work, namely the PBW basis criterion. Sections 5 to 7 are dedicated
to the proof of the criterion. Finally in Sections 8 and 9 we apply the PBW Criterion 4.2
to classical examples and the liftings of Nichols algebras obtained in [9].
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1 q-commutator calculus

In this section let A denote an arbitrary algebra over a field k of characteristic char k = p ≥
0. The main result of this section is Proposition 1.2, which states important q-commutator
formulas in an arbitrary algebra.

1.1 q-calculus

For every q ∈ k we define for n ∈ N and 0 ≤ i ≤ n the q-numbers (n)q := 1 + q +
q2 + . . . + qn−1, the q-factorials (n)q! := (1)q(2)q . . . (n)q, and the q-binomial coefficients(
n

i

)
q
:= (n)q !

(n−i)q !(i)q !
. Note that the latter right-handside is well-defined since it is a polynomial

over Z evaluated in q. We denote the multiplicative order of any q ∈ k
× by ordq. If q ∈ k

×

and n > 1, then

(
n

i

)

q

= 0 for all 1 ≤ i ≤ n− 1 ⇐⇒

{
ordq = n, if char k = 0

pkordq = n with k ≥ 0, if char k = p > 0,
(1.1)

see [15, Cor. 2]. Moreover for 1 ≤ i ≤ n there are the q-Pascal identities

qi
(
n

i

)

q

+

(
n

i− 1

)

q

=

(
n

i

)

q

+ qn+1−i

(
n

i− 1

)

q

=

(
n + 1

i

)

q

, (1.2)

and the q-binomial theorem: For x, y ∈ A and q ∈ k
× with yx = qxy we have

(x+ y)n =
n∑

i=0

(
n

i

)
q
xiyn−i. (1.3)

Note that for q = 1 these are the usual notions.

1.2 q-commutators

For all a, b ∈ A and q ∈ k we define the q-commutator

[a, b]q := ab− qba.

The q-commutator is bilinear. If q = 1 we get the classical commutator of an algebra. If A
is graded and a, b are homogeneous elements, then there is a natural choice for the q. We
are interested in the following special case:

Example 1.1. Let θ ≥ 1, X = {x1, . . . , xθ}, 〈X〉 the free monoid and A = k〈X〉 the

free k-algebra. For an abelian group Γ let Γ̂ be the character group, g1, . . . , gθ ∈ Γ and
χ1, . . . , χθ ∈ Γ̂. If we define the two monoid maps

degΓ : 〈X〉 → Γ, degΓ(xi) := gi and degΓ̂ : 〈X〉 → Γ̂, degΓ̂(xi) := χi,
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for all 1 ≤ i ≤ θ, then k〈X〉 is Γ- and Γ̂-graded.

Let a ∈ k〈X〉 be Γ-homogeneous and b ∈ k〈X〉 be Γ̂-homogeneous. We set

ga := degΓ(a), χb := degΓ̂(b), and qa,b := χb(ga).

Further we define k-linearly on k〈X〉 the q-commutator

[a, b] := [a, b]qa,b. (1.4)

Note that qa,b is a bicharacter on the homogeneous elements and depends only on the values

qij := χj(gi) with 1 ≤ i, j ≤ θ.

For example [x1, x2] = x1x2 − χ2(g1)x2x1 = x1x2 − q12x2x1. Further if a, b are Z
θ-

homogeneous they are both Γ- and Γ̂-homogeneous. In this case we can build iter-
ated q-commutators, like

[
x1, [x1, x2]

]
= x1[x1, x2] − χ1χ2(g1)[x1, x2]x1 = x1[x1, x2] −

q11q12[x1, x2]x1.

Later we will deal with algebras which still are Γ̂-graded, but not Γ-graded such that
Eq. (1.4) is not well-defined. However, the q-commutator calculus, which we next want to
develop, will be a major tool for our calculations such that we need the general definition
with the q as an index.

Proposition 1.2. For all a, b, c, ai, bi ∈ A, q, q′, q′′, qi, ζ ∈ k, 1 ≤ i ≤ n and r ≥ 1 we have:
(1) q-derivation properties:

[a, bc]qq′ = [a, b]qc+ qb[a, c]q′ , [ab, c]qq′ = a[b, c]q′ + q′[a, c]qb,

[a, b1 . . . bn]q1...qn =
n∑

i=1

q1 . . . qi−1b1 . . . bi−1[a, bi]qibi+1 . . . bn,

[a1 . . . an, b]q1...qn =

n∑

i=1

qi+1 . . . qna1 . . . ai−1[ai, b]qiai+1 . . . an.

(2) q-Jacobi identity:

[
[a, b]q′ , c

]
q′′q

=
[
a, [b, c]q

]
q′q′′

− q′b[a, c]q′′ + q[a, c]q′′b.

(3) q-Leibniz formulas:

[a, br]qr =
r−1∑

i=0

qi
(
r

i

)
ζ
bi
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r−i

]
qζr−i−1,

[ar, b]qr =

r−1∑

i=0

qi
(
r

i

)
ζ

[
a, . . .

[
a, [a︸ ︷︷ ︸

r−i

, b]q
]
qζ
. . .

]
qζr−i−1a

i.

4



(4) restricted q-Leibniz formulas: If char k = 0 and ordζ = r, or char k = p > 0 and
pkordζ = r , then

[a, br]qr =
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r

]
qζr−1,

[ar, b]qr =
[
a, . . .

[
a, [a︸ ︷︷ ︸

r

, b]q
]
qζ
. . .

]
qζr−1.

Proof. (1) The first part is a direct calculation, e.g.

[a, bc]qq′ = abc− qq′bca = abc− qbac+ qbac− qq′bca = [a, b]qc+ qb[a, c]q′ .

The second part follows by induction.
(2) Using the k-linearity and (1) we get the result immediately.
(3) By induction on r: r = 1 is obvious, so let r ≥ 1. Using (1) we get

[a, br+1]qr+1 = [a, brb]qrq = [a, br]qrb+ qrbr[a, b]q.

By induction assumption [a, br]qrb =
∑r−1

i=0 q
i
(
r

i

)
ζ
bi
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r−i

]
qζr−i−1b, where

bi
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r−i

]
qζr−i−1b =

bi
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r+1−i

]
qζr−i + qζr−ibi+1

[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r−i

]
qζr−i−1.

In total we get

[a, br+1]qr+1 =

r∑

i=0

qi
(
r

i

)
ζ
bi
[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r+1−i

]
qζr−i

+
r−1∑

i=0

qi+1
(
r

i

)
ζ
ζr−ibi+1

[
. . .

[
[a, b]q, b

]
qζ
. . . , b

︸ ︷︷ ︸
r−i

]
qζr−i−1.

Shifting the index of the second sum and using Eq. (1.2) for ζ we get the formula. The
second formula is proven in the same way. (4) Follows from (3) and Eq. (1.1).

2 Lyndon words and q-commutators

In this section we recall the theory of Lyndon words [12, 16] as far as we are concerned
and then introduce the notion of super letters and super words [11].
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2.1 Words and the lexicographical order

Let θ ≥ 1, X = {x1, x2, . . . , xθ} be a finite totally ordered set by x1 < x2 < . . . < xθ,
and 〈X〉 the free monoid; we think of X as an alphabet and of 〈X〉 as the words in that
alphabet including the empty word 1. For a word u = xi1 . . . xin ∈ 〈X〉 we define ℓ(u) := n
and call it the length of u.

The lexicographical order ≤ on 〈X〉 is defined for u, v ∈ 〈X〉 by u < v if and only if
either v begins with u, i.e., v = uv′ for some v′ ∈ 〈X〉\{1}, or if there are w, u′, v′ ∈ 〈X〉,
xi, xj ∈ X such that u = wxiu

′, v = wxjv
′ and i < j. E.g., x1 < x1x2 < x2.

2.2 Lyndon words and the Shirshov decomposition

A word u ∈ 〈X〉 is called a Lyndon word if u 6= 1 and u is smaller than any of its proper
endings, i.e., for all v, w ∈ 〈X〉\{1} such that u = vw we have u < w. We denote by

L := {u ∈ 〈X〉 | u is a Lyndon word}

the set of all Lyndon words. For example X ⊂ L, but xn
i /∈ L for all 1 ≤ i ≤ θ and n ≥ 2.

Also x1x2, x1x1x2, x1x2x2, x1x1x2x1x2 ∈ L.
For any u ∈ 〈X〉\X we call the decomposition u = vw with v, w ∈ 〈X〉\{1} such

that w is the minimal (with respect to the lexicographical order) ending the Shirshov
decomposition of the word u. We will write in this case

Sh(u) = (v|w).

E.g., Sh(x1x2) = (x1|x2), Sh(x1x1x2x1x2) = (x1x1x2|x1x2), Sh(x1x1x2) 6= (x1x1|x2). If
u ∈ L\X , this is equivalent to w is the longest proper ending of u such that w ∈ L.

Definition 2.1. We call a subset L ⊂ L Shirshov closed if X ⊂ L, and for all u ∈ L with
Sh(u) = (v|w) also v, w ∈ L.

For example L is Shirshov closed, and if X = {x1, x2}, then {x1, x1x1x2, x2} is not
Shirshov closed, whereas {x1, x1x2, x1x1x2, x2} is.

2.3 Super letters and super words

Let the free algebra k〈X〉 be graded as in Section 1.1. For any u ∈ L we define recursively
on ℓ(u) the map

[ . ] : L → k〈X〉, u 7→ [u]. (2.1)

If ℓ(u) = 1, then set [xi] := xi for all 1 ≤ i ≤ θ. Else if ℓ(u) > 1 and Sh(u) = (v|w)
we define [u] :=

[
[v], [w]

]
. This map is well-defined since inductively all [u] are Z

θ-
homogeneous such that we can build iterated q-commutators; see Section 1.1. The elements

6



[u] ∈ k〈X〉 with u ∈ L are called super letters. E.g. [x1x1x2x1x2] =
[
[x1x1x2], [x1x2]

]
=[

[x1, [x1, x2]], [x1, x2]
]
. If L ⊂ L is Shirshov closed then the subset of k〈X〉

[L] :=
{
[u]

∣∣u ∈ L
}

is a set of iterated q-commutators. Further [L] =
{
[u]

∣∣u ∈ L
}
is the set of all super letters

and the map [ . ] : L → [L] is a bijection, which follows from [10, Lem. 2.5]. Hence we can
define an order ≤ of the super letters [L] by

[u] < [v] :⇔ u < v,

thus [L] is a new alphabet containing the original alphabet X ; so the name “letter” makes
sense. Consequently, products of super letters are called super words. We denote

[L](N) :=
{
[u1] . . . [un]

∣∣n ∈ N, ui ∈ L
}

the subset of k〈X〉 of all super words. Any super word has a unique factorization in super
letters [10, Prop. 2.6], hence we can define the lexicographical order on [L](N), as defined
above on regular words. We denote it also by ≤.

2.4 A well-founded ordering of super words

The length of a super word U = [u1][u2] . . . [un] ∈ [L](N) is defined as ℓ(U) := ℓ(u1u2 . . . un).

