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Genericity of Caustics on a corner
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Abstract

We introduce the notions ofthe caustic-equivalenceandthe weak caustic-equivalence relations
of reticular Lagrangian maps in order to give a generic classification of caustics on a corner. We
give the figures of all generic caustics on a corner in a smoothmanifold of dimension 2 and 3.
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1. Introduction

In [1] we investigate the theory ofreticular Lagrangian mapswhich can be described stable
caustics generated by a hypersurface germ with anr-corner in a smooth manifold. A map germ
π ◦ i : (L, 0) → (T∗Rn, 0) → (Rn, 0) is calleda reticular Lagrangian mapif i is a restriction
of a symplectic diffeomorphism germ on (T∗Rn, 0), whereIr = {1, . . . , r} andL = {(q, p) ∈
T∗Rn|q1p1 = · · · = qr pr = qr+1 = · · · = qn = 0, qIr ≥ 0}. For the definitions of caustics and
generating families of reticular Lagrangian maps, see [1, p.575-577]. In [2] we investigate the
genericity of caustics on anr-corner and give the generic classification for the casesr = 0 and 1
by using G.Ishikawa’s methods (see [3, Section 5]). We also showed that the method of the paper
do not work well for the caser = 2, that is the initial hypersurface germ has a corner. In this
paper we introduce the two equivalence relations of reticular Lagrangian maps which are weaker
than Lagrangian equivalence in order to give a generic classification of caustics on a corner.

2. Caustic-equivalence

We introduce the equivalence relations of reticular Lagrangian maps and their generating
families.
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Let π ◦ i j be reticular Lagrangian maps forj = 1, 2. We say that they arecaustic-equivalent
if there exists a diffeomorphism germg on (Rn, 0) such that

g(C1
σ) = C2

σ, g(Q1
σ,τ) = Q2

σ,τ for all σ, τ ⊂ Ir (σ , τ). (1)

In order to describe the caustic-equivalence of reticular Lagrangian maps by their generat-
ing families, we introduce the following equivalence relation of function germs. We say that
f , g ∈ E(r; k) arereticular C-equivalentif there existφ ∈ B(r; k) and non-zero numbera ∈ R

such thatg = a · f ◦ φ. See [1] or [4] for the notations. We construct the theory of unfoldings
with respect to the corresponding equivalence relation. Then the relation of unfoldings is given
as follows: Two function germsF(x, y, q),G(x, y, q) ∈ E(r; k+ n) arereticularP-C-equivalentif
there existΦ ∈ Bn(r; k+ n) and a unita ∈ E(n) andb ∈ E(n) and such thatG = a · F ◦Φ+ b. We
define thestablereticular (P-)C-equivalence by the ordinary ways (see [1, p.576]). We remark
that a reticularP-C-equivalence class includes the reticularP-R+-equivalence classes.

We review the results of the theory. LetF(x, y, u) ∈M(r; k + n) be an unfolding off (x, y) ∈
M(r; k).

We say thatF is reticularP-C-stableif the following condition holds: For any neighborhood
U of 0 in R

r+k+n and any representativẽF ∈ C∞(U,R) of F, there exists a neighborhoodNF̃ of
F̃ in C∞-topology such that for any elementG̃ ∈ NF̃ the germG̃|Hr×Rk+n at (0, y0, q0) is reticular
P-C-equivalent toF for some (0, y0, q0) ∈ U.

We say thatF is reticular P-C-versalif all unfolding of f is reticularP-C- f -induced from
F. That is, for any unfoldingG ∈ M(r; k + n′) of f , there existΦ ∈ M(r; k + n′, r; k + n) and a
unit a ∈ E(n′) andb ∈ E(n′) satisfying the following conditions:
(1)Φ(x, y, 0) = (x, y, 0) for all (x, y) ∈ (Hr × Rk, 0) anda(0) = 1, b(0) = 0,
(2)Φ can be written in the form:

Φ(x, y, q) = (x1φ
1
1(x, y, q), · · · , xrφ

r
1(x, y, q), φ2(x, y, q), φ3(q)),

(3) G(x, y, q) = a(q) · F ◦ Φ(x, y, q) + b(q) for all (x, y, q) ∈ (Hr × Rk+n′ , 0).

We say thatF is reticularP-C-infinitesimally versalif

E(r; k) = 〈x
∂ f
∂x
,
∂ f
∂y
〉E(r;k) + 〈1, f ,

∂F
∂q
|q=0〉R.

We say thatF is reticularP-C-infinitesimally stableif

E(r; k+ n) = 〈x
∂F
∂x
,
∂F
∂y
〉E(r;k+n) + 〈1, F,

∂F
∂q
〉E(n).

