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In order to investigate distributed quantum computation under restricted network resources, we
introduce a quantum computation task over the butterfly network where both quantum and classical
communications are limited. We consider performing a two qubit global unitary operation on two
unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular
resource scenario introduced by Hayashi [1], which is capable of performing a swap operation by
adding two maximally entangled qubits (ebits) between the two input nodes, we show that any
controlled unitary operation can be performed without adding any entanglement resource. We also
construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and
for performing global Clifford operations with a 2-ebit resource.
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I. INTRODUCTION

Distributed quantum computation aims to perform a
large scale quantum computation using a collection of
smaller scale quantum computers connected by commu-
nication channels. There are several distributed quantum
computation architectures proposed for different pur-
poses [2]. In general, distributed computation can be
modelled by a combination of computation at each node
and communication between the nodes, for both quan-
tum and classical cases. For distributed quantum com-
putation, initially shared entanglement among the nodes
can be used as a resource, as well as quantum and clas-
sical communication channels. The amount of communi-
cation between the nodes required to perform quantum
computation tasks has been analyzed by quantum com-
munication complexity theory [3].

As the ‘distributedness’ of a quantum computation in-
creases, the scale (i.e. the number of qubits) of each
quantum computer at a node decreases and the num-
ber of nodes increases. The communication resources
(quantum and classical channels and shared entangle-
ment) form an increasingly large network and the amount
of communication required grows. In any such large net-
work, one will inevitably be faced with a bottleneck prob-
lem, where communication capacities in some region are
lower than that required by a straightforward implemen-
tation of the protocol. This bottleneck restricts the total
performance of communication. In network information
theory, this problem has been extensively studied for the
last decade or so under the name network source cod-
ing [4]. Although solving general network problems are
difficult, a solution of the 2-pair communication (commu-
nications of two disjoint sender-receiver pairs) bottleneck
problem is known for a simple directed network called the
butterfly network [5] in the classical case.

In the quantum case, where the no-cloning theorem
holds, the method used in the classical case cannot be ap-
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FIG. 1. The (horizontally placed) butterfly network. The
2-pair communication problem aims to transmit information
(bit or qubits) from A1 to B2 and from A2 to B1 concurrently
via nodes C1 and C2. The directed edges D1, D2, E1, E2, F ,
G1 and G2 denotes communication channels. The channel F
exhibits the bottleneck.

plied directly, since it involves cloning inputs. Neverthe-
less, in [6], it is shown that efficient network source coding
on the quantum butterfly network, where edges represent
1-qubit quantum channels, is possible for transmitting
approximated states. Asymptotic rates of high fidelity
quantum communication have been obtained for various
networks including the butterfly network with and with-
out additional entanglement [7]. In [1], it is shown that
perfect quantum 2-pair communication over the butter-
fly network is possible if we add two maximally entangled
qubits (ebits) between the inputs and allow each channel
(edge) to use either 1 qubit of communication or 2 (clas-
sical) bits of communication. Recently it has been shown
that if we allow free classical communication between all
nodes, perfect 2-pair communication over the butterfly
network is possible without additional resources [8].
In this paper, we investigate the performance of effi-

cient distributed quantum computation over such bot-
tlenecked networks where both quantum and classical
communication is restricted. We combine both quan-
tum computation, namely, performing a gate operation
on inputs, and network communication, namely, send-
ing outputs, in a single task. The task we consider is to
deterministically implement a global unitary operation
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on two inputs at distant nodes and obtain two outputs
at distinct nodes connected by the particular butterfly
network introduced by Hayashi [1]. We show that any
controlled unitary operation can be performed over the
butterfly network without adding an entanglement re-
source. We also present constructions of protocols for
performing controlled traceless unitary operations with
a 1-ebit resource and for performing global Clifford op-
erations with a 2-ebit resource.
Our construction shows that by taking an appropri-

ate coding, we can perform global unitary operations on
spatially separated inputs and distribute the outputs at
the same time, even when restricted to a network where
the quantum channel connecting inputs and outputs is
both directed and bottlenecked. Depending on the cost
of resources in a given physical realization of the net-
work, the way of coding varies. In addition, by studying
the implementation of Clifford operations on the butter-
fly network, we also see the different characteristics of
quantum and classical information, where the latter can
be ‘compressed’ and sent through the bottleneck whereas
the former cannot. In the bigger picture, results like
these are the first step in a theory of network quantum

resource inequalities, which formalizes such tradeoffs, like
standard resource inequalities do [9], in the much more
complicated network scenario.
The rest of the paper is organized as follows. In Section

II, we introduce our task of implementing a global unitary
operation over a network, and review Hayashi’s protocol
[1] in the context of implementing a swap operation. We
show the protocols for implementing controlled unitary
operations in Section III, controlled traceless operations
in Section IV, and Clifford operations in Section V. In
Section VI, a summary and discussions are presented.

II. IMPLEMENTATION OF A SWAP

OPERATION

In this section, we introduce our task of quantum com-
putation over a network, and review Hayashi’s protocol
[1] for 2-pair communication in the context of this task,
namely, implementation of a swap operation over the but-
terfly network.
We consider qubit Hilbert spaces and denote the com-

putational basis of a qubit as {|0〉, |1〉}. We say that a
two qubit unitary operation U is implementable over a
network, if we can obtain a joint output state U |ψ1〉⊗|ψ2〉
of qubits at the node B1 and B2, for any input qubit |ψ1〉
and |ψ2〉 given at the node A1 and A2, respectively, by
performing general operations including measurements at
each node and communicating qubit and bit information
through channels specified by edges. Trivially, if the uni-
tary operation is a tensor product of the local unitary
operations, it is implementable over any network.
In Hayashi’s protocol [1] for 2-pair communication,

a special butterfly network described by the nodes A1,
A2, B1, B2, C1 and C2, and edges D1, D2, E1, E2,

