ON THE SUM OF A PRIME AND A FIBONACCI NUMBER

K. S. ENOCH LEE

ABSTRACT. We show that the set of the numbers that are the sum of a prime and a Fibonacci number has positive lower asymptotic density.

1. Introduction

Suppose S is a set of positive integers. We denote the number of positive integers in S not exceeding N by $\mathcal{S}(N)$. This function is called the *counting function* of the set S. The sumset, $S + T$, is the collection of the numbers of the form $s + t$ where $s \in \mathcal{S}$ and $t \in \mathcal{T}$.

Suppose $\mathcal{A} = \{p+2^i : p \text{ a prime}, i \geq 1\}$. In 1934, Romanoff [\[7\]](#page-7-0) published the following interesting result. For N sufficiently large, we have $A(N) \geq cN$ for some $c > 0$. In other words, the set A has a positive lower asymptotic density. Romanoff showed that a positive proportion of positive integers can be decomposed into the form $p + 2ⁱ$.

Let $u_1 = 1, u_2 = 1, u_{i+2} = u_{i+1} + u_i$ where i is a positive integer. Denote by U the collection of Fibonacci numbers, namely $\mathcal{U} = \{u_i\}_{i>2}$. Furthermore, let P denote the set of primes. For convenience, we stipulate that p and p' (with or without subscripts) are primes, and u and u ′ (with or without subscripts) are Fibonacci numbers. Throughout this paper, we use the Vinogradov symbol ≪ and the Landau symbol O with their usual meanings.

In this manuscript, we study the set of integers that are the sum of a prime and a bounded number of Fibonacci numbers. In view of Romanoff's theorem, a key element in the proof is

$$
\sum_{\substack{d=1\\(2,d)=1}}^{\infty}\frac{\mu^2(d)}{de(d)}\ll 1
$$

where $e(d)$ is the exponent of 2 modulo d.

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 11P32; Secondary 11B39.

Key words and phrases. Fibonacci number, prime, asymptotic density, sumset.

By using an estimate ([\[8\]](#page-7-1), [\[9\]](#page-7-2)) of the number of times the residue t appeared in a full period of $u_i \pmod{p}$, we are able to substitute the period $k(d)$ for $e(d)$ and prove that $P + U$ has a positive lower asymptotic density.

Theorem 1. Suppose

$$
\mathcal{F} = \mathcal{P} + \mathcal{U} = \{ p + u : p \in \mathcal{P}, u \in \mathcal{U} \}.
$$

Then there is a positive constant c such that

$$
\mathcal{F}(N) \ge cN
$$

for all sufficiently large N.

As a consequence, the set $\mathcal{P} + k\mathcal{U}$ has a positive lower asymptotic density for each $k \geq 1$, since $1 \in \mathcal{U}$.

2. Proof of the Theorem

For our convenience, we let $L = \log_{\tau} N$ for a given N and use this throughout this paper. Let $\tau = (1 + \sqrt{5})/2$. It is well-known that

$$
\left| u_i - \frac{\tau^i}{\sqrt{5}} \right| < \frac{1}{2}
$$

for all $i \geq 1$. Thus $u_i = \frac{\tau^i}{\sqrt{5}} + O(1)$. A routine computation yields that

$$
\mathcal{U}(N) = L + O(1).
$$

Denote by $r'(N) = \sum_{p+u=N} 1$ the number of solutions of the equation $N = p + u$ for $N \ge 1$. We begin with the following lemma.