We say thatF is reticularP-C-homotopically stableif for any smooth path-germ (R, 0)→
E(r; k + n), t 7→ Ft with F0 = F, there exists a smooth path-germ (R, 0) → Bn(r; k + n) ×
E(n) × E(n), t 7→ (Φt, at, bt) with (Φ0, a0, b0) = (id, 1, 0) such that each (Φt, at, bt) is a reticular
P-C-isomorphism fromF to Ft, that isFt = at · F ◦Φt + bt for t around 0.
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Theorem 2.1. (cf., [1, Theorem 4.5])Let F ∈M(r; k+ n) be an unfolding of f∈M(r; k). Then
the following are all equivalent.
(1) F is reticularP-C-stable.
(2) F is reticularP-C-versal.
(3) F is reticularP-C-infinitesimally versal.
(4) F is reticularP-C-infinitesimally stable.
(5) F is reticularP-C-homotopically stable.

For a non-quasihomogeneous function germf (x, y) ∈ M(r; k), if 1, f , a1, . . . , an ∈ E(r; k) is
a representative of a basis of the vector space

E(r; k)/〈x
∂ f
∂x
,
∂ f
∂y
〉E(r;k),

then the function germf +a1q1+ · · ·+anqn ∈M(r; k+n) is a reticularP-C-stable unfolding off .
We calln the reticularC-codimension off . If f is a quasihomogeneous function germ thenf is
included in〈x∂ f

∂x ,
∂ f
∂y 〉E(r;k). This means that the reticularC-codimension of a quasihomogeneous

function germ is equal to its reticularR+-codimension.
We define thesimplicityof function germs under the reticularC-equivalence in the usual way

(cf., [2]).

Theorem 2.2. (cf., [2, Theorem 2.1,2.2])A reticularC-simple function germ inM(1;k)2 is sta-
bly reticularC-equivalent to one of the following function germs:

Bl : xl (l ≥ 2), Cεl : xy+ εyl (εl−1
= 1, l ≥ 3), F4 : x2

+ y3.

The relation between reticular Lagrangian maps and their generating families under the
caustic-equivalence are given as follows:

Proposition 2.3. Letπ◦i j be reticular Lagrangian maps with generating families Fj for j = 1, 2.
If F1 and F2 are stably reticularP-C-equivalent thenπ ◦ i1 andπ ◦ i2 are caustic-equivalent.

Proof. The function germF2 may be written thatF2(x, y, q) = a(q)F3(x, y, q), wherea is a unit
andF1 andF3 are stably reticularP-R+-equivalent. Then the reticular Lagrangian mapπ ◦ i3
given byF3 andπ ◦ i1 are Lagrangian equivalent and the caustic ofπ ◦ i2 andπ ◦ i3 coincide to
each other. �

This proposition shows that it is enough to classify function germs under the stable reticular
P-C-equivalence in order to classify reticular Lagrangian maps under the caustic-equivalence.
We here give the classification list as the following:

Theorem 2.4. (cf., [1, p.592])Let f ∈M(2;k)2 have the reticularC-codimension≤ 4. Then f is
stably reticularC-equivalent to one of the following list.
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k Normal form codim Conditions Notation
0 x2

1 ± x1x2 + ax2
2 3 0< a < 1

4 B±,+,12,2,a

x2
1 ± x1x2 + ax2

2 3 a > 1
4 B±,+,22,2,a

x2
1 ± x1x2 + ax2

2 3 a < 0 B±,−2,2,a

x2
1 ± x2

2 3 B±,02,2
(x1 ± x2)2 ± x3

2 3 B±,±2,2,3
x2

1 ± x1x2 ± x3
2 3 B±,±2,3

x3
1 ± x1x2 ± x2

2 3 B±,±3,2
x2

1 ± x1x2
2 ± x3

2 4 B±,±2,3′

x3
1 ± x2

1x2 ± x2
2 4 B±,±3,2′

1 ±y3
1 + x1y± x2y+ x2

2 3 C±,±3,2
±y3

1 + x1y± x2y2
+ x2

2 4 C±,±3,2,1
±y3

1 + x2y± x1y2
+ x2

1 4 C±,±3,2,2

We remark that the stable reticularC-equivalence classB+,+2,3 of x2
1 + x1x2 + x3

2 consists of the
union of the stable reticularR-equivalence classes ofx2

1 + x1x2 + ax3
2 and−x2

1 − x1x2 − ax3
2 for

a > 0. The same things hold forB±,±2,2,3, B±,±2,3 , B±,±3,2 , C±,±3,2 .

3. Caustic-stability

We definethe caustic-stabilityof reticular Lagrangian maps and reduce this to finite dimen-
sional jet spaces of symplectic diffeomorphism germs.

We denoteS(T∗Rn, 0) the set of symplectic diffeomorphism germs on (T∗Rn, 0) and denote
S(U,T∗Rn) the space of symplectic embeddings from an open setU in T∗Rn around 0 toT∗Rn

with C∞-topology.
We say that a reticular Lagrangian mapπ◦ i is caustic-stableif the following condition holds:

For any extensionS ∈ S(T∗Rn, 0) of i and any representativẽS ∈ S(U,T∗Rn) of S, there exists a
neighborhoodNS̃ of S̃ such that for anỹS′ ∈ NS̃ the reticular Lagrangian mapπ ◦ S̃′|L at x0 and
π ◦ i are caustic-equivalent for somex0 = (0, . . . , 0, p0

r+1, . . . , p
0
n).

