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ON THE SUM OF A PRIME AND A FIBONACCI

NUMBER

K. S. ENOCH LEE

Abstract. We show that the set of the numbers that are the sum
of a prime and a Fibonacci number has positive lower asymptotic
density.

1. Introduction

Suppose S is a set of positive integers. We denote the number of
positive integers in S not exceeding N by S(N). This function is called
the counting function of the set S. The sumset, S+T , is the collection
of the numbers of the form s+ t where s ∈ S and t ∈ T .
Suppose A = {p + 2i : p a prime, i ≥ 1}. In 1934, Romanoff [7]

published the following interesting result. For N sufficiently large, we
have A(N) ≥ cN for some c > 0. In other words, the set A has a
positive lower asymptotic density. Romanoff showed that a positive
proportion of positive integers can be decomposed into the form p+2i.
Let u1 = 1, u2 = 1, ui+2 = ui+1 + ui where i is a positive integer.

Denote by U the collection of Fibonacci numbers, namely U = {ui}i≥2.
Furthermore, let P denote the set of primes. For convenience, we stip-
ulate that p and p′ (with or without subscripts) are primes, and u and
u′ (with or without subscripts) are Fibonacci numbers. Throughout
this paper, we use the Vinogradov symbol ≪ and the Landau symbol
O with their usual meanings.
In this manuscript, we study the set of integers that are the sum

of a prime and a bounded number of Fibonacci numbers. In view of
Romanoff’s theorem, a key element in the proof is

∞
∑

d=1
(2,d)=1

µ2(d)

de(d)
≪ 1

where e(d) is the exponent of 2 modulo d.
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By using an estimate ([8], [9]) of the number of times the residue
t appeared in a full period of ui (mod p), we are able to substitute
the period k(d) for e(d) and prove that P + U has a positive lower
asymptotic density.

Theorem 1. Suppose

F = P + U = {p+ u : p ∈ P, u ∈ U}.
Then there is a positive constant c such that

F(N) ≥ cN

for all sufficiently large N .

As a consequence, the set P + kU has a positive lower asymptotic
density for each k ≥ 1, since 1 ∈ U .

2. Proof of the Theorem

For our convenience, we let L = [logτ N ] for a given N and use this
throughout this paper. Let τ = (1 +

√
5)/2. It is well-known that

∣

∣

∣

∣

ui −
τ i√
5

∣

∣

∣

∣

<
1

2

for all i ≥ 1. Thus ui = τ i/
√
5 + O(1). A routine computation yields

that
U(N) = L+O(1).

Denote by r′(N) =
∑

p+u=N 1 the number of solutions of the equation
N = p+ u for N ≥ 1. We begin with the following lemma.

Lemma 1. For N a large number, we have
∑

n≤N

r′(n) ∼ NL

logN
.

Proof. Note that

π(N − N

L
)U(N

L
) ≤

∑

n≤N

r′(n) ≤ π(N)U(N).

The lemma then follows from the prime number theorem. �

Properties of Fibonacci numbers can be found in standard texts such
as [4], [11], and [12]. For our discussions, we recall some properties of
Fibonacci numbers without providing proofs. Given a positive integer
n, there is a unique decomposition of n into the sum of non-consecutive
Fibonacci numbers, namely,

n = ui1 + ui2 + · · ·+ uir
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where 2 ≤ ir and 2 ≤ ij−ij+1. This is called Zeckendorf representation
[1] (or canonical representation). In other words, if 2 ≤ ir and 2 ≤ ij −
ij+1, the set of integers (i1, i2, . . . , ir) is uniquely determined by n and
conversely. It is well-known that ui (mod d) forms a purely periodic
series [13]. Let k(d) denote the period of Fibonacci numbers modulo d.
That is to say k(d) is the smallest positive integers m such that ui+m ≡
ui (mod d) for all i. In particular, d|uk(d). Furthermore, the period
k(d) is equal to the least common multiple of {k(pr11 ), k(pr22 ), . . . , k(prtt )}
where d = pr11 · · · prtt . We also have that k(d)|k(m) if d |m.
Let us investigate the following example. The table below presents

one period of the residues for ui (mod 6), ui (mod 2), and ui (mod 3),
respectively, where i ≥ 2.