Definition 2.2. For U, V ∈ [L](N) we define U ≺ V by

• ℓ(U) < ℓ(V ), or

• ℓ(U) = ℓ(V ) and U > V lexicographically in [L](N).

This defines a total ordering of [L](N) with minimal element 1. As X is assumed to be
finite, there are only finitely many super letters of a given length. Hence every nonempty
subset of [L](N) has a minimal element, or equivalently, � fulfills the descending chain
condition: � is well-founded. This makes way for inductive proofs on �.

2.5 The free monoid 〈XL〉

Let L ⊂ L. We want to stress the two different aspects of a super letter [u] ∈ [L]:

• On the one hand it is by definition a polynomial [u] ∈ k〈X〉.

• On the other hand, as we have seen, it is a letter in the alphabet [L].

To distinguish between these two point of views we define for the latter aspect a new
alphabet corresponding to the set of super letters [L]: To be technically correct we regard
the free monoid 〈1, . . . , θ〉 of the ciphers {1, . . . , θ} (telephone numbers), together with the
trivial bijective monoid map ν : 〈x1, . . . , xθ〉 → 〈1, . . . , θ〉, xi 7→ i for all 1 ≤ i ≤ θ. Hence

7



we can transfer the lexicographical order to 〈1, . . . , θ〉. The image ν(L) ⊂ 〈1, . . . , θ〉 can
be seen as the set of “Lyndon telephone numbers”. We define the set

XL := {xu | u ∈ ν(L)}.

Note that if X ⊂ L (e.g. L ⊂ L is Shirshov closed), then X ⊂ XL. E.g., if X = {x1, x2} ⊂
L = {x1, x1x2, x2} then ν(L) = {1, 12, 2} and X ⊂ XL = {x1, x12, x2}.

Notation 2.3. From now on we will not distinguish between L and ν(L) and write for
example xu instead of xν(u) for u ∈ L. In this manner we will also write gν(u), χν(u)

equivalently for gu, χu if u ∈ L, as defined in Example 1.1. E.g. g112 = gx1x1x2 = gx1gx1gx2 =
g1g1g2, χ112 = χx1x1x2 = χx1χx1χx2 = χ1χ1χ2.

As seen in [10, Prop. 2.6] we have the bijection of super words and the free monoid 〈XL〉

ρ : [L](N) → 〈XL〉, ρ
(
[u1] . . . [un]

)
:= xu1 . . . xun

. (2.2)

E.g., [x1x2x2][x1x2]
ρ
7→ x122x12. Hence we can transfer all orderings to 〈XL〉: For all

U, V ∈ 〈XL〉 we set

ℓ(U) := ℓ(ρ−1(U)), U < V :⇔ ρ−1(U) < ρ−1(V ), U ≺ V :⇔ ρ−1(U) ≺ ρ−1(V ).

3 A class of pointed Hopf algebras

In this chapter we deal with the class of pointed Hopf algebras for which we give the PBW
basis criterion. Let us recall the notions and results of [11, Sect. 3]: A Hopf algebra A is
called a character Hopf algebra if it is generated as an algebra by elements a1, . . . , aθ and
an abelian group G(A) = Γ of all group-like elements such that for all 1 ≤ i ≤ θ there are

gi ∈ Γ and χi ∈ Γ̂ with

∆(ai) = ai ⊗ 1 + gi ⊗ ai and gai = χi(g)aig.

As mentioned in the introduction this covers a wide class of examples of Hopf algebras.

Theorem 3.1. [10, Thm. 3.4] If A is a character Hopf algebra, then

A ∼= (k〈X〉#k[Γ])/I,

where the smash product k〈X〉#k[Γ] and the ideal I are constructed in the following way:

3.1 The smash product k〈X〉#k[Γ]

Let k〈X〉 be Γ- and Γ̂-graded as in Section 1.1, and k[Γ] be endowed with the usual
bialgebra structure ∆(g) = g ⊗ g and ε(g) = 1 for all g ∈ Γ. Then we define

g · xi := χi(g)xi, for all 1 ≤ i ≤ θ.

8



In this case, k〈X〉 is a k[Γ]-module algebra and we calculate gxi = χi(g)xig, gh = hg =
ε(g)hg in k〈X〉#k[Γ]. Further k〈X〉#k[Γ] is a Hopf algebra with structure determined for
all 1 ≤ i ≤ θ and g ∈ Γ by

∆(xi) := xi ⊗ 1 + gi ⊗ xi and ∆(g) := g ⊗ g.

3.2 Ideals associated to Shirshov closed sets

In this subsection we fix a Shirshov closed L ⊂ L. We want to introduce the following
notation for an a ∈ k〈X〉#k[Γ] and W ∈ [L](N): We will write a ≺L W (resp. a �L W ), if
a is a linear combination of

• U ∈ [L](N) with ℓ(U) = ℓ(W ), U > W (resp. U ≥ W ), and

• V g with V ∈ [L](N), g ∈ Γ, ℓ(V ) < ℓ(W ).

Furthermore, we set for each u ∈ L either Nu := ∞ or Nu := ordqu,u (resp. Nu :=
pkordqu,u with k ≥ 0 if char k = p > 0) and we want to distinguish the following two sets
of words depending on L:

C(L) :=
{
w ∈ 〈X〉\L | ∃u, v ∈ L : w = uv, u < v, and Sh(w) = (u|v)

}
,

D(L) :=
{
u ∈ L | Nu < ∞}.

Note that C(L) ⊂ L and D(L) ⊂ L ⊂ L are sets of Lyndon words. For example, if
L = {x1, x1x1x2, x1x2, x2}, then C(L) = {x1x1x1x2, x1x1x2x1x2, x1x2x2}.

Moreover, let cw ∈ (k〈X〉#k[Γ])χw for all w ∈ C(L) such that cw ≺L [w]; and let

du ∈ (k〈X〉#k[Γ])χ
Nu
u for all u ∈ D(L) such that du ≺L [u]Nu . Then let I be the Γ̂-

homogeneous ideal of k〈X〉#k[Γ] generated by the following elements:

[w]− cw for all w ∈ C(L), (3.1)

[u]Nu − du for all u ∈ D(L). (3.2)

4 A PBW basis criterion

In this section we want to state a PBW basis criterion which is applicable for any character
Hopf algebra. Suppose we have a smash product k〈X〉#k[Γ] together with an ideal I as
in Sections 3.1 and 3.2.

At first we need to define several algebraic objects for the formulation of the PBW
Criterion 4.2. The main idea is not to work in the free algebra k〈X〉 but in the free algebra
k〈XL〉 where 〈XL〉 is the free monoid of Section 2.5.
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4.1 The free algebra k〈XL〉 and k〈XL〉#k[Γ]

In Section 2.5 we associated to a super letter [u] ∈ [L] a new variable xu ∈ XL, where XL

contains X . Hence the free algebra k〈XL〉 also contains k〈X〉. We define the action of Γ
on k〈XL〉 and q-commutators by

g · xu := χu(g)xu for all g ∈ Γ, u ∈ L,

[xu, xv] := xuxv − qu,vxvxu for all u, v ∈ L.

In this way k〈XL〉 becomes a k[Γ]-module algebra and gxu = χu(g)xug in the smash
product k〈XL〉#k[Γ].

4.2 The subspace I≺U ⊂ k〈XL〉#k[Γ]

Via ρ of Eq. (2.2) we now define certain elements of k〈XL〉#k[Γ]: For all w ∈ C(L) resp. u ∈
D(L) we write cw =

∑
αU +

∑
βV g ≺L [w] resp. du =

∑
α′U ′ +

∑
β ′V ′g′ ≺L [u]Nu , with

α, α′, β, β ′ ∈ k and U, U ′, V, V ′ ∈ [L](N) (such decompositions may not be unique; we just
fix one). Then we define in k〈XL〉#k[Γ]

cρw :=
∑

αρ(U) +
∑

βρ(V )g resp. dρu :=
∑

α′ρ(U ′) +
∑

β ′ρ(V ′)g′.

For all u, v ∈ L with u < v we define elements cρ(u|v) ∈ k〈XL〉#k[Γ]: If w = uv and

Sh(w) = (u|v) we set

cρ(u|v) :=

{
xw, if w ∈ L,

cρw, if w /∈ L.

Else if Sh(w) 6= (u|v) let Sh(u) = (u1|u2). Then we define inductively on the length of ℓ(u)

cρ(u|v) := ∂ρ
u1
(cρ(u2|v)

) + qu2,vc
ρ

(u1|v)
xu2 − qu1,u2xu2c

ρ

(u1|v)
, (4.1)

where ∂ρ
u1

is defined k-linearly by

∂ρ
u1
(xl1 . . . xln) := cρ(u1|l1)

xl2 . . . xln +
n∑

i=2

qu1,l1...li−1
xl1 . . . xli−1

[
xu1 , xli

]
xli+1

. . . xln ,

∂ρ
u1
(ρ(V )g) :=

[
xu1 , ρ(V )

]
qu1,u2vχu1(g)

g.

For any U ∈ 〈XL〉 let I≺U denote the subspace of k〈XL〉#k[Γ] spanned by the elements

V g
(
[xu, xv]− cρ(u|v)

)
Wh for all u, v ∈ L, u < v,

V ′g′
(
xNu

u − dρu
)
W ′h′ for all u ∈ L,Nu < ∞

with V, V ′,W,W ′ ∈ 〈XL〉, g, g
′, h, h′ ∈ Γ such that

V xuxvW ≺ U and V ′xNu
u W ′ ≺ U.
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Finally we want to define the following elements of k〈XL〉#k[Γ] for u, v, w ∈ L, u <
v < w, resp. u ∈ L, Nu < ∞, u ≤ v, resp. v < u:

J(u < v < w) := [cρ(u|v), xw]quv,w − [xu, c
ρ

(v|w)]qu,vw

+ qu,vxv[xu, xw]− qv,w[xu, xw]xv,

L(u, u < v) :=
[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, cρ(u|v)]qu,uqu,v . . .
]
q
Nu−1
u,u qu,v

− [dρu, xv]qNu
u,v

,

L(u, u ≤ v) :=

{
L(u, u < v), if u < v,

L(u) := −[dρu, xu]1, if u = v,

L(u, v < u) :=
[
. . . [cρ(v|u), xu]qv,uqu,u . . . , xu︸ ︷︷ ︸

Nu−1

]
qv,uq

Nu−1
u,u

− [xv, d
ρ
u]qNu

v,u
.

Remark 4.1. Note that

J(u < v < w) ∈
(
[xu, xv]− cρ(u|v), [xv, xw]− cρ(v|w)

)

by the q-Jacobi identity of Proposition 1.2, and

L(u, u ≤ v) ∈
(
[xu, xv]− cρ(u|v), xNu

u − dρu
)
, L(u, v < u) ∈

(
[xv, xu]− cρ(v|u), xNu

u − dρu
)

by the restricted q-Leibniz formula of Proposition 1.2.

4.3 The PBW criterion

Theorem 4.2. Let L ⊂ L be Shirshov closed and I be an ideal of k〈X〉#k[Γ] as in Section
3.2. Then the following assertions are equivalent:

(1) The residue classes of [u1]
r1[u2]

r2 . . . [ut]
rtg with t ∈ N, ui ∈ L, u1 > . . . > ut,

0 < ri < Nui
, g ∈ Γ, form a k-basis of the quotient algebra (k〈X〉#k[Γ])/I.