Definition 3.1. Let π ◦ i be a reticular Lagrangian map and l be a non-negative number. We
say thatπ ◦ i is causticl-determinedif the following condition holds: For any extension S of
i, the reticular Lagrangian mapπ ◦ S′|L and π ◦ i are caustic-equivalent for any symplectic
diffeomorphism germ S′ on (T∗Rn, 0) satisfying jlS(0) = j lS′(0).

Lemma 3.2. Let π ◦ i : (L, 0) → (T∗Rn, 0) → (Rn, 0) be a reticular Lagrangian map. If a
generating family ofπ ◦ i is reticularP-C-stable thenπ ◦ i is caustic(n+ 2)-determined.

Proof. This is proved by the analogous method of [2, Theorem 5.3]. We give the sketch of proof.
Let S be an extension ofi. Then we may assume that there exists a function germH(Q, p) such
that the canonical relationPS has the form:

PS = {(Q,−
∂H
∂Q

(Q, p),−
∂H
∂p

(Q, p), p) ∈ (T∗Rn × T∗Rn, (0, 0))}.

Then the function germF(x, y, q) = H0(x, y)+〈y, q〉 is a reticularP-C-stable generating family of
π ◦ i, andH0 is reticularR-(n+ 3)-determined, whereH0(x, y) = H(x, 0, y). Let a symplectic dif-
feomorphism germS′ on (T∗Rn, 0) satisfyingjn+2S(0) = jn+2S′(0) be given. Then there exists a
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function germH′(Q, p) such that the canonical relationPS′ is given the same form forH′ and the
function germG(x, y, q) = H′0(x, y) + 〈y, q〉 is a generating family ofπ ◦ S′|L. Then it holds that
jn+3H0(0) = jn+3H′0(0). There exists a function germG′ such thatG andG′ are reticularP-R-
equivalent andF andG′ are reticularP-C-infinitesimal versal unfoldings ofH0(x, y). It follows
thatF andG are reticularP-C-equivalent. Thereforeπ ◦ i andπ ◦ S′|L are caustic-equivalent.�

For a reticularP-C-stable unfoldingF ∈M(2;k+n)2 with n ≤ 3, the function germf = F |q=0

has a modality under the reticularR-equivalence (see [1, p.592]). For example, consider the case
f is stably reticularC-equivalent tox2

1 + x1x2 + x3
2. ThenF is stably reticularP-C-equivalent to

f +q1x1+q2x2+q3x2
2. In this case the function germsFa(x, q) = x2

1+ x1x2+ax3
2+q1x1+q2x2+

q3x2
2(a > 0) are stably reticularP-C-equivalent toF but not stably reticularP-R+-equivalent to

each other. LetS±a be extensions of reticular Lagrangian embeddings defined byFa and−Fa for
a > 0 respectively. We define the caustic-equivalence class ofS1 by [S1]c := ∪a>0([S+a ]L∪[S−a ]L),
where [S±a ]L are the Lagrangian equivalence classes ofS±a respectively. By Proposition 2.3, we
have that all reticular Lagrangian mapsπ◦S′|L are caustic-equivalent to each other forS′ ∈ [S1]c.
In order to apply the last theorem of this paper, we need to prove that the set consists of the 5-jets
of the caustic-equivalence class [S1]c, we denote this by [j5S1(0)]c, is an immersed manifold of
S5(3), whereSl(n) be the set consists ofl-jets of elements inS(T∗Rn, 0). We shall prove that
the map germ (0,∞)→ S5(3), a 7→ j5Sa(0) is not tangent to [j5Sa(0)]L for anya, and apply the
following lemma:

Lemma 3.3. Let I be an open interval, N a manifold, and G a Lie group acts onN. Let x: I → N
be a smooth path such thatdx

dt (t) is not tangent to G· x(t) for all t ∈ I. Then
⋃

t∈I

G · x(t)

is an immersed manifold of N.

We note that we here prove the caseB+,+2,3 . The same method is valid for allB±,±2,3 , B
±,±
3,2 .

We defineGa ∈ M(6)2 by Ga(Q1,Q2,Q3, q1, q2, q3) = Fa(Q1,Q2, q1, q2) + Q3q3. ThenGa

define the canonical relationsPa and they give symplectic diffeomorphismsSa of the forms:

Sa(Q,P) = (−2Q1 − Q2 − P1,−Q1 − 3aQ2
2 − P2 + 2P3Q2,−P3,Q1,Q2,Q

2
2 + Q3).