Lemma 1. For N a large number, we have

$$
\sum_{n \le N} r'(n) \sim \frac{NL}{\log N}.
$$

Proof. Note that

$$
\pi(N - \frac{N}{L})\mathcal{U}(\frac{N}{L}) \le \sum_{n \le N} r'(n) \le \pi(N)\mathcal{U}(N).
$$

The lemma then follows from the prime number theorem. \Box

Properties of Fibonacci numbers can be found in standard texts such as $[4]$, $[11]$, and $[12]$. For our discussions, we recall some properties of Fibonacci numbers without providing proofs. Given a positive integer n , there is a unique decomposition of n into the sum of non-consecutive Fibonacci numbers, namely,

$$
n=u_{i_1}+u_{i_2}+\cdots+u_{i_r}
$$

where $2 \leq i_r$ and $2 \leq i_j - i_{j+1}$. This is called Zeckendorf representation [\[1\]](#page-7-6) (or canonical representation). In other words, if $2 \leq i_r$ and $2 \leq i_j$ – i_{i+1} , the set of integers (i_1, i_2, \ldots, i_r) is uniquely determined by n and conversely. It is well-known that $u_i \pmod{d}$ forms a purely periodic series [\[13\]](#page-7-7). Let $k(d)$ denote the period of Fibonacci numbers modulo d. That is to say $k(d)$ is the smallest positive integers m such that $u_{i+m} \equiv$ $u_i \pmod{d}$ for all i. In particular, $d|u_{k(d)}$. Furthermore, the period $k(d)$ is equal to the least common multiple of ${k(p_1^{r_1})}$ $\binom{r_1}{1}, k(p_2^{r_2})$ $\binom{r_2}{2}, \ldots, k(p_t^{r_t})\}$ where $d = p_1^{r_1}$ $r_1^{r_1} \cdots p_t^{r_t}$. We also have that $k(d)|k(m)$ if $d|m$.

Let us investigate the following example. The table below presents one period of the residues for $u_i \pmod{6}$, $u_i \pmod{2}$, and $u_i \pmod{3}$, respectively, where $i \geq 2$.

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 $u_i(\text{mod }6) \text{1}$ 2 3 5 2 1 3 4 1 5 0 5 5 4 3 1 4 5 3 2 5 1 0 1 $u_i \text{ (mod 2) 1 0 1}$ $u_i \text{ (mod 3)} 1 \ 2 \ 0 \ 2 \ 2 \ 1 \ 0 \ 1$

From the table, we see that $k(6) = 24, k(2) = 3$, and $k(3) = 8$. We note that $k(6) = LCM[k(2), k(3)]$. For any modulus $d \geq 2$, and residue y (mod d), denote by $\nu(d, y)$ the number of occurrences of y as a residue in one full period of $u_i \pmod{d}$. Let us explore the case $y \equiv 5$ (mod d). From the table, we have $\nu(6,5) = 6$, $\nu(2,5) = \nu(2,1) = 2$, and $\nu(3,5) = \nu(3,2) = 3$. It is clear that $\nu(d, y) \le$ $k(d)$ $k(p)$ $\nu(p, y)$ where $p|d$. We now return to our proof.

Lemma 2. Let $-N \leq h \leq N$ and $f(h)$ be the number of solutions of the equation:

$$
u-u'=h
$$

where $u, u' \leq N$. Then

(1) $f(0) \sim L$ and $f(h) \leq 2$ if $h \neq 0$;

(2) Suppose $d > 1$ is an integer and $p|d$. Then

$$
\sum_{d|h} f(h) \le 4L\bigg(1 + \frac{L}{k(p)}\bigg).
$$

Proof. Without loss of generality, we can assume $h \geq 0$. (1) Clearly we have $f(0) = U(N) \sim L$. Next we claim that $f(h) \leq 2$ when $h > 0$. Assume that $h = u_j - u_i = u_t - u_s$ where $j > i$ and $t > s$. If $j - i = 1$, then $h = u_j - u_{j-1} = u_{j-2} = u_{j-1} - u_{j-3}$. Suppose $t > j$. If $t - s = 1$, we have $u_{t-2} = u_{i-2}$, a contradiction. If $t - s > 1$, we have $u_t - u_s > u_t - u_{t-1} = u_{t-2}$, a contradiction again! Suppose now $t < j-1$. This forces $u_t - u_s < u_{j-2} = h$. Therefore, there are only two decompositions of h into the difference of two Fibonacci numbers, namely $u_j - u_{j-1}$ and $u_{j-1} - u_{j-3}$.