(2) The algebra k〈XL〉#k[Γ] respects the following conditions:
(a) q-Jacobi condition: ∀ u, v, w ∈ L, u < v < w:

J(u < v < w) ∈ I≺xuxvxw
.

(b) restricted q-Leibniz conditions: ∀ u, v ∈ L with Nu < ∞, u ≤ v resp. v < u:

(i) L(u, u ≤ v) ∈ I≺x
Nu
u xv

, resp.

(ii) L(u, v < u) ∈ I≺xvx
Nu
u
,

(2’) The algebra k〈XL〉#k[Γ] respects the following conditions:
(a) Condition (2a) only for uv /∈ L or Sh(uv) 6= (u|v).
(b) (i) Condition (2bi) only for u = v and u < v where v 6= uv′ for all v′ ∈ L.

(ii) Condition (2bii) only for v < u where v 6= v′u for all v′ ∈ L.

We need to formulate several statements over the next sections. Afterwards the proof
of Theorem 4.2 will be carried out in Section 7.
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5 (k〈X〉#H)/I as a quotient of a free algebra

In order to make the diamond lemma applicable for (k〈X〉#H)/I, also not just for the
regular letters X but for some super letters [L], we will define a quotient of a certain free
algebra, which is the special case of the following general construction:

In this section let X,S be arbitrary sets such that X ⊂ S, and H be a bialgebra with
k-basis G. Then

k〈X〉 ⊂ k〈S〉 and H = spankG ⊂ k〈G〉,

if we view the set G as variables. Further we set 〈S,G〉 := 〈S ∪G〉 where we may assume
that the union is disjoint. By omitting ⊗

k〈X〉 ⊗H = spank{ug | u ∈ 〈X〉, g ∈ G} ⊂ k〈S,G〉

Now let k〈X〉 be a H-module algebra. Next we define the ideals corresponding to
the extension of the variable set X to S, and to the smash product structure and the
multiplication of H , and study their properties afterwards.

Definition 5.1. (1) Let A be an algebra, B ⊂ A a subset. Then let (B)A denote the ideal
generated by the set B.

(2) Let fs ∈ k〈X〉 for all s ∈ S. Further let 1H ∈ G and fgh := gh ∈ H = span
k
G for

all g, h ∈ G. We then define the ideals

IS := (s− fs | s ∈ S)k〈S,G〉,

IG :=
(
gs− (g(1) · fs)g(2), gh− fgh, 1H − 1 | g, h ∈ G, s ∈ S

)
k〈S,G〉

,

where 1 is the empty word in k〈S,G〉.

Remark 5.2. We may assume that 1H ∈ G, if H 6= 0: Suppose 1H /∈ G and write 1H as
a linear combination of G. Suppose all coefficients are 0, then 1H = 0H hence H = 0; a
contradiction. So there is a g with non-zero coefficient and we can exchange this g with
1H .

Example 5.3. Let H = k[Γ] be the group algebra with the usual bialgebra structure
∆(g) = g ⊗ g and ε(g) = 1. Here G = Γ, fgh ∈ Γ is just the product in the group, and

IΓ =
(
gs− (g · fs)g, gh− fgh, 1Γ − 1 | g, h ∈ Γ, s ∈ S

)
.

Lemma 5.4. For any g ∈ Γ we have

g(k〈S,G〉) ⊂ span
k
{ug | u ∈ 〈X〉, g ∈ G}+ IG.

Proof. Let a1 . . . an ∈ 〈S,G〉. We proceed by induction on n. If n = 1 then either a1 ∈ S
or a1 ∈ G. Then either ga1 ∈ (g(1) · fa1)g(2) + IG ⊂ spank{ug | u ∈ 〈X〉, g ∈ G} + IG
or ga1 ∈ fga1 + IG ⊂ span

k
{ug | u ∈ 〈X〉, g ∈ G} + IG. If n > 1, then let us consider

ga1a2 . . . an. Again either a1 ∈ S or a1 ∈ G and we argue for ga1 as in the induction basis;
then by using the induction hypothesis we achieve the desired form.
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Proposition 5.5. Assume the above situation. Then

k〈X〉#H ∼= k〈S,G〉/(IS+IG),

and for any ideal I of k〈X〉#H also IS+IG+I is an ideal of k〈S,G〉 such that

(k〈X〉#H)/I ∼= k〈S,G〉/(IS+IG+I).

Further we have the following special cases:

H ∼= k : k〈X〉 ∼= k〈S〉/IS, k〈X〉/I ∼= k〈S〉/(IS+I). (5.1)

S = X : k〈X〉#H ∼= k〈X,G〉/IG, (k〈X〉#H)/I ∼= k〈X,G〉/(IG+I). (5.2)

Proof. (1) The algebra map

k〈S,G〉 → k〈X〉#H, s 7→ fs#1H , g 7→ 1k〈X〉#g

is surjective and contains IS+IG in its kernel; this is a direct calculation using the definitions.
Hence we have a surjective algebra map on the quotient

k〈S,G〉/(IS+IG) −→ k〈X〉#H. (5.3)

In order to see that this map is bijective, we verify that a basis is mapped to a basis.
(a) The residue classes of the elements of {ug | u ∈ 〈X〉, g ∈ G} k-generate k〈S,G〉/(IS+

IG): Let A ∈ 〈S,G〉. Then either A ∈ 〈S〉 or it contains an element of G. In the first case
A ∈ k〈X〉+ IS by definition of IS, and then A ∈ k〈X〉1H + IS + IG since 1H − 1 ∈ IΓ. In the
other case let A = A1gA2 with A1 ∈ 〈S〉, g ∈ G, A2 ∈ 〈S,G〉. We argue for A1 like before,
and gA2 ∈ spank{ug | u ∈ 〈X〉, g ∈ G}+ IG by Lemma 5.4.

(b) The residue classes of {ug | u ∈ 〈X〉, g ∈ G} are mapped by Eq. (5.3) to the k-basis
〈X〉#G of the right-hand side. Hence the residue classes are linearly independent, thus
form a basis of k〈S,G〉/(IS+IG).

(2) IS + IΓ + I is an ideal: Let A ∈ 〈S,G〉 and a ∈ I ⊂ span
k
{ug | u ∈ 〈X〉, g ∈ G}.

Then by (1a) above A ∈ spank{ug | u ∈ 〈X〉, g ∈ G} + IS + IG, and since I is an ideal of
k〈X〉#H , we have Aa, aA ∈ IS + IG + I by the isomorphism Eq. (5.3).

Using the isomorphism theorem and part (1) we get

k〈S,G〉/(IS + IG+ I) ∼=
(
k〈S,G〉/(IS + IG)

)/(
(IS + IG+ I)/(IS + IG)

)
∼= (k〈X〉#H)/I,

where the last ∼= holds since (IS + IG+ I)/(IS + IG) is mapped to I by the isomorphism
Eq. (5.3).

(3) The special cases follow from the facts that IS = 0 if S = X , and if H ∼= k then
G = {1H}. Hence IG = (1H − 1) and k〈X〉 ∼= k〈X〉#k ∼= k〈S, {1H}〉/(IS + (1H − 1)) ∼=
k〈S〉/IS.

We now return to the situation of Section 3, and rewrite Proposition 5.5 for the case
S = XL and H = k[Γ]:
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Corollary 5.6. Let L ⊂ L be Shirshov closed and

IL :=
(
xu − [xv, xw] | u ∈ L, Sh(u) = (v|w)

)
k〈XL,Γ〉

I ′
Γ
:=

(
gxu − χu(g)xug, gh− fgh, 1Γ − 1 | g, h ∈ Γ, u ∈ L

)
k〈XL,Γ〉

.

Then for any ideal I of k〈X〉#k[Γ] also IL+I ′
Γ
+I is an ideal of k〈XL,Γ〉 such that

(k〈X〉#k[Γ])/I ∼= k〈XL,Γ〉/(IL+I ′
Γ
+I).

Further we have the analog special cases of Proposition 5.5.

Proof. We apply Proposition 5.5 to the case S = XL, H = k[Γ], fxu
= [u] for all u ∈ L.

Then IXL
=

(
xu − [u] | u ∈ L

)
k〈XL,Γ〉

and IΓ is as in Example 5.3. We are left to prove

IL+I ′
Γ
+I = IXL

+IΓ+I, which follows from the Lemma below.

Lemma 5.7. We have

(1) [u] ∈ xu + IL for all u ∈ L; hence IXL
= IL.

(2) IΓ ⊂ I ′
Γ
+ IL

Proof. (2) follows from (1), which we prove by induction on ℓ(u): For ℓ(u) = 1 there is
nothing to show. Let ℓ(u) > 1 and Sh(u) = (v|w). Then by the induction assumption we
have

[u] = [v][w]− qv,w[w][v] ∈ (xv + IL)(xw + IL)− qvw(xw + IL)(xv + IL)

⊂ [xv, xw] + IL = xu − (xu − [xv, xw]︸ ︷︷ ︸
∈IL

) + IL = xu + IL.

Example 5.8. Let X = {x1, x2} ⊂ L = {x1, x1x2, x2}. Then IL =
(
x12 − [x1, x2]

)
and by

Corollary 5.6 k〈x1, x2〉 ∼= k
〈
x1, x12, x2

∣∣ x12 = [x1, x2]
〉
, and

k〈x1, x2〉#k[Γ] ∼= k〈x1, x12, x2,Γ | x12 = [x1, x2],

gxu = χu(g)xug, gh = fgh, 1Γ − 1; ∀u ∈ L, g, h ∈ Γ〉.

6 Bergman’s diamond lemma

Following Bergman [5], let Y be a set, k〈Y 〉 the free k-algebra and Σ an index set. We fix
a subset R = {(Wσ, fσ) | σ ∈ Σ} ⊂ 〈Y 〉 × k〈Y 〉, and define the ideal

IR := (Wσ − fσ | σ ∈ Σ)k〈Y 〉.

An overlap of R is a triple (A,B,C) such that there are σ, τ ∈ Σ and A,B,C ∈ 〈Y 〉\{1}
with Wσ = AB and Wτ = BC. In the same way an inclusion of R is a triple (A,B,C)
such that there are σ 6= τ ∈ Σ and A,B,C ∈ 〈Y 〉 with Wσ = B and Wτ = ABC.

Let �⋄ be a with R compatible well-founded monoid partial ordering of the free monoid
〈Y 〉, i.e.:
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• (〈Y 〉,�⋄) is a partial ordered set.

• B ≺⋄ B
′ ⇒ ABC ≺⋄ AB

′C for all A,B,B′, C ∈ 〈Y 〉.

• Each non-empty subset of 〈Y 〉 has a minimal element w.r.t. �⋄.

• fσ is a linear combination of monomials ≺⋄ Wσ for all σ ∈ Σ; in this case we write
fσ ≺⋄ Wσ.