We have thatFa are generating families ofπ ◦ Sa|L. Then dSa
da = (0,−3Q2

2, 0, 0, 0, 0) = Xf ◦ Sa

for f = −p3
2. We suppose thatj5( dSa

da )(0) ∈ Tz([z]L) for z = j5Sa(0). By [2, Lemma 6.2], there
exist a fiber preserving function germH ∈M2

Q,P andg ∈ 〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 such that
j2(Xf ◦Sa)(0) = j2(XH ◦Sa + (Sa)∗Xg)(0). This means thatj3( f ◦ Sa)(0) = j3(H ◦Sa + g)(0). It
follows that there exist function germsh1, h2, h3 ∈MQ, h0 ∈M

2
Q such that

f ◦ Sa = −Q3
2 ≡ h1(q ◦ Sa)Q1 + h2(q ◦ Sa)Q2 + h3(q ◦ Sa)(Q2

2 + Q3) + h0(q ◦ Sa)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
4
Q,P.

We may reduce this to

−Q3
2 ≡ h1(−2Q1 − Q2,−Q1 − 3aQ2

2 − P2 + 2P3Q2,−P3)Q1

+h2(−2Q1 − Q2 − P1,−Q1 − 3aQ2
2 + 2P3Q2,−P3)Q2

+h3(−2Q1 − Q2 − P1,−Q1,−P3)Q2
2 + h0(−2Q1 − Q2 − P1,−Q1 − P2,−P3)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
4
Q,P.
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We show this equation has a contradiction. The coefficients ofPi1
1 Pi2

2 Pi3
3 on the equation depend

only on the coefficients ofqi1
1 qi2

2 qi3
3 on h0 respectively. This means thath0(q ◦ Sa) ≡ 0. The

coefficients ofQ2
1,Q1P2,Q1P3 on the equation depend only on the coefficients ofq1, q2, q3 onh1

respectively. This means thatj1(h1(q ◦ Sa)(0) ≡ 0. The coefficients ofQ2P1,Q1Q2,Q2P3 on the
equation depend only on the coefficients ofq1, q1, q3 onh2. This means thatj1(h2(q◦Sa))(0) ≡ 0.
So we need only to consider the quadratic part ofh1, h2 and the linear part ofh3. The coefficients
of Q2P2

1,Q
2
2P1 on the equation depend only on the coefficient ofq2

1 onh2 and the coefficient ofq1

on h3 respectively. This means that their coefficients are all equal to 0. Therefore the coefficient
of Q3

2 on the right hand side of the equation is 0. This contradicts the equation. So we have that
j5( dSa

da )(0) is not included inTz([z]L).

We also prove the caseB+,+2,2,3: We consider the reticular Lagrangian mapsπ ◦ ia with the
generating familiesFa(x1, x2, q1, q2, q3) = (x1 + x2)2

+ ax3
2 + q1x1 + q2x2 + q3x2

2. Then the
function germsGa(Q1,Q2,Q3, q1, q2, q3) = (Q1 +Q2)2

+ aQ3
2 + q1Q1 + q2Q2 + q3Q2

2 + q3Q3 are
the generating functions of the canonical relationsPSa andia = Sa|L. ThenSa have the forms:

Sa(Q,P) = (−(2Q1 + 2Q2 + P1),−(2Q1 + 2Q2 + 3aQ2
2 + P2 − 2P3Q2),−P3,Q1,Q2,Q

2
2 + Q3).

We have thatdSa
da = (0,−3Q2

2, 0, 0, 0, 0) = Xf ◦ Sa for f = −p3
2. Then we consider the following

equation:

f ◦ Sa = −Q3
2 ≡ h1(q ◦ Sa)Q1 + h2(q ◦ Sa)Q2 + h3(q ◦ Sa)(Q2

2 + Q3) + h0(q ◦ Sa)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
4
Q,P,

whereh1, h2, h3 ∈M(Q), h0 ∈M
2(Q). We may reduce this to

−Q3
2 ≡ h1(−(2Q1 + 2Q2),−(2Q1 + 2Q2 + 3Q2

2 + P2 − 2Q2P3),−P3)Q1

+h2(−(2Q1 + 2Q2 + P1),−(2Q1 + 2Q2 + 3Q2
2 − 2Q2P3),−P3)Q2

+h3(−(2Q1 + 2Q2 + P1),−(2Q1 + 2Q2),−P3)Q2
2

+h0(−(2Q1 + 2Q2 + P1),−(2Q1 + 2Q2 + 3aQ2
2 + P2 − 2Q2P3),−P3)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
4
Q,P.

By the same reason in the caseB+,+2,3 , we have thath0(q ◦ Sa) ≡ 0. By the consideration of
the coefficients ofQ2

1,Q1P2,Q1P3 andQ2P1,Q2
2,Q2P3 on the equation, we have thatj1(h1(q ◦

Sa)Q1)(0) ≡ j1(h2(q ◦ Sa)Q2)(0) ≡ 0. The coefficients ofQ1P2
2,Q1P2

3,Q1P2P3 on the equation
depend only on the coefficients ofq2

2, q
2
3, q2q3 on h1. This means that they are all equal to 0.

The coefficients ofQ2
1P2,Q2

1P3,Q3
1 depend only on the coefficients ofq1q2, q1q3, q2

1 on h1. This
means that they are all equal to 0. We have thatj2(h1(q ◦ Sa)Q1)(0) ≡ 0.

