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Abstract

We introduce the notions d@he caustic-equivalen@ndthe weak caustic-equivalence relations
of reticular Lagrangian maps in order to give a generic diaassion of caustics on a corner. We
give the figures of all generic caustics on a corner in a smaathifold of dimension 2 and 3.

Keywords: caustic, classification, reticular Lagrangian map, cqrsiegularity
2000 MSC37C75, 37J25, 37340, 53D12

1. Introduction

In [1] we investigate the theory @éticular Lagrangian mapsvhich can be described stable
caustics generated by a hypersurface germ with-@orner in a smooth manifold. A map germ
roi: (L,0) - (T*R",0) —» (R",0) is calleda reticular Lagrangian magpf i is a restriction
of a symplectic dieomorphism germ onT(R", 0), wherel, = {1,...,r} andLL = {(g,p) €
TR"Moupr = --- = okPr = G+1 = -+ = Oa = 0,q, = 0}. For the definitions of caustics and
generating families of reticular Lagrangian maps, see B79-577]. In[2] we investigate the
genericity of caustics on ancorner and give the generic classification for the case® and 1
by using G.Ishikawa’s methods (see [3, Section 5]). We diswed that the method of the paper
do not work well for the case = 2, that is the initial hypersurface germ has a corner. In this
paper we introduce the two equivalence relations of redicuhgrangian maps which are weaker
than Lagrangian equivalence in order to give a genericifiestson of caustics on a corner.

2. Caustic-equivalence

We introduce the equivalence relations of reticular Lagram maps and their generating
families.
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Letx o i; be reticular Lagrangian maps fpi= 1, 2. We say that they amaustic-equivalent

if there exists a dieomorphism germg on (R", 0) such that
g(Ch) =CZ, 9(QL,)=QZ%, forallo,rcl (o # 7). 1)

In order to describe the caustic-equivalence of reticukgrangian maps by their generat-
ing families, we introduce the following equivalence raatof function germs. We say that
f,g € &(r; k) arereticular C-equivalentf there existy € B(r; k) and non-zero number € R
such thalg = a- f o ¢. Seel[l] orl[4] for the notations. We construct the theory mfoldings
with respect to the corresponding equivalence relatiorenTthe relation of unfoldings is given
as follows: Two function germB(x,y, q), G(x, ¥, g) € &(r; k + n) arereticular P-C-equivalenif
there existd € B,(r; k+ n) and a unita € &(n) andb € &(n) and such tha = a-F o ® + b. We
define thestablereticular (P-)C-equivalence by the ordinary ways (see [1, p.576]). We ré&mar
that a reticulaP-C-equivalence class includes the reticaR*-equivalence classes.

We review the results of the theory. LEE{x, y, u) € Mi(r; k + n) be an unfolding off (x,y) €
M(r; K).

We say thaf is reticular -C-stableif the following condition holds: For any neighborhood
Uof0in R™k" and any representative e C*(U,R) of F, there exists a neighborhodé of
F in C*-topology such that for any eleme@te Ng the germGlyrwrin at (O Yo, do) is reticular
P-C-equivalent ta~ for some (Qyo, qo) € U.

We say thaf is reticular P-C-versalif all unfolding of f is reticularf-C-f-induced from
F. That is, for any unfoldings € M(r; k + n’) of f, there existb € M(r;k + n’,r;k+n) and a
unita € &(n’) andb € §(') satisfying the following conditions:
(1) ®(x,y,0) = (x,y,0) for all (x,y) € (H x R¥,0) anda(0) = 1, b(0) = 0,
(2) @ can be written in the form:

(D(X’ y7 q) = (X]_Q%(X, y7 q)» ) XF¢I;L(X» y» q)7 ¢2(X7 y7 q)» ¢3(q))»
(3)G(x,y,q) = a(q) - F o ®(x,y,q) + b(q) for all (x,y,q) € (H x R*™,0).