For any A ∈ 〈Y 〉 let I≺⋄A denote the subspace of k〈Y 〉 spanned by all elements B(Wσ−
fσ)C with B,C ∈ 〈Y 〉 such that BWσC ≺⋄ A. The next theorem is a short version of the
diamond lemma:

Theorem 6.1. [5, Thm 1.2] Let R = {(Wσ, fσ) | σ ∈ Σ} ⊂ 〈Y 〉 × k〈Y 〉 and �⋄ be a with
R compatible well-founded monoid partial ordering on 〈Y 〉. Then the following conditions
are equivalent:

(1) (a) fσC −Afτ ∈ I≺⋄ABC for all overlaps (A,B,C).

(b) AfσC − fτ ∈ I≺⋄ABC for all inclusions (A,B,C).

(2) The residue classes of the elements of 〈Y 〉 which do not contain any Wσ with σ ∈ Σ
as a subword form a k-basis of k〈Y 〉/IR.

We now define the ordering for our situation, where L ⊂ L is Shirshov closed and
Y = XL ∪Γ: Let πL : 〈XL,Γ〉 → 〈XL〉 be the monoid map with xu 7→ xu and g 7→ 1 for all
u ∈ L, g ∈ Γ (πL deletes all g in a word of 〈XL,Γ〉).

Moreover, for a A ∈ 〈XL,Γ〉 let nΓ(A) denote the number of letters g ∈ Γ in the word
A and t(A) the nΓ(A)-tuple of non-negative integers

(number of letters after the last g ∈ Γ in A, . . . ,

. . . , number of letters after the first g ∈ Γ in A) ∈ N
nΓ(A).

Definition 6.2. For A,B ∈ 〈XL,Γ〉 we define A ≺⋄ B by

• πL(A) ≺ πL(B), or

• πL(A) = πL(B) and nΓ(A) < nΓ(B), or

• πL(A) = πL(B), nΓ(A) = nΓ(B) and t(A) < t(B) under the lexicographical order of
N

nΓ(A), i.e., t(A) 6= t(B), and the first non-zero term of t(B)− t(A) is positive.

�⋄ is a well-founded monoid partial ordering of 〈XL,Γ〉, which is straightforward to
verify, and will be compatible with the later regarded R.

Note that we have the following correspondence between ≺ of Section 2.4 and ≺⋄, which
follows from the definitions: For any U, V ∈ [L](N), g, h ∈ Γ we have ρ(U)g, ρ(V )h ∈ 〈XL〉Γ
and

U ≺ V ⇐⇒ ρ(U)g ≺⋄ ρ(V )h. (6.1)
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7 Proof of Theorem 4.2

Again suppose the assumptions of Theorem 4.2. By Corollary 5.6

(k〈X〉#k[Γ])/I ∼= k〈XL,Γ〉/(IL + I ′
Γ
+ I),

thus (k〈X〉#k[Γ])/I has the basis [u1]
r1 [u2]

r2 . . . [ut]
rtg if and only if k〈XL,Γ〉/(IL + I ′

Γ
+ I)

has the basis xr1
u1
xr2
u2
. . . xrt

ut
g (t ∈ N, ui ∈ L, u1 > . . . > ut, 0 < ri < Nu, g ∈ Γ). The latter

we can reformulate equivalently in terms of the Diamond Lemma 6.1:
• We define R as the set of the elements

(1Γ, 1), (7.1)

(gh, fgh), for all g, h ∈ Γ, (7.2)(
gxu, χu(g)xug

)
, for all g ∈ Γ, u ∈ L, (7.3)(

xuxv, c
ρ

(u|v) + qu,vxvxu

)
, for all u, v ∈ L with u < v, (7.4)

(
xNu
u , dρu

)
, for all u ∈ L with Nu < ∞, (7.5)

where we again see cρ(u|v), d
ρ
u ∈ k〈XL〉 ⊗ k[Γ] ⊂ span

k
{Ug | U ∈ 〈XL〉, g ∈ Γ} ⊂ k〈XL,Γ〉.

Then the residue classes of cρ(u|v), d
ρ
u modulo IL + I ′

Γ
correspond to c(u|v) and du by the

isomorphism of Corollary 5.6, and we have IR = IL+I ′Γ+I.
• Note that ≺⋄ is compatible with R: In Eq. (7.1) resp. (7.2) we have 1 ≺⋄ 1Γ resp. fgh ≺⋄

gh since nΓ(1) = 0 < 1 = nΓ(1Γ) resp. nΓ(fgh) = 1 < 2 = nΓ(gh) (fgh ∈ Γ). Eq. (7.3):
t(xug) = (0) < (1) = t(gxu), hence xug ≺⋄ gxu. Moreover, by [10, Lem. 3.6] we have
cρ(u|v) + qu,vxvxu ≺⋄ xuxv, and dρu ≺⋄ x

Nu
u by assumption.

• By the Diamond Lemma 6.1 we have to consider all possible overlaps and inclusions
of R. The only inclusions happen with Eq. (7.1), namely (1, 1Γ, h), (g, 1Γ, 1), (1, 1Γ, xu).
But they all fulfill the condition (1b) of the Diamond Lemma 6.1: for example h− f1Γh =
h− h = 0 ∈ I≺⋄1Γh, and xu − χu(1Γ)xu1Γ = xu(1Γ − 1) ∈ I≺⋄1Γxu

.
So we are left to check the conditon (1a) for all overlaps: (g, h, k) with g, h, k ∈ Γ fulfills

it by the associativity of Γ; for (g, h, xu) we have

fghxu − χu(h)gxuh = χu(gh)xufgh − χu(h)χu(g)xugh = 0,

calculating modulo I≺⋄ghxu
and using χu(fgh) = χu(gh) since fgh ∈ Γ. The next overlap is

(g, xu, xv) where u < v: Calculating modulo I≺⋄gxuxv
we get

χu(g)xugxv − g
(
cρ(u|v) + qu,vxvxu

)
= χu(g)χv(g)xuxvg−

χuv(g)
(
cρ(u|v) + qu,vxvxu

)
g = χuv(g)

(
xuxv −

(
cρ(u|v) + qu,vxvxu

))
g = 0,

since c(u|v) ∈ (k〈X〉#k[Γ])χuv and xuxvg ≺⋄ gxuxv. For the overlap (g, xu, x
Nu−1
u ) we obtain

modulo I≺⋄gx
Nu
u

χu(g)xugx
Nu−1
u − gdρu = χu(g)

Nu
(
xNu
u − dρu

)
g = 0,
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because du ∈ (k〈X〉#k[Γ])χ
Nu
u and xNu

u ϑg ≺⋄ ϑgx
Nu
u . The remaining overlaps are those

with Eqs. (7.4) and (7.5); for these we formulate the following three Lemmata which are
equivalent to (2) of the Theorem 4.2:

Lemma 7.1. The overlap (xu, xv, xw), u < v < w, fulfills condition 6.1(1a), i.e., a :=(
cρ(u|v) + qu,vxvxu

)
xw − xu

(
cρ(v|w) + qv,wxwxv

)
∈ I≺⋄xuxvxw

, if and only if J(u < v < w) ∈
I≺⋄xuxvxw

.

Proof. We calculate in k〈XL,Γ〉

J(u < v < w) = cρ(u|v)xw − quv,wxwc
ρ

(u|v) −
(
xuc

ρ

(v|w) − qu,vwc
ρ

(v|w)xu

)

+ qu,vxv

(
xuxw − qu,wxwxu

)
− qv,w

(
xuxw − qu,wxwxu

)
xv,

a = cρ(u|v)xw + qu,vxvxuxw − xuc
ρ

(v|w) − qv,wxuxwxv,

and show that the difference is zero modulo I≺⋄xuxvxw
:

J(u < v < w)− a = quv,wxw

(
xuxv − cρ(u|v)

)
+ qu,vw

(
cρ(v|w) − xvxw

)
xu

= quv,wxw

(
qu,vxvxu

)
− qu,vw

(
qv,wxwxv

)
xu = 0.

since xwxuxv, xvxwxu ≺⋄ xuxvxw.

Lemma 7.2. The overlaps
(
xNu−1
u , xu, xv

)
resp.

(
xu, xv, x

Nv−1
v

)
fulfill condition 6.1(1a),

i.e., dρuxv − xNu−1
u

(
cρ(u|v) + qu,vxvxu

)
∈ I≺⋄x

Nu
u xv

resp.
(
cρ(u|v) + quvxvxu

)
xNv−1
v − xud

ρ
v ∈

I≺⋄xux
Nv
v

if and only if L(u, u < v) ∈ I≺⋄x
Nu
u xv

resp. L(u, u > v) ∈ I≺⋄xvx
Nu
u
.

Proof. We prove it for
(
xNu−1
u , xu, xv

)
; the other overlap is proved analogously. We set

r := Nu − 1, then ord qu,u = r + 1. Using the q-Leibniz formula of Proposition 1.2 we get

xr
u

(
cρ(u|v) + qu,vxvxu

)
− dρuxv =

=
[
xr
u, c

ρ

(u|v)

]
qru,uqu,v

+ qru,uqu,vc
ρ

(u|v)x
r
u

+ qu,v
[
xr
u, xv

]
qru,v

xu + qr+1
u,v xvx

r+1
u − dρuxv

=
r∑

i=0

qiu,uq
i
u,v

(
r

i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−i
u,u qu,v

xi
u

+

r−1∑

i=0

qi+1
u,v

(
r

i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, xv]qu,v . . .
]
qr−i−1
u,u qu,v

xi+1
u + qr+1

u,v xvx
r+1
u − dρuxv.

Because of xr−i
u xvx

i+1
u ≺⋄ x

r+1
u xv for all 0 ≤ i ≤ r, this is modulo I≺⋄x

r+1
u xv

equal to

r∑

i=0

qiu,uq
i
u,v

(
r

i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−i
u,u qu,v

xi
u

+

r−1∑

i=0

qi+1
u,v

(
r

i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i−1

, cρ(u|v)]qu,uqu,v . . .
]
qr−i−1
u,u qu,v

xi+1
u −

[
dρu, xv

]
qr+1
u,v

.
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Now shifting the index of the second sum, we obtain

[
xu, . . . [xu︸ ︷︷ ︸

r

, cρ(u|v)]qu,uqu,v . . .
]
qru,uqu,v

−
[
dρu, xv

]
qr+1
u,v

+
r∑

i=1

qiu,v

(
qiu,u

(
r

i

)
qu,u

+
(

r

i−1

)
qu,u

)[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−i
u,u qu,v

xi
u.

Finally we obtain the claim, since qiu,u
(
r

i

)
qu,u

+
(

r

i−1

)
qu,u

=
(
r+1
i

)
qu,u

= 0 for all 1 ≤ i ≤ r,

by Eq. (1.2) and ord qu,u = r + 1.

Lemma 7.3. The overlaps
(
xNu−i
u , xi

u, x
Nu−i
u

)
fulfill condition 6.1(1a) for all 1 ≤ i < Nu,

if and only if the overlap
(
xNu−1
u , xu, x

Nu−1
u

)
fulfills condition 6.1(1a), if and only if L(u) ∈

I≺⋄x
Nu+1
u

.

Proof. This is evident.