The coefficients ofQ2P2
1,Q2P2

3,Q2P1P3 depend only on the coefficients ofq2
1, q

2
3, q1q3 on

h2 and they are all equal to 0. We writeh2 = q2(bq1 + cq2 + dq3), h3 = eq1 + f q2 + gq3. We
calculate the coefficients ofQ2

1Q2,Q1Q2
2,Q

2
2P1,Q1Q2P3,Q2

2P3, then we have that−2b − 2c =
−8(−2b−2c)+2e(−2−2 f ) = 4b−2e= d = 4d−2eg= 0. This is solved thatb = c = d = e= 0
or b = e

2 , c = −
e
2 , d = 0, f = −1, g = 0. This means that the coefficient ofQ3

2 on the right hand
side of the equation is 4b+ 4c− 2e− 2e f = 0. This contradicts the equation.

We also prove the caseC+,+3,2 : We consider the reticular Lagrangian mapsπ ◦ ia with the
generating familiesFa(y, x1, x2, q1, q2, q3) = y3

+ x1y+ x2y+ax2
2+ax3

2+q1y+q2x1+q3x2. Then
6



the function germsGa(y,Q1,Q2,Q3, q1, q2, q3) = y3
+Q1y+Q2y+aQ2

2+q1y+q2Q1+q3Q2+yQ3

are the generating families of the canonical relationsPSa andia = Sa|L. ThenSa have the forms:

Sa(Q,P) = (−(3P2
3 + Q1 + Q2 + Q3),P3 − P1,P3 − 2aQ2 − P2,−P3,Q1,Q2).

We have thatdSa
da = (0, 0,−2Q2, 0, 0, 0) = Xf ◦ Sa for f = −p2

3. Then we consider the following
equation:

f ◦ Sa = −Q2
2 ≡ h1(q ◦ Sa)(−P3) + h2(q ◦ Sa)Q1 + h3(q ◦ Sa)Q2 + h0(q ◦ Sa)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
3
Q,P.

We may reduce this to

−Q2
2 ≡ h1(−(Q1 + Q2),P3 − P1,P3 − 2aQ2 − P2)(−P3)

+h2(−(Q1 + Q2),P3,P3 − 2aQ2 − P2)Q1

+h3(−(Q1 + Q2),P3 − P1,P3 − 2aQ2)Q2

+h0(−(Q1 + Q2),P3 − P1,P3 − 2aQ2 − P2)

mod〈Q1P1,Q2P2〉EQ,P +MQ,P〈Q3〉 +M
3
Q,P.

Since the coefficients ofPi2
1 Pi3

2 on the equation depend only on the coefficients ofqi2
2 qi3

3 on h0,
it follows that they are all equal to 0. Since the coefficients ofP1P3,P2P3 depend only on the
coefficients ofq2, q3 onh1, it follows that they are all equal to 0.

Therefore we may seth1 = bq1, h2 = cq1 + dq2 + eq3, h3 = f q1 + gq2 + hq3, h0 =

q1(iq1 + jq2 + hq3). By the calculation of the equation, we have that the coefficient ofQ2
2 on the

right hand side of the equation is 0. This contradicts the equation.

Lemma 3.4. Let π ◦ i : (L, 0)→ (T∗Rn, 0)→ (Rn, 0) be a reticular Lagrangian map, S be an
extension of i. Suppose that the caustic-equivalence class[ jn+2

0 S(0)]c be an immersed manifold
of Sn+2(n). If a generating family ofπ ◦ i is reticular P-C-stable and jn+2

0 S is transversal to
[ jn+2

0 S(0)]c at 0, thenπ ◦ i is caustic stable.

This is proved by the analogous method of [2, Theorem 6.6 (t)&(is)⇒(s)]. By this lemma, we
have that the caustic-stability of reticular Lagrangian maps is reduced to the transversality of
finite dimensional jets of extensions of their reticular Lagrangian embeddings.

4. Weak Caustic-equivalence

There exist modalities in the classification list of Section2. This means that the caustic-
equivalence is still too strong for a generic classificationof caustics on a corner. In order to
obtain the generic classification, we need to admit the following equivalence relations:

We say that reticular Lagrangian mapsπ ◦ i1 andπ ◦ i2 areweakly caustic-equivalentif there
exists a homeomorphism germg on (Rn, 0) such thatg is smooth on allC1

σ, Q1
σ,τ, and satisfies (1).

We say that two function germs inM(r; k + n)2 areweakly reticularP-C-equivalentif they
are generating families of weakly caustic-equivalent reticular Lagrangian maps. We define the
stableweakly reticularP-C-equivalence by the ordinary way.
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We here investigate the reticularC-equivalence classesB+,+,22,2,a of function germs. The same

methods are valid for the classesB±,+,12,2,a , B±,+,22,2,a , B±,−2,2,a. So we prove only to the classesB+,+,22,2,a .