Now suppose $j - i \geq 2$. From the definition of Fibonacci numbers, we derive that

$$
u_j - u_i = \begin{cases} u_{j-1} + u_{j-3} + \dots + u_{j-(2v-1)}, & \text{if } i = j - 2v; \\ u_{j-1} + u_{j-3} + \dots + u_{j-(2v-1)} + u_{j-(2v+2)}, & \text{if } i = j - (2v+1); \end{cases}
$$

where $v \geq 1$. Clearly these are Zeckendorf representations. By the same token, $u_t - u_s$ has similar decompositions. The uniqueness of Zeckendorf representation implies that $t = j$ and thus $s = i$. As a consequence, $f(h) \leq 2$.

(2) The sum $\sum_{d|h} f(h)$ is the number of solutions of the congruence $u \equiv u' \pmod{d}$. Note that $u \equiv u' \pmod{p}$ if $p|d$. However, Schinzel [\[8\]](#page-7-1) and Somer [\[9\]](#page-7-2) showed that $\nu(p, y) \leq 4$, namely, there are at most 4 choices for u in any interval of length $k(p)$ such that $u \equiv y \pmod{p}$. This implies within an interval of length L there are at most $4(1+\frac{L}{k(p)})$ solutions to $u \equiv y \pmod{d}$. Thus $p \mid d$ implies

$$
\sum_{d|h} f(h) \le 4L\bigg(1 + \frac{L}{k(p)}\bigg).
$$

Lemma 3. For $k \geq 1$ and N sufficiently large, we have

$$
\sum_{n \le N} (r'(n))^2 \le c \frac{NL^2}{(\log N)^2}
$$

where $c > 0$.

Proof. In the following, we assume that $p, p', u, u' \leq N$. We first break the sum into three parts.

$$
\sum_{n \leq N} (r'(n))^2 = \sum_{n \leq N} \left(\sum_{p+u=n} 1 \right)^2
$$

=
$$
\sum_{n \leq N} \sum_{\substack{p+u=n \ p'+u'=n}} 1
$$

=
$$
\sum_{-N \leq h \leq N} \left(\sum_{\substack{p-p'=h \ p,p' \leq N}} 1 \right) f(h).
$$

Let

$$
\sum(h) = \left(\sum_{\substack{p-p'=h\\p,p'\leq N}} 1\right) f(h),
$$

where $h = 0$, $h > 0$, $h < 0$. We investigate these three cases respectively. First, suppose $h = 0$. From Lemma [2,](#page-2-0) we have

$$
\sum(0) = \left(\sum_{p \le N} 1\right) f(0) \sim \frac{NL}{\log N}.
$$

Next, we suppose $h > 0$ and is odd. This implies $p' = 2$, since $p - p' = h$. Thus \sim

$$
\sum_{\substack{0 < h \le N \\ 2 \sqrt{h}}} \sum(h) = \sum_{\substack{0 < h \le N \\ 2 \sqrt{h}}} \left(\sum_{\substack{p=h+2 \\ p \le N}} 1 \right) f(h).
$$

Therefore, we have

$$
\sum_{\substack{0
$$

We now assume $h > 0$ is even. Recall that the number of primes $p \leq N$ such that $p+h$ is also a prime is given by (cf. [\[3,](#page-7-8) p.102], [\[5,](#page-7-9) p.97], and [\[6,](#page-7-10) p.190])

$$
O\bigg(\frac{N}{(\log N)^2} \prod_{p|h} \bigg(1+\frac{1}{p}\bigg)\bigg).
$$

By using Lemma [2,](#page-2-0) we obtain that

$$
\sum_{\substack{0 < h \le N \\ 2|h}} \sum(h) \ll \frac{N}{(\log N)^2} \sum_{0 < h \le N} f(h) \prod_{p|h} \left(1 + \frac{1}{p} \right)
$$
\n
$$
\ll \frac{N}{(\log N)^2} \sum_{d \le N} \frac{\mu^2(d)}{d} \sum_{\substack{0 < h \le N \\ d|h}} f(h)
$$
\n
$$
\ll \frac{NL^2}{(\log N)^2} + \frac{NL}{(\log N)^2} \sum_{1 < d \le N} \frac{\mu^2(d)}{d} \left(1 + \frac{L}{k(p)} \right),
$$