• We are left to prove the equivalence of (2) to its weaker version (2’) of Theorem 4.2: For
(2’a) we show that if uv ∈ L and Sh(uv) = (u|v), then conditon (2a) is already fulfilled:
By definition cρ(u|v) = xuv and

[
cρ(u|v), xw

]
quv,w

=
[
xuv, xw

]
= cρ(uv|w)

modulo I≺xuxvxw
. Now certainly Sh(uvw) 6= (uv|w), thus

cρ(uv|w) = ∂ρ
u(c

ρ

(v|w)) + qv,wc
ρ

(u|w)xv − qu,vxvc
ρ

(u|w)

by Eq. (4.1). Hence in this case the q-Jacobi condition is fulfilled by the q-derivation
formula of Proposition 1.2.

For (2’b) of Theorem 4.2 it is enough to show the following: Let condition (2bi) hold
for u = v, i.e., [xu, d

ρ
u]1 ∈ I≺x

Nu+1
u

. Then, if condition (2bi) holds for some u < v with
Nu < ∞, then (2bi) also holds for u < uv (whenever uv ∈ L). Analogously, if (2bii) holds
for v < u with Nu < ∞, then also (2bii) holds for vu < u (whenever vu ∈ L).

Note that if u < v, then uv < v: Either v does not begin with u, then uv < v; or let
v = uw for some w ∈ 〈X〉. Then u < v = uw < w since v ∈ L. Hence uv = uuw < uw = v.

We will prove the first part (2’bi), (2’bii) is the same argument. But before we formulate
the following

Lemma 7.4. Let a ∈ k〈XL〉#k[Γ], A,W ∈ 〈XL〉 such that a �L A ≺ W . Then a ∈ I≺W

if and only if a ∈ I�A.

Proof. Clearly I�A ⊂ I≺W , since A ≺ W . So denote by {(Wσ, fσ) | σ ∈ Σ} the set of
Eqs. (7.4) and (7.5) with fσ ≺L Wσ, and let a ∈ I≺W , i.e., a is a linear combination of
Ug(Wσ−fσ)V h with U, V ∈ 〈XL〉 such that UWσV ≺ W . Denote by E the ≺-biggest word
of all UWσV with non-zero coefficient. E ≻ A contradicts the assumption a �L A ≺ W .
Hence E � A and therefore f ∈ I�A.
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Suppose (2bi) for u < v with Nu < ∞ and uv ∈ L, i.e.,
[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, xuv]qu,uqu,v . . .
]
q
Nu−1
u,u qu,v

− [dρu, xv]qNu
u,v

∈ I≺x
Nu
u xv

⇔
[
xu, . . . [xu︸ ︷︷ ︸

Nu−2

, cρ(u|uv)]q2u,uqu,v . . .
]
q
Nu−1
u,u qu,v

− [dρu, xv]qNu
u,v

∈ I�x
Nu−1
u xwUxv

,

for some w ∈ L with w > u and U ∈ 〈XL〉 such that ℓ(U)+ ℓ(w) = ℓ(u). Here we used the
relation [xu, xuv]qu,uv −cρ(u|uv), and Lemma 7.4 since the above polynomial is � xNu−1

u xwUxv

(by assumption c(u|uv) �L [uuv], du ≺L [u]Nu). Hence the condition (2bi) for u < uv reads
[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, cρ(u|uv)]q2u,uqu,v . . .
]
q
Nu
u,uqu,v

− [dρu, xuv]qNu
u,uq

Nu
u,v

∈ I≺x
Nu
u xuv

⇔
[
xu, [d

ρ
u, xv]qNu

u,v

]
q
Nu
u,uqu,v

− [dρu, xuv]qNu
u,uq

Nu
u,v

∈ I≺x
Nu
u xuv

,

since xuI�x
Nu−1
u xwUxv

, I�x
Nu−1
u xwUxv

xu ⊂ I≺x
Nu
u xuv

(w > u and w cannot begin with u since
ℓ(w) ≤ ℓ(u), hence w > uv. By the q-Jacobi identity

[
xu, [d

ρ
u, xv]qNu

u,v

]
q
Nu
u,uqu,v

=
[
[xu, d

ρ
u]qNu

u,u
, xv

]
q
Nu+1
u,v

+ qNu
u,ud

ρ
u[xu, xv]− qNu

u,v [xu, xv]d
ρ
u

=
[
[xu, d

ρ
u]1, xv

]
q
Nu+1
u,v

+ [dρu, xuv]qNu
u,v

= [dρu, xuv]qNu
u,v
.

For the last two “=” we used qNu
u,u = 1, the relation [xu, xv] − xuv and [xu, d

ρ
u]1 ∈ I≺x

Nu+1
u

(We can use this condition: Note that [xu, d
ρ
u]1 � xNu

u xw′U ′ for some w′ ∈ L, w′ > u,
U ′ ∈ 〈XL〉, ℓ(U

′) + ℓ(w′) = ℓ(u), hence [xu, d
ρ
u]1 ∈ I�x

Nu
u xw′U ′ by Lemma 7.4. Therefore

xvI�x
Nu
u xw′U ′ , I�x

Nu
u xw′U ′xv ⊂ I≺x

Nu
u xuv

, like before).

8 PBW basis in rank one

We want to apply the PBW basis criterion to Hopf algebras of rank one and two for some
fixed L ⊂ L. Especially we want to treat liftings of Nichols algebras. Therefore we define
the following scalars which will guarantee a Γ̂-graduation:

Definition 8.1. Let L ⊂ L. Then we define coefficients µu ∈ k for all u ∈ D(L), and
λw ∈ k for all w ∈ C(L) by

µu = 0, if gNu

u = 1 or χNu

u 6= ε, λw = 0, if gw = 1 or χw 6= ε,

and otherwise they can be chosen arbitrarily.

In this section let V be a 1-dimensional vector space with basis x1 and ordq11 = N ≤ ∞.
Since T (V ) ∼= k[x1] we have L = {x1}. We give the condition when (T (V )#k[Γ])/

(
xN
1 −d1

)

has the PBW basis {x1}. By the PBW Criterion 4.2 the only condition in k[x1]#k[Γ] is

[dρ1, x1]1 ∈ I≺xN+1
1

.
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Examples 8.2. Let char k = 0 and q ∈ k
× with ordq = N ≥ 2.

1. Nichols algebra A1. T (V )/
(
xN
1

)
has basis {xr

1 | 0 ≤ r < N}.

2. Taft Hopf algebra. Let Z/(N) = 〈g1〉 and χ1(g1) := q. The set {xr
1g | 0 ≤ r < N, g ∈

Z/(N)} is a basis of T (q) ∼=
(
k[x1]#k[Z/(N)]

)/
(xN

1 ).

3. Radford Hopf algebra. Let Z/(N2) = 〈g1〉 and χ1(g1) := q. The set {xr
1g | 0 ≤ r <

N, g ∈ Z/(N2)} is a basis of r(q) ∼= (k[x1]#k[Z/(N2)])/(xN
1 − (1− gN1 )).

4. Liftings A1. The set {x
r
1g | 0 ≤ r < N, g ∈ Γ} is a basis of (T (V )#k[Γ])/

(
xN
1 −µ1(1−

gN1 )
)
,

Proof. (1) and (2) clearly fulfill the only condition above, since d1 = 0.
(3) is a special case of (4): It is d1 ∈ (k〈X〉#k[Γ])χ

N
1 by Definition 8.1 of µ1. Further

[
µ1(1− gN1 ), x1

]
1
= µ1

[
1, x1

]
1
− µ1

[
gN1 , x1

]
1
= −µ1(q

N
11 − 1)x1g

N
1 = 0,

since ordq11 = N .

9 PBW basis in rank two and redundant relations

Let V be a 2-dimensional vector space with basis x1, x2, hence T (V ) ∼= k〈x1, x2〉. In this
chapter we apply the PBW Criterion 4.2 to verify for certain L ⊂ L that the algebra

(T (V )#k[Γ])/I,

with I as in Section 3.2, has the PBW basis [L]. In particular, we examine the Nichols
algebras and their liftings of [9]. Moreover, we will see how to find the redundant relations,
and in addition, we will treat some classical examples.

9.1 PBW basis for L = {x1 < x2}

This is the easiest case and covers the Cartan Type A1×A1, as well as many other examples.
We are interested when [L] builds up a PBW Basis of

(T (V )#k[Γ])/
(
[x1x2]− c12, x

N1
1 − d1, x

N2
2 − d2

)
,

with N1 = ordq11, N2 = ordq22 ∈ {2, 3, . . . ,∞}. If N1 = N2 = ∞, then by the PBW
Criterion 4.2 there is no condition in k〈x1, x2〉#k[Γ] such that we can choose c12 arbitrarily
with c12 ≺L [x1x2] and degΓ̂(c12) = χ1χ2:

Examples 9.1.

1. Quantum plane. The set {xr2
2 xr1

1 | r2, r1 ≥ 0} is a basis of Q(q12) ∼= T (V )/([x1x2]).
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2. Weyl algebra. If q12 = 1, then {xr2
2 xr1

1 | r2, r1 ≥ 0} is a basis ofW ∼= T (V )/([x1x2]−1).

If ordq11 = N1 < ∞ or ordq22 = N2 < ∞, then by the PBW Criterion 4.2 we have to
check

[
dρ1, x1

]
1
∈ I

≺x
N1+1
1

, or
[
dρ2, x2

]
1
∈ I

≺x
N2+1
2

, and (9.1)
[
x1, . . .

[
x1︸ ︷︷ ︸

N1−1

, cρ12
]
q11q12

. . .
]
q
N1−1
11 q12

−
[
dρ1, x2

]
q
N1
12

∈ I
≺x

N1
1 x2

, or (9.2)

[
. . .

[
cρ12, x2

]
q12q22

. . . , x2︸ ︷︷ ︸
N2−1

]
q12q

N2−1
22

−
[
x1, d

ρ
2

]
q
N2
12

∈ I
≺x1x

N2
2
. (9.3)

Examples 9.2. Let λ12, µ1, µ2 ∈ k as in Definition 8.1.

1. Nichols algebra A1 × A1. Let q12q21 = 1, then {xr2
2 xr1

1 | 0 ≤ ri < Ni} is a basis of

T (V )/
(
[x1x2], x

N1
1 , xN2

2

)
.

2. Liftings A1 × A1. Let q12q21 = 1, then {xr2
2 xr1

1 g | 0 ≤ ri < Ni, g ∈ Γ} is a basis of

(T (V )#k[Γ])/
(
[x1x2]− λ12(1− g12), x

N1
1 − µ1(1− gN1

1 ), xN2
2 − µ2(1− gN2

2 )
)
.

3. Book Hopf algebra. Let q ∈ k
× with ordq = N > 2, Z/(N) = 〈g1〉, g := g2 := g2, and

χ1(gi) := q−1, χ2(gi) := q for i = 1, 2. Then {xr2
2 xr1

1 g | 0 ≤ ri < N, g ∈ Γ} is a basis
of h(1, q) ∼=

(
k〈x1, x2〉#k[Z/(N)]

)
/
(
[x1x2], xN

1 , xN
2

)
.