We consider the reticular Lagrangian mapsπ ◦ ia : (L, 0) → (T∗R2, 0) → (R2, 0) with the
generating familiesFa(x1, x2, q1, q2) = x2

1+ x1x2+ax2
2+q1x1+q2x2 (a > 1

4). We give the caustic
of π ◦ ia andπ ◦ ib for 1

4 < a < b. In these figuresQ1,I2 ,Q2,I2,Q∅,2 are in the same positions. Sup-

Figure 1: the caustics ofπ ◦ ia Figure 2: the caustics ofπ ◦ ib

pose that there exists a diffeomorphism germg on (R2, 0) such thatQ1,I2 ,Q2,I2,Q∅,2 are invariant
underg. Theng can not mapQ∅,1 from one to the other. This implies that caustic-equivalence
is too strong for generic classifications. But these causticare equivalent under the weak caustic-
equivalence. This implies that the reticular Lagrangian map π ◦ ia is weakly caustic equivalent
to π ◦ i1 for anya > 1

4 and henceFa is weakly reticularP-C-equivalent toF1. We remark that
a homeomorphism germga, which gives the weak caustic-equivalence ofπ ◦ i1 andπ ◦ ia, may
be chosen to be smooth outside 0 and depends smoothly ona. This means that the weak caustic-
equivalence relation is naturally extended for the (caustic) stable reticular Lagrangian maps with
the generating familiesF′a(x1, x2, q1, q2, q3) = x2

1 + x1x2 + ax2
2 + q1x1 + q2x2 + q3x2

2 andF′a is
weakly reticularP-C-equivalent toF′(x1, x2, q1, q2, q3) = x2

1 + x1x2 + x2
2 + q1x1 + q2x2. The

figure of the corresponding caustic is given in [1, p.602B+,+,
<
α

2,2 ]. We also remark that the func-

tions x2
1 + x1x2 + x2

2 + q1x1 + q2x2 andx2
1 + x1x2 +

1
5 x2

2 + q1x1 + q2x2 are not weakly reticular
P-C-equivalent becauseQ∅,1 andQ∅,1 of their caustics are in the opposite positions to each other.

By the above consideration, we regard the function germfa(x) = x2
1 + x1x2 + ax2

2(a > 1
4) are

all equivalent. We say this equivalence relationthe weak reticularC-equivalence. Sinced fa
da = x2

is not included in〈x∂ fa
∂x 〉E(x), it follows that thel-jets of the weak reticularC-equivalence class of

fa consists an immersed manifold ofJl(2, 1) for l ≥ 2.
We classify function germs inM(2;k)2 with respect to the weak reticularC-equivalence with

the codimension≤ 3. Then we have the following list:
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k Normal form codim Notation
0 x2

1 ± x1x2 +
1
5 x2

2 2 B±,+,12,2

x2
1 ± x1x2 + x2

2 2 B±,+,22,2
x2

1 ± x1x2 − x2
2 2 B±,−2,2

x2
1 ± x2

2 3 B±,02,2
(x1 ± x2)2 ± x3

2 3 B±,±2,2,3
x2

1 ± x1x2 ± x3
2 3 B±,±2,3

x3
1 ± x1x2 ± x2

2 3 B±,±3,2
1 ±y3

1 + x1y± x2y+ x2
2 3 C±,±3,2

Proposition 4.1. Letπ ◦ ia : (L, 0)→ (T∗R2, 0)→ (R2, 0) be the reticular Lagrangian map with
the generating family x21 + x1x2 + ax2

2 + q1x1 + q2x2. Let Sa ∈ S(T∗R2, 0) be extensions of ia.
Then the weak caustic-equivalence class

[ j lS1(0)]w :=
⋃

a> 1
4

[ j lSa(0)]c

is an immersed manifold in Sl(2) for l ≥ 1.

Proof. The function germGa(Q1,Q2, q1, q2) = Q2
1 + Q1Q2 + aQ2

2 + q1Q1 + q2Q2 is a generating
function of the canonical relationPSa and we have that

Sa(Q,P) = (−(2Q1 + Q2 + P1),−(Q1 + 2aQ2 + P2),Q1,Q2).

This means thatdSa
da = (0,−2Q2, 0, 0) = Xf ◦Sa for f = −p2

2. Suppose thatj1( dSa
da )(0) is included

in Tz(rLa1(2) · z). Then there existh1, h2 ∈MQ,P andh0 ∈M
2
Q,P such that

−Q2
2 ≡ h1(q ◦ Sa)Q1 + h2(q ◦ Sa)Q2 + h0(q ◦ Sa) mod〈Q1P1,Q2P2〉EQ,P +M

3
Q,P.

We need only to consider the linear parts ofh1, h2 and the quadratic part ofh0. The coeffi-
cients ofP2

1,P
2
2,P1P2 depend only on the coefficients ofQ2

1,Q
2
2,Q1Q2 on h0 respectively. This

means thath0 ≡ 0. We seth1 = bq1 + cq2, h2 = dq1 + eq2 and calculate the coefficients of
Q2