We say thaf is reticular £-C-infinitesimally versalf
of of oF
i K) = (X—, —)eqr: 1, f, —lg=0)r-
&(r; k) <X6x’ ay>8(r,k)+< i lg=0)r
We say thaf is reticular $-C-infinitesimally stablef

OF OF oF
k = (X=—, — &(rks LF, —)em.
&E(r;k+n) <X6X,ay>8mkn)+< 6q>am

We say thakF is reticular £-C-homotopically stablé for any smooth path-gern®, 0) —
E(r;k+n),t » Fgwith Fg = F, there exists a smooth path-geri®, Q) — Bn(r;k + n) x
&(n) x &(n),t — (P, &, by) with (Do, ag, bp) = (id, 1, 0) such that eachly, a;, by) is a reticular
P-C-isomorphism fronF to Fy, that isF; = & - F o ®; + b for t around 0.



Theorem 2.1. (cf., [1, Theorem 4.5]) et F € M(r; k + n) be an unfolding of f M(r; k). Then
the following are all equivalent.

(1) F is reticular P-C-stable.

(2) F is reticular P-C-versal.

(3) F is reticular P-C-infinitesimally versal.

(4) F is reticular P-C-infinitesimally stable.

(5) F is reticular P-C-homotopically stable.

For a non-quasihomogeneous function gdix y) € M(r; k), if 1, f,as,...,an € &(r;K) is
a representative of a basis of the vector space

of of
&(r; k)/<X&, 6_y>8(r;k),
then the function gernfi+a;q; +- - - + angn € M(r; k+n) is a reticularP-C-stable unfolding of .
We calln the reticularC-codimension off. If f is a quasihomogeneous function germ ttidn
included in(x‘;—)f(, Z—L)S(r;k). This means that the reticul@codimension of a quasihomogeneous
function germ is equal to its reticul®"-codimension.
We define thesimplicity of function germs under the reticul@equivalence in the usual way

(cf., [2]).

Theorem 2.2. (cf., [2, Theorem 2.1,2.2]A reticular C-simple function germ ift(1;k)? is sta-
bly reticular C-equivalent to one of the following function germs:

Bi:X(1>2), C'ixy+say (61=1123), Fp:x2+y°

The relation between reticular Lagrangian maps and theiegging families under the
caustic-equivalence are given as follows:

Proposition 2.3. Letroi; be reticular Lagrangian maps with generating familiesfér j = 1, 2.
If F1 and F, are stably reticularP-C-equivalent them o i; andr o i, are caustic-equivalent.

Proof. The function gerni, may be written thaF,(x,y, q) = a(q)Fs(x, v, g), wherea is a unit
andF; andF3 are stably reticulaf>-R*-equivalent. Then the reticular Lagrangian mapis
given byF3 andr o i; are Lagrangian equivalent and the caustia ofi, andx o i3 coincide to
each other. [ |

This proposition shows that it is enough to classify funttigrms under the stable reticular
P-C-equivalence in order to classify reticular Lagrangian sxapder the caustic-equivalence.
We here give the classification list as the following:

Theorem 2.4. (cf., [1, p.592])Let f € M(2;k)? have the reticulac-codimensior 4. Then f is
stably reticularC-equivalent to one of the following list.



k  Normal form codim Conditions Notation

0 X2t XX +ax 3 O<a<i By1
X2 + Xy Xp + axe 3 a>1 B2
X2+ X1 X + A% 3 a<0 sz‘z’ a

2 2 +,0
XT £ X5 . 3 B%2+
(X1 £ X2)" £ X5 3 Bi,’is
X5+ XX + X3 3 By3
X3+ Xa X + X5 3 B35
X5+ X1 X5 + X3 4 ngi
X3+ X8%, + X5 4 Byy

1 tyj+xy+txy+x 3 C§§

i
Y+ Xy £ Xy + X5 4 Cioa
2 2 +,+
Y+ Xy £ Xy + X5 4 C3oo

We remark that the stable reticul@equivalence cIasB;’g of xf + X1 Xo + xg consists of the
union of the stable reticul&R-equivalence classes &f + x1x; + ax3 and—x2 — x;x, — axs for
a> 0. The same things hold f@ ,, B3, B3, C55.

3. Caustic-stability

We definethe caustic-stabilityf reticular Lagrangian maps and reduce this to finite dimen-
sional jet spaces of symplectidi@omorphism germs.

We denoteS(T*R", 0) the set of symplectic fieomorphism germs o (R", 0) and denote
S(U, T*R") the space of symplectic embeddings from an opetJsetT*R" around O tol *R"
with C*-topology.