4. Frobenius-Lusztig kernel. Let q ∈ k
× with ordq = N > 2, Z/(N) = 〈g1〉, g := g2 :=

g1, and χ1(gi) := q−2, χ2(gi) := q2 for i = 1, 2. Then {xr2
2 xr1

1 g | 0 ≤ ri < N, g ∈ Γ} is
a basis of uq(sl2) ∼=

(
k〈x1, x2〉#k[Z/(N)]

)
/
(
[x1x2]− (1− g2), xN

1 , xN
2

)
.

Proof. In (1) it is d1 = d2 = c12 = 0. (3) and (4) are special cases of (2): By definition of

λ12, µ1, µ2 the elements have the required Γ̂-degree. As in Example 9.1 we show conditions
Eq. (9.1). Eq. (9.2): We have χ1χ2 = ε if λ12 6= 0, hence q11q12 = 1 and then q11 =
q11q12q21 = q21, since q12q21 = 1. Using these equations we calculate

[
x1, . . .

[
x1︸ ︷︷ ︸

N1−1

, λ12(1 − g1g2)
]
q11q12

. . .
]
q
N1−1
11 q12

= −λ12(1 − q211) . . . (1 − qN1
11 )x

N1−1
1 g1g2 = 0.

Further χNi

i = ε if µ1 6= 0, thus qN1
21 = 1; by taking q12q21 = 1 to the N1-th power, we

deduce qN1
12 = 1. Then

[
µ1(1− gN1

1 ), x2

]
q
N1
12

= µ1(1− qN1
12 )x2 = 0. The remaining condition

Eq. (9.3) works in a similar way.
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9.2 PBW basis for L = {x1 < x1x2 < x2}

We now examine the case when [L] is a PBW Basis of (T (V )#k[Γ])/I, where I is generated
by the following elements

[x1x1x2]− c112, xN1
1 − d1,

[x1x2x2]− c122, [x1x2]
N12 − d12,

xN2
2 − d2,

with ordq11 = N1, ordq12,12 = N12, ordq22 = N2 ∈ {2, 3, . . . ,∞}. We have in k〈x1, x12, x2〉#k[Γ]
the elements

cρ(1|12) = cρ112, cρ(1|2) = x12, cρ(12|2) = cρ122.

At first we want to study the conditions in general. By Theorem 4.2(2’) we have to check
the following: The only Jacobi condition is for 1 < 12 < 2, namely

[
cρ112, x2

]
q112,2

−
[
x1, c

ρ
122

]
q1,122

+ (q1,12 − q12,2)x
2
12 ∈ I≺x1x12x2. (9.4)

There are the following restricted q-Leibniz conditions: If N1 < ∞, then we have to check
Eqs. (9.1) and (9.2) for 1 < 2; note that we can omit the restricted Leibniz condition for
1 < 12 in (2’) of Theorem 4.2. In the same way if N2 < ∞, then there are the conditions
Eqs. (9.1) and (9.3) for 1 < 2; we can omit the condition for 12 < 2. Further Eq. (9.2)
resp. (9.3) is equivalent to

[
x1, . . . [x1︸ ︷︷ ︸

N1−2

, cρ112]q211q12 . . .
]
q
N1−1
11 q12

− [dρ1, x2]qN1
12

∈ I
≺x

N1
1 x2

, (9.5)

[
. . . [cρ122, x2]q12q222 . . . , x2︸ ︷︷ ︸

N2−2

]
q12q

N2−1
22

− [x1, d
ρ
2]qN2

12
∈ I

≺x1x
N2
2
. (9.6)

In the case N1 = 2 resp. N2 = 2 then condition Eq. (9.5) resp. (9.6) is

cρ112 − [dρ1, x2]q212 ∈ I≺x2
1x2

resp. cρ122 − [x1, d
ρ
2]q212 ∈ I≺x1x

2
2
.

Here we see with Corollary 5.6 that by the restricted q-Leibniz formula [x1x1x2] − c112 ∈
(x2

1−d1) resp. [x1x2x2]−c122 ∈ (x2
2−d2), hence these two relations are redundant. Suppose

[d1, x2]q212 ≺L [x1x1x2] resp. [x1, d2]q212 ≺L [x1x2x2]. Thus if we define

cρ112 := [dρ1, x2]q212 resp. cρ122 := [x1, d
ρ
2]q212 , (9.7)

then condition Eq. (9.5) resp. (9.6) is fulfilled.
Finally, if N12 < ∞, then there are the conditions

[
dρ12, x12

]
1
∈ I

≺x
N12+1
12

,
[
. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸

N12−1

]
q1,12q

N12−1
12,12

− [x1, d
ρ
12]qN12

1,12
∈ I

≺x1x
N12
12

,

[
x12, . . . [x12︸ ︷︷ ︸

N12−1

, cρ122]q12,12q12,2 . . .
]
q
N12−1
12,12 q12,2

− [dρ12, x2]qN12
12,2

∈ I
≺x

N12
12 x2

.

(9.8)
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Now we want to take a closer look at Eq. (9.4). Essentially, there are two cases: If
q11 = q22 we set q := q112,2 = q1,122 and then Eq. (9.4) reads

[
cρ112, x2

]
q
−
[
x1, c

ρ
122

]
q
∈ I≺x1x12x2. (9.9)

Else if q11 6= q22. Suppose N12 = ordq12,12 = 2, then we define

d12 := −(q1,12 − q12,2)
−1
([
c112, x2

]
q1,2q12,2

−
[
x1, c122

]
q1,122

)
.

It is [x1x2]
2 − d12 ∈

(
[x1x1x2]− c112, [x1x2x2]− c122

)
by the q-Jacobi identity, see Eq. (9.4)

and Corollary 5.6, i.e., this relation is redundant. Further d12 ∈ (k〈X〉#k[Γ]))χ
2
12 . Let us

assume that d12 ≺L [x1x2]
2, e.g., c122, c112 are linear combinations of monomials of length

< 3. Then for

dρ12 := −(q1,12 − q12,2)
−1
([
cρ112, x2

]
q1,2q12,2

−
[
x1, c

ρ
122

]
q1,122

)
(9.10)

condition Eq. (9.4) is fulfilled.
As a demonstration we want to proof that the Hopf algebras coming from liftings of

a Nichols algebra with Cartan matrix A2 [9, Thm. 5.9], admit a PBW basis [L] (this is
already known for liftings of Nichols algebras of Cartan type A2 [2], but not for non-Cartan
type):

Proposition 9.3 (Liftings A2). Consider the Hopf algebras (k〈x1, x2〉#k[Γ])/I where I
depends upon (qij) as follows:

(1) Cartan type A2: q12q21 = q−1
11 = q−1

22 .
(a) If q11 = −1, then let I be generated by

x2
1 − µ1(1− g21), [x1x2]

2 − 4µ1q21x
2
2 − µ12(1− g212), x2

2 − µ2(1− g22).

(b) If ordq11 = 3, then let I be generated by

[x1x1x2]− λ112(1− g112), [x1x2x2]− λ122(1− g122),

x3
1 − µ1(1− g31),

[x1x2]
3 + (1− q11)q11λ112[x1x2x2]

− µ1(1− q11)
3x3

2 − µ12(1− g312),

x3
2 − µ2(1− g32).

(c) If N := ordq11 ≥ 4, then then let I be generated by, see [2],

[x1x1x2], [x1x2x2],

xN
1 − µ1(1− gN1 ),

[x1x2]
N − µ1(q11 − 1)Nq

N(N−1)
2

21 xN
2 − µ12(1− gN12),

xN
2 − µ2(1− gN2 ).
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(2) Let q12q21 = q−1
11 , q22 = −1.

(a) If 4 6= N := ordq11 ≥ 3, then let I be generated by

[x1x1x2], xN
1 − µ1(1− gN1 ), x2

2 − µ2(1− g22).

(b) If ordq11 = 4, then let I be generated by

[x1x1x2]− λ112(1− g112), x4
1 − µ1(1− g41), x2

2 − µ2(1− g22).

(3) Let q11 = −1, q12q21 = q−1
22 .

(a) If 4 6= N := ordq22 ≥ 3, then let I be generated by

[x1x2x2], x2
1 − µ1(1− g21), xN

2 − µ2(1− gN2 ).

(b) If ordq22 = 4, then let I be generated by

[x1x2x2]− λ122(1− g122), x2
1 − µ1(1− g21), x4

2 − µ2(1− g42).

(4) Let q11 = q22 = −1 and N := ordq12q21 ≥ 3.
(a) If q12 6= ±1, then let I be generated by

x2
1 − µ1(1− g21), [x1x2]

N − µ12(1− gN12), x2
2.

(b) If q12 = ±1, then let I be generated by

x2
1, [x1x2]

N − µ12(1− gN12), x2
2 − µ2(1− g22).

All of these Hopf algebras have basis {xr2
2 [x1x2]

r12xr1
1 g | 0 ≤ ru < Nu for all u ∈ L, g ∈ Γ}.

Proof. Note that all defined ideals are Γ̂-homogeneous by the definition of the coefficients.
The conditions Eq. (9.1) are exactly as in Example 9.1.

(1a) We have N1 = N2 = N12 = 2. Since dρ1 = µ1(1 − g21) we have by the argument
preceding Eq. (9.7), that necessarily

c112 = [µ1(1− g21), x2]q212 and c122 = [x1, µ2(1− g22)]q212

and the conditions Eqs. (9.5) and (9.6) are fulfilled. Note that c112 = µ1(1 − q212)x2 = 0:
either µ1 = 0 or else µ1 6= 0, but then χ2

1 = ε and q221 = 1. By squaring the assumption
q12q21 = −1, we obtain q212 = 1. In the same way c122 = 0.

Then the conditions Eq. (9.8) are

[
4µ1q21x

2
2 + µ12(1− g212), x12

]
1
∈ I≺x3

12

[0, x12]q1,12q12,12 − [x1, 4µ1q21x
2
2 + µ12(1− g212)]q21,12 ∈ I≺x1x

2
12
,

[x12, 0]q12,12q12,2 − [4µ1q21x
2
2 + µ12(1− g212), x2]q212,2 ∈ I≺x2

12x2
.
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Again, if µ1 6= 0, then q212 = q221 = 1, hence q21,12 = 1 and q22,12 = 1. If µ12 6= 0, then χ2
12 = ε

and q21,12 = 1; in this case also q212 = q221 = 1. Thus modulo I≺x3
12

we have

[
4µ1q21x

2
2 + µ12(1− g212), x12

]
1
= 4µ1q21

[
x2
2, x12

]
1
− µ12(q

2
12,12 − 1)x12g

2
12

= 4µ1µ2q21
[
1− g22, x12

]
1
= −4µ1µ2q21(q

2
2,12 − 1)x12g

2
2 = 0.

Further modulo I≺x1x
2
12

we get

[x1, 4µ1q21x
2
2 + µ12(1− g212)]1 = 4µ1q21[x1, x

2
2]1 + µ12[x1, 1− g212]1

= 4µ1q21c
ρ
122 − µ12(1− q212,1)x1g

2
12 = 0,

which means that the second condition is fulfilled. The third one of Eq. (9.8) works
analogously.