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ui(mod 6) 1 2 3 5 2 1 3 4 1 5 0 5 5 4 3 1 4 5 3 2 5 1 0 1
ui(mod 2) 1 0 1
ui(mod 3) 1 2 0 2 2 1 0 1

From the table, we see that k(6) = 24, k(2) = 3, and k(3) = 8.
We note that k(6) = LCM [k(2), k(3)]. For any modulus d ≥ 2, and
residue y (mod d), denote by ν(d, y) the number of occurrences of y as
a residue in one full period of ui (mod d). Let us explore the case y ≡ 5
(mod d). From the table, we have ν(6, 5) = 6, ν(2, 5) = ν(2, 1) = 2,

and ν(3, 5) = ν(3, 2) = 3. It is clear that ν(d, y) ≤ k(d)

k(p)
ν(p, y) where

p|d. We now return to our proof.

Lemma 2. Let −N ≤ h ≤ N and f(h) be the number of solutions of

the equation:

u− u′ = h

where u, u′ ≤ N . Then

(1) f(0) ∼ L and f(h) ≤ 2 if h 6= 0;
(2) Suppose d > 1 is an integer and p|d. Then

∑

d|h

f(h) ≤ 4L

(

1 +
L

k(p)

)

.

Proof. Without loss of generality, we can assume h ≥ 0. (1) Clearly
we have f(0) = U(N) ∼ L. Next we claim that f(h) ≤ 2 when
h > 0. Assume that h = uj − ui = ut − us where j > i and t > s. If
j − i = 1, then h = uj − uj−1 = uj−2 = uj−1 − uj−3. Suppose t > j.
If t − s = 1, we have ut−2 = uj−2, a contradiction. If t − s > 1, we
have ut − us > ut − ut−1 = ut−2, a contradiction again! Suppose now
t < j − 1. This forces ut − us < uj−2 = h. Therefore, there are only
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two decompositions of h into the difference of two Fibonacci numbers,
namely uj − uj−1 and uj−1 − uj−3.
Now suppose j − i ≥ 2. From the definition of Fibonacci numbers,

we derive that

uj−ui =

{

uj−1 + uj−3 + · · ·+ uj−(2v−1), if i = j − 2v;

uj−1 + uj−3 + · · ·+ uj−(2v−1) + uj−(2v+2), if i = j − (2v + 1);

where v ≥ 1. Clearly these are Zeckendorf representations. By the
same token, ut − us has similar decompositions. The uniqueness of
Zeckendorf representation implies that t = j and thus s = i. As a
consequence, f(h) ≤ 2.
(2) The sum

∑

d|h f(h) is the number of solutions of the congruence

u ≡ u′ (mod d). Note that u ≡ u′ (mod p) if p|d. However, Schinzel
[8] and Somer [9] showed that ν(p, y) ≤ 4, namely, there are at most 4
choices for u in any interval of length k(p) such that u ≡ y (mod p).
This implies within an interval of length L there are at most 4(1+ L

k(p)
)

solutions to u ≡ y (mod d). Thus p|d implies

∑

d|h

f(h) ≤ 4L

(

1 +
L

k(p)

)

.

�

Lemma 3. For k ≥ 1 and N sufficiently large, we have

∑

n≤N

(r′(n))2 ≤ c
NL2

(logN)2

where c > 0.

Proof. In the following, we assume that p, p′, u, u′ ≤ N . We first break
the sum into three parts.

∑

n≤N

(r′(n))2 =
∑

n≤N

(

∑

p+u=n

1

)2

=
∑

n≤N

∑

p+u=n
p′+u′=n

1

=
∑

−N≤h≤N

(

∑

p−p′=h
p,p′≤N

1

)

f(h).
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Let
∑

(h) =

(

∑

p−p′=h
p,p′≤N

1

)

f(h),

where h = 0, h > 0, h < 0. We investigate these three cases respec-
tively. First, suppose h = 0. From Lemma 2, we have

∑

(0) =

(

∑

p≤N

1

)

f(0) ∼ NL

logN
.

Next, we suppose h > 0 and is odd. This implies p′ = 2, since p−p′ = h.
Thus

∑

0<h≤N
26 |h

∑

(h) =
∑

0<h≤N
26 |h

(

∑

p=h+2
p≤N

1

)

f(h).

Therefore, we have

∑

0<h≤N
26 |h

∑

(h) ≪
∑

0<h≤N
26 |h

(

∑

p=h+2
p≤N

1

)

≪ N

logN
.

We now assume h > 0 is even. Recall that the number of primes p ≤ N
such that p+h is also a prime is given by (cf. [3, p.102], [5, p.97] , and
[6, p.190])

O

(

N

(logN)2

∏

p|h

(

1 +
1

p

))

.