We say that a reticular Lagrangian magi is caustic-stabléf the following condition holds:
For any extensioB € S(T*R", 0) ofi and any representati&e S(U, T*R") of S, there exists a
neighborhoodNs of S such that for ang’ € Ng the reticular Lagrangian mapo S'|1. at o and
7o i are caustic-equivalent for somg = (0,...,0,p?,,, ..., p%.

Definition 3.1. Let o i be a reticular Lagrangian map and | be a non-negative numhe
say thatr o i is causticl-determinedf the following condition holds: For any extension S of
i, the reticular Lagrangian mapr o S’|;, and x o i are caustic-equivalent for any symplectic
diffeomorphism germ'Sn (T*R", 0) satisfying jS(0) = j'S’(0).

Lemma3.2. Letroi : (L,0) - (T*R",0) — (R",0) be a reticular Lagrangian map. If a
generating family ofr o i is reticular P-C-stable themr o i is caustic(n + 2)-determined.

Proof. This is proved by the analogous method of [2, Theorem 5.&] gtk the sketch of proof.
Let S be an extension df Then we may assume that there exists a function dgéf@ p) such
that the canonical relatioRs has the form:

oH oH
Ps = {(Q» _%(Q» p)7 _6_p(Q’ p)» p) € (T*Rn X T*Rn» (07 0))}

Then the function gerri (X, y, g) = Ho(X, ¥) +(y, Q) is a reticularP-C-stable generating family of

moi, andHg is reticularR-(n + 3)-determined, wherElo(x,y) = H(x, 0,y). Let a symplectic dif-

feomorphism gern$’ on (T*R", 0) satisfyingj™2S(0) = j™?S’(0) be given. Then there exists a
4



function germH’(Q, p) such that the canonical relati®, is given the same form fdd’ and the
function germG(x,y, q) = H{(x,y) + (Y, Q) is a generating family of o S’|... Then it holds that
j™3Ho(0) = j”*3H6(O). There exists a function ger@® such thaiG andG’ are reticulaP-R-
equivalent ands andG’ are reticularP-C-infinitesimal versal unfoldings dflo(X, y). It follows
thatF andG are reticulaP-C-equivalent. Therefore o i andr o S’|;, are caustic-equivalenil

For a reticulai>-C-stable unfolding= € 9(2; k+n)? with n < 3, the function gernf = Flq-o
has a modality under the reticulBrequivalence (seel[1, p.592]). For example, consider the ca
f is stably reticulaC-equivalent toé + x; X, + xg. ThenF is stably reticula®®-C-equivalent to
f + 01Xy + GoXz + G3X3. In this case the function gernig(x, ) = X2 + XXz + X3 + g1 X1 + GoXp +
gsX3(a > 0) are stably reticulaP-C-equivalent toF but not stably reticula-R*-equivalent to
each other. LeS; be extensions of reticular Lagrangian embeddings definde,land—F, for
a > Orespectively. We define the caustic-equivalence claSs by [S1]¢ := Ua-o([Sz]LU[S;]L),
where B3] are the Lagrangian equivalence classeSpfespectively. By Propositidn 2.3, we
have that all reticular Lagrangian mapsS’|, are caustic-equivalentto each other$ore [S1]c.

In order to apply the last theorem of this paper, we need tegiftat the set consists of the 5-jets
of the caustic-equivalence clas$ic, we denote this byjPS1(0)]c, is an immersed manifold of
S5(3), whereS!(n) be the set consists dfiets of elements irS(T*R", 0). We shall prove that
the map germ (@) — S%(3),a j°S,(0) is not tangent tojPS,(0)]. for anya, and apply the
following lemma:

Lemma 3.3. Let | be an openinterval, N a manifold, and G a Lie group actdlohet x: | — N
be a smooth path such th%ﬁ(t) is not tangentto G x(t) for allt € I. Then

U G- x(t)
tel

is an immersed manifold of N.

We note that we here prove the cﬁg. The same method is valid for fB[Zt; B§§
We defineG, € M(6)* by Ga(Q1. Q2, Qs, 01, G2, 0) = Fa(Q1, Q2, 01, 02) + Qs0z. ThenG,
define the canonical relatio, and they give symplectic flieomorphisms, of the forms:

Sa(Q.P) = (-2Q1 — Q2 — P1,—Q1 — 3aQ% — P, + 2P3Qz, —P3, Q1, Q2, Q5 + Qa).