The last condition is Eq. (9.4), or equivalently condition Eq. (9.9) since q11 = q22:

[
0, x2

]
q
−
[
x1, 0

]
q
= 0 ∈ I≺x1x12x2 .

(1b) Either λ112 = λ122 = 0, or χ112 = ε and/or χ122 = ε, from where we conclude
q := q11 = q12 = q21 = q22. We start with Eq. (9.4): Since q3 = 1 we have

[
λ112(1 −

g112), x2

]
1
−
[
x1, λ122(1− g122)

]
1
= 0. We continue with Eq. (9.5): Either µ1 = 0 or χ3

1 = ε,

hence q321 = 1 and then also q312 = (q12q21)
3 = q−3

11 = 1. Then
[
x1, λ112(1 − g112)

]
1
−

[µ1(1 − g31), x2]1 = 0. Next, Eq. (9.6): In the same way, µ2 6= 0 or q321 = q312 = 1. Then[
λ122(1− g122), x2

]
1
− [x1, µ2(1− g32)]1 = 0. For Eq. (9.8) we have q31,12 = 1 if µ12 6= 0. Thus

q312 = 1, moreover q321 = (q12q21)
3 = q−3

11 = 1. Hence modulo I≺x1x
3
12

we have

[
[λ112(1− g112), x12]q1,12q12,12 , x12

]
q1,12q

2
12,12

−
[
x1,−(1 − q11)q11λ112λ122(1− g122) + µ1(1− q11)

3x3
2 + µ12(1− g312)

]
q31,12

= 0,

since each summand is zero. Further a straightforward calculation shows

[
x12, [x12, λ122(1− g122)]q12,12q12,2

]
q212,12q12,2

−
[
−(1− q11)q11λ112λ122(1− g122) + µ1(1− q11)

3x3
2 + µ12(1− g312), x2

]
q212,2

= 0.

Finally, an easy calculation shows that

[
−(1 − q11)q11λ112λ122(1− g122) + µ1(1− q11)

3x3
2 + µ12(1− g312), x12

]
1
= 0

modulo I≺x4
12
, again by definition of the coefficients.

(1c) is a generalization of (1a) (and (1b) if λ112 = λ122 = 0) and works completely in
the same way (only the Serre-relations [x1x1x2] = [x1x2x2] = 0 are not redundant, as they
are (1a)). We leave this to the reader.
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(2a) We leave this to the reader and prove the little more complicated (2b): Since
we have N2 = 2, as in (1a) we deduce from Eq. (9.7), that c122 = [x1, µ2(1 − g22)]q212 =

µ2(q
2
21 − 1)x1g

2
2 and the condition Eq. (9.6) is fulfilled.

If λ112 6= 0 then q11 = q21 of order 4, q12 = q22 = −1; if µ1 6= 0 then q412 = 1. Then
Eq. (9.5) is fulfilled:

[
x1, [x1, λ112(1−g112)]1

]
q11

−[µ1(1−g41), x2]1 = 0, since both summands
are zero.

It is q11 6= q22, ordq12,12 = 2 and cρ112 resp. cρ122 are linear combinations of monomials of
length 0 resp. 1. By the discussion before Eq. (9.10), we see that [x1x2]

2−d12 is redundant
and for

dρ12 := −(q1,12 − q12,2)
−1
([
λ112(1− g112), x2

]
−1

−
[
x1, µ2(q

2
21 − 1)x1g

2
2

]
q11

)

= −q−1
12 (q11 + 1)−1

(
λ1122x2 − µ2 (q

2
21 − 1)(1− q11q

2
21)︸ ︷︷ ︸

=:q

x2
1g

2
2

)

the condition Eq. (9.4) is fulfilled. We are left to show the conditions Eq. (9.8)
[
dρ12, x12

]
1
∈

I≺x3
12
,

[
cρ112, x12

]
q112,12

−
[
x1, d

ρ
12

]
q21,12

∈ I≺x1x
2
12

and
[
x12, c

ρ
122

]
q12,122

−
[
dρ12, x2

]
q212,2

∈ I≺x2
12x2

.

We calculate the first one: Modulo I≺x3
12

we get

[
dρ12, x12

]
1
= −q−1

12 (q11 + 1)−1
(
−λ1122

[
x12, x2

]
1︸ ︷︷ ︸

=c
ρ
122

−µ2q
[
x2
1g

2
2, x12

]
1︸ ︷︷ ︸

=q221[x
2
1,x12]q2

1,12
g22

)
.

Now by the q-derivation property [x2
1, x12]q21,12 = x1c

ρ
112 + q1,12c

ρ
112x1 = λ112(1 − q11)x1.

Because of the coefficient λ112 the two summands in the parentheses have the coefficient
±4λ112µ2, hence cancel. (3) works exactly as (2).

(4a) Since we have N1 = N2 = 2, as in (1a) we deduce from Eq. (9.7), that

c112 = [µ1(1− g21), x2]q212 = µ1(1− q212)x2 and c122 = [x1, 0]q212 = 0

and the conditions Eqs. (9.5) and (9.6) are fulfilled.
For the second condition of Eq. (9.8) one can easily show by induction

[
. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸

N−1

]
q1,12q

N−1
12,12

= µ1(1− q212)
[
. . . [x2, x12]q11q212=q21 . . . , x12︸ ︷︷ ︸

N−1

]
q11q

N
12q

N−1
21

= µ1

N−1∏

i=0

(1− qi+2
12 qi21)x2x

N−1
12 = 0.

The last equation holds since for i = N − 2 we have 1 − qN12q
N−2
21 = 0: if µ1 6= 0 then

q221 = 1 and (q12q21)
N = qN12,12 = 1. Further also [x1, d

ρ
12]qN1,12 = [x1, µ12(1 − gN12)]1 =
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−µ12(1 − qN12,1)x1g
N
12 = 0, since either µ12 = 0 or qN12 = qN21 = (−1)N such that qN12,1 =

(−1)N(−1)N = 1. This proves the second condition of Eq. (9.8). The third of Eq. (9.8) is
easy since c122 = 0, and the first of Eq. (9.8) is a direct computation.

Finally, Eq. (9.4) is Eq. (9.9), since q11 = q22:
[
µ1(1− q212)x2, x2

]
q112,2

−
[
x1, 0

]
q1,122

= 0

because of the relation x2
2 = 0.

(4b) works analogously to (4a). Note that here c112 = 0 and c122 = [x1, µ2(1 − g22)]1 =
µ2(q

2
21 − 1)x1g

2
2.

9.3 PBW basis for L = {x1 < x1x1x2 < x1x2 < x2}

This PBW basis [L] occurs in the Nichols algebras with Cartan matrix B2 and their liftings
[9, Prop. 5.11,Thm. 5.13]. More generally, we list the conditions when [L] is a PBW Basis
of (T (V )#k[Γ])/I where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x2x1x2]− c11212, [x1x1x2]
N112 − d112,

[x1x2x2]− c122, [x1x2]
N12 − d12,

xN2
2 − d2.

In k〈x1, x112, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by ℓ(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(12|2) = cρ122, cρ(112|12) = cρ11212,

cρ(1|12) = x112, cρ(1|112) = cρ1112,

and for Sh(1122) 6= (112|2) by Eq. (4.1)

cρ(112|2) = ∂ρ
1 (c

ρ

(12|2)) + q12,2c
ρ

(1|2)x12 − q1,12x12c
ρ

(1|2),

= ∂ρ
1 (c

ρ
122) + (q12,2 − q1,12)x

2
12.

We have for 1 < 112 < 2, 1 < 112 < 12 and 112 < 12 < 2 the following q-Jacobi conditions
(note that we can leave out 1 < 12 < 2):

[
cρ1112, x2

]
q1112,2

−
[
x1, c

ρ

(112|2)

]
q1,1122

+ q1,112x112[x1, x2]− q112,2[x1, x2]x112 ∈ I≺x1x112x2

⇔
[
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(c

ρ
122)

]
q1,1122

− (q12,2 − q1,12)c
ρ
11212 − (q12,2 − q1,12)q1,12(q12,12 + 1)x12x112

+ q1,112c
ρ
11212 + q112,2(q1,112q112,1 − 1)x12x112 ∈ I≺x1x112x2

⇔
[
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(c

ρ
122)

]
q1,1122

+ q12(q
2
11 − q22 + q11)︸ ︷︷ ︸

=:q

cρ11212

+ q212(q22(q
4
11q12q21 − 1)− q11(q22 − q11)(q12,12 + 1))︸ ︷︷ ︸

=:q′

x12x112 ∈ I≺x1x112x2

(9.11)
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If q 6= 0, we see that [x1x1x2x1x2]−c11212 ∈
(
[x1x1x1x2]−c1112, [x1x2x2]−c122

)
is redundant

with
c11212 = −q−1

([
c1112, x2

]
q1112,2

−
[
x1, ∂1(c122)

]
q1,1122

+ q′[x1x2][x1x1x2]
)

by Corollary 5.6 and the q-Jacobi identity of Proposition 1.2. We have degΓ̂(c11212) =
χ11212; suppose that c11212 ≺L [x1x1x2x1x2] (e.g. c1112 resp. c122 are linear combinations of
monomials of length < 4 resp. < 3) then condition Eq. (9.11) is fulfilled for

cρ11212 := −q−1
([
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(c

ρ
122)

]
q1,1122

+ q′x12x112

)
.

There are three cases, where the coefficients q, q′ are of a better form for our setting: Since

q = q12
(
(3)q11 − (2)q22

)
, q′ = q12

(
q(1 + q211q12q21q22)− q11q12(2)q22

)
,

we have

q = q12q11 6= 0, q′ = −q12q
2
11q(1− q211q12q21), if q211 = q22,

q = q12(3)q11, q′ = q12q(1− q211q12q21), if q22 = −1,

q = −q12(2)q22, q′ = −q12q(1 + q11 + q211q12q21q22), if ordq11 = 3.

The second q-Jacobi condition for 1 < 112 < 12 reads
[
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

+ q1,112x112[x1, x12]− q112,12[x1, x12]x112 ∈ I≺x1x112x12

⇔
[
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

+ q211q12(1− q12q21q22)︸ ︷︷ ︸
=:q′′

x2
112 ∈ I≺x1x112x12

(9.12)

If q′′ 6= 0 then we see that [x1x1x2]
2 − d112 ∈

(
[x1x1x1x2] − c11212, [x1x1x2x1x2] − c11212

)

is redundant with d112 = −q′′−1
([
c1112, [x1x2]

]
q1112,12

−
[
x1, c11212

]
q1,11212

)
by Corollary 5.6

and the q-Jacobi identity of Proposition 1.2. It is degΓ̂(d112) = χ2
112; suppose that d112 ≺L

[x1x1x2]
2 then condition Eq. (9.13) is fulfilled for

dρ112 := −q′′−1
([
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

)

If further ordq112,112 = 2 then we have to consider the restricted q-Leibniz conditions for
dρ112 (see below).