By using Lemma 2, we obtain that

∑

0<h≤N
2|h

∑

(h) ≪ N

(logN)2

∑

0<h≤N

f(h)
∏

p|h

(

1 +
1

p

)

≪ N

(logN)2

∑

d≤N

µ2(d)

d

∑

0<h≤N
d|h

f(h)

≪ NL2

(logN)2
+

NL

(logN)2

∑

1<d≤N

µ2(d)

d

(

1 +
L

k(p)

)

,

where p is a prime factor of d. For our investigation, we let the function
LP (d) = max{p|d : k(p) ≥ k(p′) for p′|d}. We are to show that

∑

d≤N
p=LP (d)

µ2(d)

dk(p)
≪ 1.
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We define

E(x) =
∑

g≤x

∑

p=LP (d)
k(p)=g

µ2(d)

d
. (∗)

In 1974, Catlin [2] showed that if k(m) < 2t then m < Lt where Lt

is the t-th Lucas number. Therefore, for a fixed number g, there are
only finitely many solutions p to the equation k(p) = g. Furthermore,
there can only be a finite number of primes having period less than or
equal to k(p), and thus there are only finitely many squarefree d having
p = LP (d). This means E(x) is well-defined. Let

D(x) =
∏

i≤x

ui.

Without loss of generality, we assume that d, appearing in the sum
(*), is squarefree. Note that p′|d implies p′|uk(p′)|D(x). We then have
d|D(x) since k(p) ≤ x and p = LP (d). It is also clear that the number
d appears in (*) once. Let n = ω(D(x)) be the number of distinct
prime factors of D(x). Then

2n ≤ D(x) ≪
∏

i≤x

τ i ≪ τx
2

.

In other words, we have n ≪ x2, and thus log pn ≪ log n ≪ x (where
pi is the i-th prime). Immediately, we have

E(x) ≪
∑

d|D(x)

µ2(d)

d
=

∏

p|D(x)

(

1 +
1

p

)

≪
n
∏

i=1

(

1 +
1

pi

)

.

Apply Merten’s formula to the last term to obtain

E(x) ≪ log pn ≪ log x.

By partial summation, we have

∑

g≤x

1

g

∑

p=LP (d)
k(p)=g

µ2(d)

d
=

E(x)

x
+

∫ x

1

E(x)

t2
dt ≪ 1.

This implies

lim
x→∞

∑

d≤x
p=LP (d)

µ2(d)

dk(p)
= lim

x→∞

∑

g≤x

1

g

∑

p=LP (d)
k(p)=g

µ2(d)

d
≪ 1.
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As a consequence, we have

∑

0<h≤N

∑

(h) ≪ NL2

(logN)2
.

By symmetry,
∑

−N≤h<0

∑

(h) ≪ NL2

(logN)2
.

Combining the above estimations, we obtain

∑

n≤N

(r′(n)) ≪ NL2

(logN)2
.

�

Invoking the Cauchy-Schwarz inequality, we have
(

∑

n≤N

r′(n)

)2

≤ F(N)
∑

n≤N

(r′(n))2.

However, Lemma 1 and Lemma 3 imply

F(N) ≥

(

∑

n≤N
r′(n)

)2

∑

n≤N(r
′(n))2

≥ 1

c
N.

This proves the theorem.

3. Remarks

To conclude our paper, we post the following questions related to
our quest.

(1) Is r′(n) ≪ 1? The referee notices that for any fixed k ≥ 2, we
can choose distinct Fibonacci numbers um1

, um2
, · · · , umk

such
that for any prime p there exists 1 ≤ dp ≤ p satisfying umi

6≡ dp
(mod p) for each 1 ≤ i ≤ k (see Schinzel [8, Corollary 1]). Then
by the widely believed prime k-tuple conjecture (see [5]), there
exist infinitely many n such that n− um1

, n−um2
, · · · , n−umk

are all primes. That is, r′(n) ≥ k. Thus the referee suggests
that lim supn→∞ r′(n) = +∞ instead.

(2) Find an infinite sequence (or an arithmetic progression) of pos-
itive integers that each of the terms cannot be of the form p+u.
Note Wu and Sun [14] constructed a class that does not con-
tain integers representable as the sum of a prime and half of a
Fibonacci number.
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(3) Is there a positive integer k such that n can be decomposed into
a sum of a prime and k Fibonacci numbers for n sufficiently
large? Note that Sun [10] has recently conjectured that every
integer (> 4) can be written as the sum of an odd prime and
two positive Fibonacci numbers.
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