We have thaF, are generating families af o Sy|.. Then% = (0,-3Q2,0,0,0,0) = X 0 Sy
for f = —p3. We suppose thagf($2)(0) € TA([ZL) for z = j°S4(0). By [2, Lemma 6.2], there
exist a fiber preserving function gerrhe Eméyp andg € (Q1P1, Q2P2)g,, + Mqp(Qs) such that
j2(Xt 0 Sa)(0) = j2(Xn o Sa + (Sa)Xg)(0). This means thaf(f o Sa)(0) = j3(H o S, + g)(0). It
follows that there exist function gernhs, hy, hz € Mg, ho € Smé such that

foSa=-Q = hy(qoSa)Qu+ha(qo Sa)Qz + hs(go Sa)(Q5 + Qs) + ho(g 0 Sa)
mod(Q1P1, Q2P2)sg,, + Mqp(Q3) + Dﬁap.

We may reduce this to

-Q = (-2Q1 - Q;,-Q1 - 3aQ - Py + 2P3Qy, -P3)Qs
+hp(~2Q1 — Q2 — P1,—Q1 — 3aQ3 + 2P3Q,, —P3)Q>
+h3(—2Q1 — Q2 — P1, —Q1, —P3)Q5 + ho(—2Q1 — Q2 — P1,—Q1 — P2, —P3)
mod(Q1P1, Q2P2)eq, + SmQ,p§3Q3) + MG p-



We show this equation has a contradiction. Thefitcients ofP P P§ on the equation depend
only on the cofficients ofg!g7q; on hy respectively. This means thk§(q o Sa) = 0. The
codficients ofQ?, Q; P>, Q; Pz on the equation depend only on the fiméents ofq;, gp, g3 onhy
respectively. This means thi(h;(q o S,)(0) = 0. The codficients ofQ,P1, Q1Q,, Q2P3 on the
equation depend only on the dbeients ofqs, g1, gz onh,. This means that (hx(qo S,))(0) = 0.
So we need only to consider the quadratic pah;oh, and the linear part diz. The codficients
of Q2P%, Q3P on the equation depend only on the ffaent ofgZ onh, and the cofficient ofq,
on hs respectively. This means that their €daents are all equal to 0. Therefore the fimgent
of Qg on the right hand side of the equation is 0. This contradieseguation. So we have that

i°(£2)(0) is not included inT([Z].).

We also prove the cad®;;,: We consider the reticular Lagrangian maps i, with the
generating familied=a(X1, X2, 01, 02, G3) = (X1 + X2)* + X5 + O1Xs + GoXo + GsX5. Then the

function germsGa(Q1, Qz, Qs, 01, 02, Gs) = (Qu + Q2)? + aQ; + uQ1 + Q2 + 43Q5 + 93Qs are
the generating functions of the canonical relati®asandi; = Sal.. ThenS, have the forms:

Sa(Q, P) = (—(2Q1 + 2Q2 + P1), —(2Q1 + 2Q2 + 3aQ5 + P2 — 2P3Q2), —P3, Q1, Q2, Q3 + Qa).

We have tha% =(0,-3Q3,0,0,0,0) = Xs o S, for f = —p3. Then we consider the following
equation:

foSa=-QF = hy(qoSa)Qu+hy(qoSa)Qz + ha(go Sa)(Q5 + Qs) + ho(g o Sa)
mod(Q1P1, Q2P2)e,, + Mop(Qa) + Dﬁ‘é’P,

wherehy, hy, hs € M(Q), hg € M?(Q). We may reduce this to

~Q3 = hy(-(2Q1 +2Q2), —(2Q1 + 2Q2 + 3Q3 + P2 — 2Q2P3), —P3)Qy
+hp(—(2Q1 + 2Q2 + P1), —(2Q1 + 2Q2 + 3Q5 — 2Q,P3), —P3)Q;
+h3(—=(2Q1 + 2Q2 + P1), —(2Q1 + 2Q2), —P3) Q3
+ho(—(2Q1 + 2Q2 + Py1), —(2Q1 + 2Q2 + 3aQ% + P, — 2Q,Ps3), —P3)
mod(Q1P1, Q2P2)s,, + Mo p(Q3) + Dﬁap.