The last q-Jacobi condition for 112 < 12 < 2 is
[
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12[x112, x2]− q12,2[x112, x2]x12 ∈ I≺x112x12x2

⇔
[
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12∂
ρ
1(c

ρ
122)− q12,2∂

ρ
1(c

ρ
122)x12

+ q212q22(q22 − q11)(q
2
11q12q21 − 1)︸ ︷︷ ︸

=:q′′′

x3
12 ∈ I≺x112x12x2

(9.13)
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If q′′′ 6= 0 then we see that [x1x2]
3 − d12 ∈

(
[x1x1x2x1x2]− c11212, [x1x2x2]− c122

)
is redun-

dant with d12 := −q′′′−1
([
c11212, x2

]
q11212,2

−
[
[x1x1x2], c122

]
q112,122

+ q112,12[x1x2]∂1(c122) −

q12,2∂1(c122)[x1x2]
)
by Corollary 5.6 and the q-Jacobi identity of Proposition 1.2. It is

degΓ̂(d12) = χ3
12; suppose that d12 ≺L [x1x1]

3 (e.g., c11212 resp. c122 are linear combinations
of monomials of length < 5 resp. < 3) then condition Eq. (9.13) is fulfilled for

dρ12 : = −q′′−1
([
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12∂
ρ
1(c

ρ
122)− q12,2∂

ρ
1(c

ρ
122)x12

)

If further ordq12,12 = 3 then we have to consider the q-Leibniz conditions for dρ12 (see below).
There are the following restricted q-Leibniz conditions: If N1 < ∞, then

[
dρ1, x1

]
1
∈

I
≺x

N1+1
1

and for 1 < 2 (we can omit 1 < 12, 1 < 112)

[
x1, . . . [x1︸ ︷︷ ︸

N1−3

, cρ1112]q311q12 . . .
]
q
N1−1
11 q12

− [dρ1, x2]qN1
12

∈ I
≺x

N1
1 x2

. (9.14)

If N2 < ∞, then
[
dρ2, x2

]
1
∈ I

≺x
N2+1
2

and for 1 < 2 (we can omit 12 < 2, 112 < 2)

[
. . . [cρ122 x2]q12q222 . . . , x2︸ ︷︷ ︸

N2−2

]
q12q

N2−1
22

− [x1, d
ρ
2]qN2

12
∈ I

≺x1x
N2
2
. (9.15)

If N12 < ∞, then
[
dρ12, x12

]
1
∈ I

≺x
N12+1
12

and for 1 < 12, 12 < 2 (we can omit 112 < 12)

[
. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸

N12−1

]
q1,12q

N12−1
12,12

− [x1, d
ρ
12]qN12

1,12
∈ I

≺x1x
N12
12

,

[
x12, . . . [x12︸ ︷︷ ︸

N12−1

, cρ122]q12,12q12,2 . . .
]
q
N12−1
12,12 q12,2

− [dρ12, x2]qN12
12,2

∈ I
≺x

N12
12 x2

.
(9.16)

If N112 < ∞, then
[
dρ112, x112

]
1
∈ I

≺x
N112+1
112

and for 1 < 112, 112 < 12, 112 < 2

[
. . . [cρ1112, x112]q1,112q112,112 . . . , x112︸ ︷︷ ︸

N112−1

]
q1,112q

N112−1
112,112

− [x1, d
ρ
112]qN112

1,112
∈ I

≺x1x
N112
112

[
x112, . . . [x112︸ ︷︷ ︸

N112−1

, cρ11212]q112,112q112,12 . . .
]
q
N112−1
112,112 q112,12

− [dρ112, x12]qN112
112,12

∈ I
≺x

N112
112 x12

[
x112, . . . [x112︸ ︷︷ ︸

N112−1

, cρ(112|2)]q112,112q112,2 . . .
]
q
N112−1
112,112 q112,2

− [dρ112, x2]qN112
112,2

∈ I
≺x

N112
112 x2

(9.17)

The proof that the liftings of [9, Thm. 5.13] have the PBW basis [L] consists in replacing
the cρuv and dρu in the conditions above, like it was done before in Proposition 9.3. We leave
this to the reader.
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9.4 PBW basis for L = {x1 < x1x1x2 < x1x2 < x1x2x2 < x2}

This PBW basis [L] appears in the Nichols algebras of non-standard type and their liftings
of [9, Thm. 5.17 (1)]. Generally, we ask for the conditions when [L] is a PBW Basis of
(T (V )#k[Γ])/I where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x2x2]− c1122, [x1x1x2]
N112 − d112,

[x1x1x2x1x2]− c11212, [x1x2]
N12 − d12,

[x1x2x1x2x2]− c12122, [x1x2x2]
N122 − d122,

[x1x2x2x2]− c1222, xN2
2 − d2.

In k〈x1, x112, x12, x122, x2〉#k[Γ] we have the following cρ(u|v) ordered by ℓ(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = cρ1112, cρ(112|12) = cρ11212,

cρ(1|12) = x112, cρ(1|122) = cρ1122, cρ(12|122) = cρ12122,

cρ(12|2) = x122, cρ(122|2) = cρ1222,

and for Sh(1122) 6= (112|2) and Sh(112122) 6= (112|122) by Eq. (4.1)

cρ(112|2) = ∂ρ
1 (c

ρ

(12|2)) + q12,2c
ρ

(1|2)x12 − q1,12x12c
ρ

(1|2)

= cρ1122 + (q12,2 − q1,12)x
2
12,

cρ(112|122) = ∂ρ
1 (c

ρ
12122) + q12,122c

ρ
1122x12 − q1,12x12c

ρ
1122.

We have to check the q-Jacobi conditions for 1 < 112 < 2 (like Eq. (9.11)), 1 < 112 < 12
(like Eq. (9.12)), 1 < 112 < 122, 1 < 122 < 2, 112 < 12 < 2 (like Eq. (9.13)), 112 < 12 <
122, 112 < 122 < 2, 12 < 122 < 2 (note that we can omit 1 < 12 < 2, 1 < 12 < 122). The
restricted q-Leibniz conditions are treated like before (note that we can leave out those for
1 < 112, 1 < 12, 1 < 122 if N1 < ∞, 112 < 12, 12 < 122 if N12 < ∞, 112 < 2, 12 < 2,
122 < 2 if N2 < ∞).

Both types of conditions detect many redundant relations like before. The proof that
the given ideals of the Nichols algebras and their liftings of [9, Thm. 5.17 (1)] admit the
PBW basis {x1, [x1x1x2], [x1x2], [x1x2x2], x2} is again a straightforward but rather expan-
sive calculation.

9.5 PBW basis for L = {x1 < x1x1x2 < x1x1x2x1x2 < x1x2 < x2}

This PBW basis [L] shows up in the Nichols algebras of non-standard type and their
liftings of [9, Thm. 5.17 (2),(4)]. More generally, we examine when [L] is a PBW Basis of
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(T (V )#k[Γ])/I where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x1x2x1x2]− c111212, [x1x1x2]
N112 − d112,

[x1x1x2x1x1x2x1x2]− c11211212, [x1x1x2x1x2]
N11212 − d11212,

[x1x1x2x1x2x1x2]− c1121212, [x1x2]
N12 − d12,

[x1x2x2]− c122, xN2
2 − d2.

In k〈x1, x112, x11212, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by ℓ(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = cρ1112, cρ(11212|12) = cρ1121212,

cρ(1|12) = x112, cρ(112|12) = x11212, cρ(112|11212) = cρ11211212,

cρ(12|2) = cρ122, cρ(1|11212) = cρ111212,

and for Sh(1122) 6= (112|2) and Sh(112122) 6= (11212|2) by Eq. (4.1)

cρ(112|2) = ∂ρ
1(c

ρ

(12|2)) + q12,2c
ρ

(1|2)x12 − q1,12x12c
ρ

(1|2)

= cρ1122 + (q12,2 − q1,12)x
2
12,

cρ(11212|2) = ∂ρ
112(c

ρ
122) + q12,2c

ρ

(112|2)x12 − q112,12x12c
ρ

(112|2)

= ∂ρ
112(c

ρ
122) + q12,2c

ρ
1122x12 − q112,12x12c

ρ
1122

+ (q12,2 − q112,12)(q12,2 − q1,12)x
3
12.

Again we have to consider all q-Jacobi conditions and restricted q-Leibniz conditions, from
where we detect again many redundant relations. Like before, we leave the concrete cal-
culations for the cases of [9, Thm. 5.17 (2),(4)] to the reader.

9.6 PBW basis for L = {x1 < x1x1x1x2 < x1x1x2 < x1x2 < x2}

The Nichols algebras of non-standard type and their liftings in [9, Thm. 5.17 (3),(5)] have
this PBW basis [L]. We study the situation, when [L] is a PBW Basis of (T (V )#k[Γ])/I
where I is generated by

[x1x1x1x1x2]− c11112, xN1
1 − d1,

[x1x1x1x2x1x1x2]− c1112112, [x1x1x1x2]
N1112 − d1112,

[x1x1x2x1x2]− c11212, [x1x1x2]
N112 − d112,

[x1x2x2]− c122, [x1x2]
N12 − d12,

xN2
2 − d2.
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In k〈x1, x112, x11212, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by ℓ(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = x1112, cρ(1112|112) = cρ1121212,

cρ(1|12) = x112, cρ(112|12) = cρ11212,

cρ(12|2) = cρ122, cρ(1|1112) = cρ11112,

and for Sh(1122) 6= (112|2), Sh(11122) 6= (1112|2) and Sh(111212) 6= (1112|12) by Eq. (4.1)

cρ(112|2) = ∂ρ
1(c

ρ

(12|2)) + q12,2c
ρ

(1|2)x12 − q1,12x12c
ρ

(1|2)

= ∂ρ
1(c

ρ
122) + (q12,2 − q1,12)x

2
12,

cρ(1112|2) = ∂ρ
1(c

ρ

(112|2)) + q112,2c
ρ

(1|2)x112 − q1,112x112c
ρ

(1|2),

= ∂ρ
1(∂

ρ
1(c

ρ
122)) + (q12,2 − q1,12)(x112x12 + q1,12x12[x1, x12])

+ q112,2x12x112 − q1,112x112x12,

= ∂ρ
1(∂

ρ
1(c

ρ
122)) + q12(q22 − q11 − q211)x112x12

+ q212(q11(q22 − q11) + q22)x12x112,

cρ(1112|12) = ∂ρ
1(c

ρ
11212) + (q112,2 − q1,112)x

2
112.

Note that for the fifth equation we used the relation [x1, x12] − x112. The assertion con-
cerning the PBW basis and the redundant relations of [9, Thm. 5.17 (3),(5)] are again
straightforward to verify.
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and Logic, 38:259–276, 1999.

[12] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics.
Addison-Wesley, 1983.

[13] G. Lusztig. Canonical bases arising from quantized enveloping algebras. J. of
Amer. Math. Soc., 3:447–498, 1990.

[14] G. Lusztig. Introduction to quantum groups, volume 110 of Progress in Mathematics.
Birkhäuser, 1993.

[15] D. Radford. Finite-dimensional simple-pointed Hopf algebras. J. Algebra, 211:686–
710, 1999.

[16] C. Reutenauer. Free Lie Algebras, volume 7 of London Mathematical Society Mono-
graphs, New Series. Clarendon Press, London, 1993.

[17] C.M. Ringel. PBW-bases of quantum groups. J. Reine Angew. Math., 470:51–88,
1996.
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