1,Q1Q2,Q1P2,Q2P1 in the equation. Then we have that−2b−c = 0,−b−2d−e−2ca= 0, c =
0, d = 0. This means thate= 0. Then we have that the coefficient ofQ2

2 of the right hand side of
the equation is equivalent to−d− ae= 0. This contradicts the equation. �

If we consider the (caustic) stable reticular Lagrangian map π ◦ ia : (L, 0) → (T∗R3, 0) →
(R3, 0) with the generating familyx2

1 + x1x2 + ax2
2 + q1x1 + q2x2 + q3x2

2 and take an extension
S′a ∈ S(T∗R2, 0) of ia, then we have by the analogous method that:

Corollary 4.2. Let S′a be as above. Then

[ j lS′1(0)]w :=
⋃

a> 1
4

[ j lS′a(0)]c

is an immersed manifold in Sl(3) for l ≥ 1.
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Since the caustic ofπ ◦ ia is given by the restrictions ofπ ◦ ia to L0
σ ∩ L0

τ for σ , τ in this
case, it follows that the caustic is determined by the linearpart of ia. This means thatπ ◦ ia is
1-determined with respect to the weak caustic-equivalence(cf., Definition 3.1).

Theorem 4.3. The function germ F(x1, x2, q1, q2) = x2
1 + x1x2 + x2

2 + q1x1 + q2x2 is a weakly
reticularP-C-stable unfolding of f(x1, x2) = x2

1 + x1x2 + x2
2

Proof. We defineF′ ∈ M(2; 3)2 by F′(x1, x2, q1, q2, q3) = F(x1, x2, q1, q2) + q3x2
2 ThenF′ is a

reticularP-R+-stable unfolding off . It follows that for any neighborhoodU′ of 0 in (R5, 0) and
any representativẽF′ ∈ C∞(U,R), there exists a neighborhoodNF̃′ such that for anyG̃′ ∈ NF̃′ the
function germG̃′|H2×R3 at p′0 is reticularP-R+-equivalent toF′ for somep′0 = (0, 0, q0

1, q
0
2, q

0
3) ∈

U′.
Let a neighborhoodU of 0 in (R4, 0) and a representativẽF ∈ C∞(U,R) be given. We set

the open intervalI = (−0.5, 0.5) and setU′ = U × I . Then there existsNF̃′ for which the
above condition holds. We can choose a neighborhoodNF̃ of F̃ such that for anyG̃ ∈ NF̃ the
function G̃ + q3x2

2 ∈ NF̃′ . Let a functionG̃ ∈ NF̃ be given. Then the function germG′ =
(G̃ + q3x2

2)|H2×R3 at p′0 is reticularP-R+-equivalent toF′ for somep′0 = (0, 0, q0
1, q

0
2, q

0
3) ∈ U′.

We defineG ∈ M(2; 2)2 by G̃|H2×R2 at p0 = (0, 0, q0
1, q

0
2) ∈ U. Then it holds thatG′(x, q) =

G(x, q1, q2)+ (q3+ q0
3)x

2
2, andG′|q=0 = G(x, 0)+ q0

3x2
2 is reticularR-equivalent tof . Let (Φ, a) be

the reticularP-R+-equivalence fromG′ to F′. We writeΦ(x, q) = (xφ1(x, q), φ2
1(q), φ2

2(q), φ2
3(q)).

By shrinkingU if necessary, we may assume that the map germ

(q1, q2) 7→ (φ2
1(q1, q2, 0), φ2

2(q1, q2, 0)) on (R2, 0)

is a diffeomorphism germ. ThenF is reticularP-R+-equivalent toG1 ∈ M(2; 2)2 given by
G1(x, q) = G(x1, x2, q1, q2) + (φ2

3(q1, q2, 0)+ q0
3)x

2
2. It follows that the reticular Lagrangian maps

defined byF andG1 are Lagrangian equivalent. We have that

j2(G+ q0
3x2

2)(0) = j2G1(0), q0
3 > −0.5.

This means that the caustic ofG1 is weakly caustic-equivalent to the caustic ofG because the
reticular Lagrangian maps ofG1 andF are the same weak caustic-equivalence class that is 1-
determined under the weak caustic-equivalence. This meansthat F andG are weakly reticular
P-C-equivalent. ThereforeF is weakly reticularP-C-stable. �

By the above consideration, we have that: For each singularity B±,+,12,2 , B
±,+,2
2,2 , B

±,−

2,2 , if we
take the symplectic diffeomorphism germSa(S′a) as the above method, then the weak caustic-
equivalence class [j lSa(0)]w([ j lS′a(0)]w) is one class and immersed manifold inSl(2)(Sl(3)) for
l ≥ 1 respectively.

Theorem 4.4. Let n= 2 or 3, and U a neighborhood of0 in T∗Rn. Then there exists a residual
set O⊂ S(U,T∗Rn) such that for anỹS ∈ O and x∈ U, the reticular Lagrangian mapπ ◦ S̃x|L
is weakly caustic-stable or caustic-stable, whereS̃x ∈ S(T∗Rn, 0) be defined by the map x0 7→

S̃(x0 + x) − S̃(x).