By the same reason in the caBg’g, we have thahyg(q o S;) = 0. By the consideration of
the codficients ofQ7, Q:P,, Q1Ps and Q.P;, Q3, Q,P; on the equation, we have thi(hy(q o
Sa)Q1)(0) = j*(ha(g o Sa)Q2)(0) = 0. The coéicients ofQ;P3, Q1 P3, Q:P,P3 on the equation
depend only on the cdigcients ofgg, qg, 0203 on h;. This means that they are all equal to 0.
The codficients ofQ7P,, Q2P3, Q3 depend only on the céigcients ofqidz, g1z, g7 onhy. This
means that they are all equal to 0. We have Rt (g o S3)Q1)(0) = 0.

The codlicients of Q,P?, Q,P3, Q,P1P3 depend only on the cdigcients ofg?, g2, 10z on
h, and they are all equal to 0. We writg = gx(bgs + cp + dog), hs = eqq + fop + ggs. We
calculate the cdcients ofQ2Q,, Q1Q3, Q5P1, Q1Q2P3, Q3P3, then we have that2b — 2¢ =
—8(-2b—-2c) +2e(-2-2f)=4b-2e=d =4d-2eg= 0. Thisissolvedthdb =c=d=e=0
orb=%c=-5d=0,f=-1g= 0. This means that the cieient of Q3 on the right hand
side of the equation isbd+ 4c — 2e — 2ef = 0. This contradicts the equation.

We also prove the caﬁg,g: We consider the reticular Lagrangian maps i, with the
generating familie§a(y, X1, Xz, 1, 02, Gz) = Y + X1y + XoY + &5 + &% + 1y + UoX1 + OzXz. Then
6



the function germsa(y, Q1, Qz. Q3, 1, G2, Ga) = Y*+ Quy+ Qoy+aQG+ay + Q1 + Gz Q2 +yQs
are the generating families of the canonical relatiBgsandis = Syl.. ThenS, have the forms:

Sa(Q, P) = (—(3P3 + Q1 + Q2 + Q3), P3 — P, P3 — 2aQ, — P2, —P3, Q1, Qy).

We have tha% =(0,0,-2Q2,0,0,0) = X; o S, for f = —p3. Then we consider the following
equation:

foSa=-QF = hi(qo Sa)(—P3) + ha(qo Sa)Qu + ha(qo Sa)Q2 + ho(q o Sa)
mod(Q1P1, Q2P2)e,, + Mop(Qs) + Dﬁ%’P.

We may reduce this to

~Q5 = hy(—(Q1+ Q). P3— Py, P3— 2aQ, — P)(—Ps)
+ho(—(Q1 + Q2), P3, Pz — 2aQ, — P2)Q:
+h3(=(Q1 + Q2), P3 — P1, P3 — 2aQ) Q2
+ho(=(Q1 + Q2), P3 — P1, P3 — 2aQ, — P,)
mod(Q1P1, Q2P2)e,, + Mop(Qs) + fm‘ap.

Since the coficients ofP'fP'23 on the equation depend only on the fiagents ofq'zzq'g3 on hg,
it follows that they are all equal to 0. Since the fio@ents ofP, Pz, P,P3; depend only on the
codficients ofqy, gz on hy, it follows that they are all equal to 0.

Therefore we may set; = by, hp = cqp + dop + e, hs = fgu + gop + hgs, hg =
th(igs + jgz + hag). By the calculation of the equation, we have that theffocient of Q3 on the
right hand side of the equation is 0. This contradicts thea&qn.

Lemma3.4. Letroi : (L,0) —» (T'R",0) —» (R",0) be a reticular Lagrangian map, S be an
extension of i. Suppose that the caustic-equivalence ¢J§§§(O)]c be an immersed manifold
of S™2(n). If a generating family ofr o i is reticular -C-stable and {J*?S is transversal to
[i2*2S(0)]c at 0, thenr o i is caustic stable.

This is proved by the analogous method|of [2, Theorem 6.6({)&(s)]. By this lemma, we
have that the caustic-stability of reticular Lagrangiarmpms reduced to the transversality of
finite dimensional jets of extensions of their reticular taaggian embeddings.