where p is a prime factor of d . For our investigation, we let the function $LP(d) = \max\{p|d : k(p) \ge k(p') \text{ for } p'|d\}.$ We are to show that

$$
\sum_{\substack{d \le N \\ p = LP(d)}} \frac{\mu^2(d)}{dk(p)} \ll 1.
$$

We define

$$
E(x) = \sum_{g \le x} \sum_{\substack{p = LP(d) \\ k(p) = g}} \frac{\mu^2(d)}{d}.
$$
 (*)

In 1974, Catlin [\[2\]](#page-7-11) showed that if $k(m) < 2t$ then $m < L_t$ where L_t is the t -th Lucas number. Therefore, for a fixed number g , there are only finitely many solutions p to the equation $k(p) = q$. Furthermore, there can only be a finite number of primes having period less than or equal to $k(p)$, and thus there are only finitely many squarefree d having $p = LP(d)$. This means $E(x)$ is well-defined. Let

$$
D(x) = \prod_{i \le x} u_i.
$$

Without loss of generality, we assume that d , appearing in the sum (*), is squarefree. Note that $p'|d$ implies $p'|u_{k(p')}|D(x)$. We then have $d|D(x)$ since $k(p) \leq x$ and $p = LP(d)$. It is also clear that the number d appears in (*) once. Let $n = \omega(D(x))$ be the number of distinct prime factors of $D(x)$. Then

$$
2^{n} \le D(x) \ll \prod_{i \le x} \tau^{i} \ll \tau^{x^{2}}.
$$

In other words, we have $n \ll x^2$, and thus $\log p_n \ll \log n \ll x$ (where p_i is the *i*-th prime). Immediately, we have

$$
E(x) \ll \sum_{d|D(x)} \frac{\mu^2(d)}{d} = \prod_{p|D(x)} \left(1 + \frac{1}{p} \right) \ll \prod_{i=1}^n \left(1 + \frac{1}{p_i} \right).
$$

Apply Merten's formula to the last term to obtain

$$
E(x) \ll \log p_n \ll \log x.
$$

By partial summation, we have

$$
\sum_{g \leq x} \frac{1}{g} \sum_{\substack{p = LP(d) \\ k(p) = g}} \frac{\mu^2(d)}{d} = \frac{E(x)}{x} + \int_1^x \frac{E(x)}{t^2} dt \ll 1.
$$

This implies

$$
\lim_{x \to \infty} \sum_{\substack{d \le x \\ p \equiv LP(d)}} \frac{\mu^2(d)}{dk(p)} = \lim_{x \to \infty} \sum_{g \le x} \frac{1}{g} \sum_{\substack{p \equiv LP(d) \\ k(p) = g}} \frac{\mu^2(d)}{d} \ll 1.
$$

As a consequence, we have

$$
\sum_{0
$$

By symmetry,

$$
\sum_{-N\leq h<0}\sum(h)\ll \frac{NL^2}{(\log N)^2}.
$$

Combining the above estimations, we obtain

$$
\sum_{n \le N} (r'(n)) \ll \frac{NL^2}{(\log N)^2}
$$

.

Invoking the Cauchy-Schwarz inequality, we have

$$
\left(\sum_{n\leq N}r'(n)\right)^2 \leq \mathcal{F}(N)\sum_{n\leq N}(r'(n))^2.
$$

However, Lemma [1](#page-1-0) and Lemma [3](#page-3-0) imply

$$
\mathcal{F}(N) \ge \frac{\left(\sum_{n \le N} r'(n)\right)^2}{\sum_{n \le N} (r'(n))^2} \ge \frac{1}{c}N.
$$

This proves the theorem.

3. Remarks

To conclude our paper, we post the following questions related to our quest.