A reticular Lagrangian mapπ ◦ S̃x|L for anyS̃ ∈ O andx ∈ U has a generating familyF which is
a weakly reticularP-C-stable unfolding ofB±,+,12,2 , B

±,+,2
2,2 , B

±,−

2,2 , or a reticularP-C-stable unfolding

of B±,02,2 , B
±.±
2,2,3, B

±,±

2,3 , B
±,±

3,2 ,C
±,±

2,3 , that isF is weakly reticularP-C-equivalent to one of
10



B±,+,12,2 : F(x1, x2, q1, q2) = x2
1 ± x1x2 +

1
5 x2

2 + q1x1 + q2x2,

B±,+,22,2 : F(x1, x2, q1, q2) = x2
1 ± x1x2 + x2

2 + q1x1 + q2x2,
B±,−2,2 : F(x1, x2, q1, q2) = x2

1 ± x1x2 − x2
2 + q1x1 + q2x2,

or F is reticularP-C-equivalent to one of
B±,02,2 : F(x1, x2, q1, q2, q3) = x2

1 ± x2
2 + q1x1 + q2x2 + q3x1x2,

B±,±2,2,3: F(x1, x2, q1, q2, q3) = (x1 ± x2)2 ± x3
2 + q1x1 + q2x2 + q3x2

2,
B±,±2,3 : F(x1, x2, q1, q2, q3) = x2

1 ± x1x2 ± x3
2 + q1x1 + q2x2 + q3x2

2,
B±,±3,2 : F(x1, x2, q1, q2, q3) = x3

1 ± x1x2 ± x2
2 + q1x1 + q2x2 + q3x2

1,
C±,±3,2 : F(y, x1, x2, q1, q2, q3) = ±y3

1 + x1y± x2y+ x2
2 + q1y+ q2x1 + q3x2.

Proof. We choose the weakly caustic-stable reticular Lagrangianmapsπ ◦ iX : (L, 0) →
(T∗Rn, 0)→ (Rn, 0) for

X = B±,+,12,2 , B
±,+,2
2,2 , B

±,−

2,2 . (2)

We also choose the caustic-stable reticular Lagrangian mapsπ◦iX : (L, 0)→ (T∗R3, 0)→ (R3, 0)
for

X = B±,02,2 , B
±.±
2,2,3, B

±,±

2,3 , B
±,±

3,2 ,C
±,±

2,3 . (3)

Then other reticular Lagrangian maps are not caustic-stable since other singularities have retic-
ular C-codimension> 3. We choose extensionsSX ∈ S(T∗Rn, 0) of iX for all X. We define
that

O′1 = {S̃ ∈ S(U,T∗Rn) | jn+2
0 S̃ is transversal to [jn+2SX(0)]w for all X in (2)},

O′2 = {S̃ ∈ S(U,T∗Rn) | jn+2
0 S̃ is transversal to [jn+2SX(0)]c for all X in (3)},

where j l0S̃(x) = j lS̃x(0). ThenO′1 andO′2 are residual sets. We set

Y = { jn+2S(0) ∈ Sn+2(n) | the codimension of [jn+2S(0)]L > 8}.

ThenY is an algebraic set inSn+2(n) by [2, Theorem 6.6 (a’)]. Therefore we can define that

O′′ = {S̃ ∈ S(U,T∗Rn) | jn+2
0 S̃ is transversal toY}.

For anyS ∈ S(T∗Rn, 0) with jn+2S(0) and any generating familyF of π ◦ S|L, the function
germ F |q=0 has the reticularR+-codimension> 4. This means thatF |q=0 has the reticularC-
codimension> 3. It follows that jn+2S(0) does not belong to the above equivalence classes.
ThenY has codimension> 6. Then we have that

O′′ = {S̃ ∈ S(U,T∗Rn) | jn+2
0 S̃(U) ∩ Y = ∅}.

We defineO = O′1∩O′2∩O′′. Since allπ ◦ iX for X in (2) are weak caustic 1-determined, and all
π ◦ iX in (3) are caustic 5-determined by Lemma 3.2. ThenO has the required condition. �
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Figure 3:B+,+,12,2 , B+,+,22,2 Figure 4:B−,+,12,2 , B−,+,22,2 Figure 5:B+,−2,2 , B−,−2,2

Figure 6:B+,02,2 Figure 7:B−,02,2
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Figure 8:B+,+2,2,3 Figure 9:B+,−2,2,3

Figure 10:B−,+2,2,3
Figure 11:B−,−2,2,3
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Figure 12:B+,+2,3 Figure 13:B+,−2,3

Figure 14:B−,+2,3 Figure 15:B−,−2,3
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Figure 16:C+,+3,2 Figure 17:C+,−3,2

Figure 18:C−,+3,2 Figure 19:C−,−3,2
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