4. Weak Caustic-equivalence

There exist modalities in the classification list of Secf®in This means that the caustic-
equivalence is still too strong for a generic classificatiércaustics on a corner. In order to
obtain the generic classification, we need to admit thefiofig equivalence relations:

We say that reticular Lagrangian mapsi; andr o i; areweakly caustic-equivaleiftthere
exists a homeomorphism gegon (R", 0) such thag is smooth on alC?, ;T, and satisfie$ {1).

We say that two function germs ii(r; k + n)? areweakly reticularP-C-equivalentf they
are generating families of weakly caustic-equivalentrgéir Lagrangian maps. We define the
stableweakly reticulaP-C-equivalence by the ordinary way.

7



We here investigate the reticul@equivalence classag’;f of function germs. The same

methods are valid for the classB$; ", Bx; 2, B5, .. So we prove only to the classBs; 2.

We consider the reticular Lagrangian mapsi, : (L,0) — (T*R? 0) — (R?,0) with the
generating familie§ a(xy, Xz, 1, G2) = X2 + X1 Xz + @) + Q1 X1 + GoXz (2 > ). We give the caustic
of roigandmoiy for ;11 < a< b. Inthese figureQ,,, Q21,, Qp2 are in the same positions. Sup-

Q2,12 QZ,IQ

Qo2 Q1 Qys 011,

Qo1 Qo

Figure 1: the caustics afo i Figure 2: the caustics afo ip,

pose that there exists afidiomorphism gerrg on (R?, 0) such thaQ,, Q2,,, Qp2 are invariant
underg. Theng can not mapQy 1 from one to the other. This implies that caustic-equivaéenc
is too strong for generic classifications. But these caastequivalent under the weak caustic-
equivalence. This implies that the reticular Lagrangiampma i, is weakly caustic equivalent
tonroiq foranya > ;11 and hencd-, is weakly reticulaP-C-equivalent toF;. We remark that

a homeomorphism gergy, which gives the weak caustic-equivalencerefi; andr o iy, may

be chosen to be smooth outside 0 and depends smoothlyTdris means that the weak caustic-
equivalence relation is naturally extended for the (calstable reticular Lagrangian maps with
the generating familieB;(xy, X2, O1, U2, G3) = X5 + XaXo + @ + OuXa + OpXe + O3X5 and Fy is
weakly reticularP-C-equivalent toF’(x, X2, q1, 02, 03) = xﬁ + X1 X2 + xg + O1X1 + Q2X2. The

figure of the corresponding caustic is givenlin [1, p.fﬂg*"(’]. We also remark that the func-

tions X2 + X1 Xz + X3 + QuX1 + GoXe @ndXe + XXz + £X3 + GuX1 + O2X are not weakly reticular
P-C-equivalent becaug®@y 1 andQp 1 of their caustics are in the opposite positions to each other

By the above consideration, we regard the function g&x) = x% + Xa X2 + axg(a > %) are

all equivalent. We say this equivalence relatiba weak reticuIaC-equivaIenceSince% =x°

is not included in(x‘z,—f; Ye. it follows that thel-jets of the weak reticulaC-equivalence class of
f, consists an immersed manifold #{2, 1) for | > 2.

We classify function germs ifi(2; k)2 with respect to the weak reticul@equivalence with
the codimensiog 3. Then we have the following list:



k Normal form codim Notation

0 XxxX+iX 2 Bt
2 2 4,2

x% + X1Xo + x% 2 B%%

XT £ X1Xo — X5 2 B3>

X2 & X2 3 By

2 3

(>2<1¢x2) ngz 3 8333

x% + X1Xo + x% 3 B% 3l

X] & X1 X2 £ X5 , 3 le 2+

1 tyf+xay+Xy+x5 3 C3o

Proposition 4.1. Letroig : (L, 0) — (T*R?,0) — (R?, 0) be the reticular Lagrangian map with
the generating family %+ x;x; + ax5 + quX1 + GoXo. Let S, € S(T*R?,0) be extensions ofi
Then the weak caustic-equivalence class

[1'S1(0)]w := |_J1i'Sa(0)]e

is an immersed manifold in'@) for | > 1.