- (1) Is $r'(n) \ll 1$? The referee notices that for any fixed $k \geq 2$, we can choose distinct Fibonacci numbers $u_{m_1}, u_{m_2}, \cdots, u_{m_k}$ such that for any prime p there exists $1 \leq d_p \leq p$ satisfying $u_{m_i} \not\equiv d_p$ $p \mod{p}$ for each $1 \leq i \leq k$ (see Schinzel [\[8,](#page-7-1) Corollary 1]). Then by the widely believed prime k-tuple conjecture (see [\[5\]](#page-7-9)), there exist infinitely many n such that $n - u_{m_1}, n - u_{m_2}, \cdots, n - u_{m_k}$ are all primes. That is, $r'(n) \geq k$. Thus the referee suggests that $\limsup_{n\to\infty} r'(n) = +\infty$ instead.
- (2) Find an infinite sequence (or an arithmetic progression) of positive integers that each of the terms cannot be of the form $p+u$. Note Wu and Sun [\[14\]](#page-7-12) constructed a class that does not contain integers representable as the sum of a prime and half of a Fibonacci number.

8 K. S. ENOCH LEE

(3) Is there a positive integer k such that n can be decomposed into a sum of a prime and k Fibonacci numbers for n sufficiently large? Note that Sun [\[10\]](#page-7-13) has recently conjectured that every integer (> 4) can be written as the sum of an odd prime and two positive Fibonacci numbers.

REFERENCES

- [1] J.L. Brown, Jr., *Zeckendorf 's Theorem and Some applications*, Fibonacci Quarterly, 3(1965), 163–168.
- [2] P.A. Catlin, *A Lower Bound for the Period of the Fibonacci Series Modulo* M, Fibonacci Quarterly, 12(1974), 349–350.
- [3] A.C. Cojocaru, M. Ram Murty, *An Introduction to Sieve Methods and their Applications*, Cambridge University Press, New York, 2006.
- [4] T. Koshy, *Fibonacci And Lucas Numbers With Applications*, John Wiley & Sons, New York, 2001.
- [5] H.L. Montgomery and R.C. Vaughan, *Multiplicative Number Theory: I. Classical Theory*, Cambridge University Press, New York, 2007.
- [6] M.B. Nathanson, *Additive Number Theory: The Classical Bases*, Springer, New York, 1996.
- [7] N.P. Romanoff, U¨*ber einige S*a¨*tze der additiven Zahlentheorie*, Mathematische Annalen, 109(1934), 668–678.
- [8] A. Schinzel, *Special Lucas Sequences, Including the Fibonacci Sequence, Modulo a prime*, in: A. Baker, B. Bollobás, A. Hajnal (Eds.), *A Tribute to Paul Erdös*, Cambridge University Press, Cambridge, 1990, pp.349–357.
- [9] L. Somer, *Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p* in: G.E. Berum, A.N. Philippou, and A.F. Horadam (Eds.), *Applications of Fibonacci Numbers*, Kluwer Academic Publishers, Dordrecht, Holand, Vol. 3, 1990, pp.311–324.
- [10] Z.W. Sun, *Mixed sums of primes and other terms*, [arXiv:0901.3075v](http://arxiv.org/abs/0901.3075)3 [math.NT].
- [11] S. Vajda, *Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications*, Dover Publications, New York, 1989.
- [12] N.N. Vorobiev, *Fibonacci Numbers*, (Translated by M. Martin) Birkh¨auser Verlaf, Basel-Boston-Berlin, 2002.
- [13] D.D. Wall, *Fibonacci Series Modulo* m, Fibonacci Quarterly, 67(1960), 525– 532.
- [14] K.J. Wu and Z.W. Sun, *Covers of the integers with odd moduli and their applications to the forms* $x^m - 2^n$ *and* $x^2 - F_{3n}/2$, Math. Comp., **78**(2009), 1853–1866.

P O BOX 244023, DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY Montgomery, Montgomery, AL 36124-4023, USA *E-mail address*: elee4@aum.edu