Proof. The function gernG,(Q1, Q2, a1, O2) = Qi + Q1Q2 + an + 1Q1 + 02Q2 is a generating
function of the canonical relatioRs, and we have that

Sa(Q, P) = (—(2Q1 + Q2 + P1), =(Q1 + 2aQy + P2), Q1, Qo).

This means that® = (0, -2Q,0,0) = Xt 0 S, for f = —p2. Suppose thait*($)(0) is included
in T(rLal(2) - 2). Then there exidty, h; € Mo p andhg € imé,P such that

~Q3 = (g Sa)Q1 + ha(q 0 Sa)Q2 + ho(q 0 Sa) Mod(Q1P1, QoP2)ey, + 93?%,;»

We need only to consider the linear partshafh, and the quadratic part df,. The codi-
cients ofP2, P2, P1P, depend only on the cdigcients ofQZ, Q3, Q:Q, on hy respectively. This
means thahy = 0. We seth; = by + cop, h, = dg; + e and calculate the cdigcients of
Q?2, Q1Qz, Q1P2, Q2P in the equation. Then we have tha?b—c = 0,—-b—2d—e-2ca= 0,c =
0,d = 0. This means tha = 0. Then we have that the dfi€ient ong of the right hand side of
the equation is equivalent ted — ae = 0. This contradicts the equation. |

If we consider the (caustic) stable reticular Lagrangiapma i, : (LL,0) — (T*R3,0) —

(R3,0) with the generating family3 + xix> + @)X + quX; + G2X2 + gzX5 and take an extension
S, € S(T*R2,0) of ia, then we have by the analogous method that:

Corollary 4.2. Let S, be as above. Then

[ﬁmeUnwwc

is an immersed manifold in'@) for | > 1.



Since the caustic of o i, is given by the restrictions of o i, to LY n L% for o # 7 in this
case, it follows that the caustic is determined by the lingat ofi,. This means that o i is
1-determined with respect to the weak caustic-equivaléfceDefinition[3.1).

Theorem 4.3. The function germ By, X2, Q1, 02) = xi + X1 Xo + xg + Q1X1 + O2X2 is a weakly
reticular P-C-stable unfolding of X1, X2) = X2 + X1 X + X3

Proof. We defineF’ € M(2; 3)% by F’(x1, Xz, 1, G, 0) = F(Xa, X2, 1, ) + GsX3 ThenF’ is a
reticularP-R*-stable unfolding off. It follows that for any neighborhodd’ of 0 in (R5 0) and
any representatlvlé’ € C*(U, R), there exists a neighborhodl#, such that for any;’ € NF, the
function germG’|yz,ps at p;, is reticularP-R*-equivalent toF” for somep; = (0,0, ql, qz, ) €
U/

Let a neighborhoot) of 0 in (R, 0) and a representatiie € C*(U, R) be given. We set
the open interval = (-0.5,0.5) and setU’ = U x I. Then there exist®g for which the
above condition holds. We can choose a neighborigodf F such that for anys € Ng the
function G + X3 € Ng. Leta functionG € Ng be given. Then the function ger®@ =
(G + 0aXd)lmzxre at Py is reticularP-R*-equivalent toF’ for somepy = (0,0,09, 02, d9) € U’.
We defineG € M(2; 2 by Gluzyrz at po = (0,0, ql, ) € U. Then it holds thaG’(x,q) =
G(X, g1, 02) + (g3 + qg)xz, andG’|¢-0 = G(x,0) + quz is reticularﬂ%—equivalenttof. Let (@, a) be
the reticulatP-R*-equivalence fron®’ to F’. We writed(x, ) = (x¢1(X, 0), #3(q), ¢3(a), ¢3(0)).
By shrinkingU if necessary, we may assume that the map germ

(G &) = (#5(0a. G2, O), #5(cl1, G2, 0)) on (R?, 0)

is a dffeomorphism germ. TheR is reticularP-R*-equivalent toG; € 90(2; 2) given by
G1(%,q) = G(X1, X2, 01, Q2) + (¢3(q1, 02, 0) + q %)x5. It follows that the reticular Lagrangian maps
defined byF andG; are Lagrangian equwalent We have that

2(G + 2x3)(0) = J°G1(0). &3> ~0S5.

This means that the caustic Gf is weakly caustic-equivalent to the caustic®@because the
reticular Lagrangian maps @; andF are the same weak caustic-equivalence class that is 1-
determined under the weak caustic-equivalence. This méans andG are weakly reticular
P-C-equivalent. ThereforE is weakly reticularP-C-stable. [ ]

By the above consideration, we have that: For each smgyjlaijz 1 B;;Z, By, if we
take the symplectic ieomorphism gern®,(S}) as the above method, then the weak caustic-
equivalence clasg'Sa(0)]w([j'S4(0)]w) is one class and immersed manifold3h(2)(S'(3)) for
| > 1 respectively.

Theorem 4.4. Let n= 2 or 3, and U a neighborhood @ in T*R". Then there exists a residual
set Oc S(U, T*R") such that for anys € O and xe U, the reticular Lagrangian map o S,J1.

is weakly caustic-stable or caustic-stable, whgee S(T*R", 0) be defined by the map x>
S(xo0 + X) — S(x).

A reticular Lagrangian mapo S,|;. for anyS € O andx € U has a generating family which is

aweakly reticulap-C-stable unfolding 08!, B;;%, B;, or a reticularP-C-stable unfolding

of sz‘g, B34 B33, B3s, Coy, thatisF is weakly reticulatP-C-equivalent to one of
10



Bz’;l: F (X1, Xz, 01, O2) = X3 £ X1 Xo + 235 + OuXa + GoXe,

Bz’;’z: F(X1, X2, O, 0p) = X3 £ XaXp + X5 + OpXa + G Xz,

B35 F(x1, X2, 01, @) = X4 + XaXp — X5 + GuXq + GpXa,

or F is reticularP-C-equivalent to one of

Bz”g: F(le X2, 1, O2, QS) =X % X% + 1X1 + O2X2 + Q3X1 X2,

B35 3 F(X1, X2, 01, G, G3) = (X1 + X2)? £ )3 + GuXa + QoXz + G35,

B35 F(X1, X2, 01, G2, Gg) = XE & XX + X3 + QaXa + GpXa + 0335,

B35 F(X1, X2, 01, G2, Gg) = X & XX + X5 + QaXa + GpXa + 03X,

C;’Zi: F(Y, X1, X2, 01, G2, Of3) = £Y5 + X1y £ XoY + X5 + Oy + O2X1 + OzXo.
Proof. We choose the weakly caustic-stable reticular Lagrangiapsnr o ix : (L,0) —
(T*R",0) — (R", 0) for

_ pt+tl pE+2 pE—
X = BZ,Z ’BZ,Z ’BZ,Z' (2)

We also choose the caustic-stable reticular Lagrangiasmag : (L, 0) — (T*R3,0) — (R3,0)
for
0 p+.t s s s

X = Bzz’ 22,3 B;; ’ Bizi ’Czsi : (3)
Then other reticular Lagrangian maps are not causticestibte other singularities have retic-
ular C-codimension> 3. We choose extensior® € S(T*R",0) of ix for all X. We define
that

0, ={S e S(U, T'R") | j§*2S is transversal toj[*?Sx(0)], for all X in @)},

0, ={S € S(U, T'R") | j2*?S is transversal toj[*?Sx(0)]. for all X in @)},

wherejLS(x) = j'Sx(0). ThenO; andO, are residual sets. We set
Y = {j™?S(0) € S™?(n) | the codimension ofj[*2S(0)]. > 8}.
ThenY is an algebraic set i8™?(n) by [2, Theorem 6.6 (a’)]. Therefore we can define that
0" ={S e S(U, T'R" | j52Sis transversal teY}.

For anyS e S(T*R",0) with j"™2S(0) and any generating familly of 7 o S|, the function
germF|q—o has the reticulaR*-codimension> 4. This means thaf|,—o has the reticulaC-
codimension> 3. It follows that j"*2S(0) does not belong to the above equivalence classes.
ThenY has codimensior 6. Then we have that

0" ={SeSU,TR" | j5?SU)NY = 0).

We defineD = O; N O, N O”. Since allr o ix for X in (2) are weak caustic 1-determined, and all
moix in (@) are caustic 5-determined by Leminal 3.2. Themas the required condition. W
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