F , G1 and G2 shown in Fig. 1. An additional entan-
glement resource of 2 ebits is shared between the node
A1 and A2. The defining characteristic of the butterfly
network in Hayashi’s protocol is that each edge can be
chosen to be a single use, one way channel with either
one qubit quantum capacity or two bit classical capac-
ity. Although a quantum channel of single-qubit capacity
can send a single-bit of classical information, it cannot
faithfully send two bits of information. On the other
hand, a classical channel cannot faithfully send single
qubit information either. Thus, the single-qubit quan-
tum and 2-bit classical channels are mutually inequiva-
lent resources. Note that superdense coding [10] implies
that a single qubit quantum channel and shared 1-ebit
entanglement together have the capacity of 2-bit classical
channel, and teleportation shows 2-bit classical channel
and shared 1-ebit entanglement together have the capac-
ity of a single qubit quantum channel, however here those
ebit resources are not available.
The 2-pair communication can be regarded as perform-

ing a distributed swap operation over the butterfly net-
work, where two arbitrary quantum inputs |ψ1〉 and |ψ2〉
at A1 and A2, respectively, are transferred to nodes B2

and B1, respectively. We can write this as a distributed
computation Uswap|ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉, where the
tensor product on the LHS is that between nodes A1 and
A2 and on the RHS between B1 and B2, in that order.
Let us denote the input qubits at the node A1 and A2 by
S1 and S2, respectively. The qubits of the shared ebits
at the node A1 are denoted H1,1 and H1,2, while those at
the node A2 are H2,1 and H2,2. The qubits H1,i and H2,i

for i = 1, 2 are both in the maximally entangled state
|Φ+〉 = (|0〉⊗|0〉+ |1〉⊗|1〉)/

√
2. For this protocol, chan-

nels E1 and E2 are one qubit quantum channels, while
all others are two bit classical channels.
The protocol is as follows:

1. At the node A1, perform a Bell measurement on
input qubit S1 and H1,1 while at the node A2, per-
form a Bell measurement on the other input qubit
S2 and H2,2. Let i, j be the two bits of classical
information given by the measurement result at A1

and k, l as that at A2. Now X iZj and XkZ l cor-
respond to the combination of Pauli X and Z cor-
rections for quantum teleportation [11] associated
with each measurement.

2. At A1, applyX
iZj toH1,2 while at A2, applyX

kZ l

to H2,1.

3. Send qubit H1,2 from A1 to B1 through the quan-
tum side channel E1 and qubit H2,1 from A2 to B2

through the quantum side channel E2. Send i, j
from A1 to C1 and k, l from A2 to C1 via the two
bit classical channels D1 and D2 respectively.

4. At C1, compute i + k, j + l (mod 2). Then send
i+ k, j + l to the node C2 via the two bit classical
channel F .
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5. Distribute i+k, j+ l from C2 to B1 and B2 via the
two bit classical channels G1 and G2, respectively.

6. At the node B1, apply the Pauli corrections
X i+kZj+l on the qubit received from A1, and at
B2 apply the same operation on the qubit received
from A2.

This protocol can be presented by the quantum circuit
and the butterfly network shown in following FIG.2.
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FIG. 2. The upper figure: The quantum circuit for imple-
menting a swap operation on the first qubit and the sixth
qubit. Each shaded block indicates operations at a node.
H denotes a Hadamard operation, and detectors denote Bell
measurements in the computational basis. The dotted line
represents a controlled operation depending on the measure-
ment outcome. The lower figure: The (horizontal) butterfly
network corresponding to the quantum circuit above, showing
the amount of communication required in the protocol. The
solid line denotes a single qubit channel, and the thin dotted
line a single bit channel.

In [1], it has been shown that this protocol is optimal
even for asymptotic cases, and that two ebits of entangle-
ment are necessary and sufficient for implementing the
swap operation, (i.e. a 2-pair communication), in this
butterfly network scenario using information theoretical
arguments. The swap operation is significant since it is
the most ‘global’ operation in terms of entangling power
[12] and delocalization power [13], compared to controlled
unitary operations. Our work is motivated by the ques-
tion of whether or not we can reduce the resource require-
ment by weakening the entangling/delocalization power
of the network-implemented unitary operations.

III. IMPLEMENTATION OF CONTROLLED

UNITARY OPERATIONS

We consider the deterministic implementation of con-
trolled unitary operations over the butterfly network in
the setting of Hayashi’s protocol, where we can choose a
single qubit quantum channel or a 2-bit classical channel
for each edge of the network. We denote a controlled uni-
tary operation by CU = |0〉〈0|⊗ I+ |1〉〈1|⊗U where U is

a single qubit unitary operation. The controlled unitary
operations have at most half of the entangling power of
the swap operation, (which is 2-ebits), and accordingly
they require only half of the resource ebits in entangle-
ment assisted LOCC, (where, similarly, swap requires 2-
ebits). Considering this comparison, it is natural to ex-
pect controlled unitary operations to require 1 ebit of en-
tanglement shared between the two input nodes in order
to be implemented over the butterfly network. However,
we discover a protocol implementing any controlled uni-
tary operation over the butterfly network without using
any entanglement resource.
This protocol is based on the implementation of a con-

trolled phase operation CUθ
, where a single qubit phase

operation Uθ is given by Uθ = |0〉〈0| + eiθ|1〉〈1| using
the quantum circuit shown in the upper figure of Fig. 3.
In order to perform CUθ

over the butterfly network, op-
erations shown in each shaded block are performed at
each node in the upper figure of of Fig. 3, and quan-
tum/classical information is transmitted between the
nodes using the quantum/classical communication spec-
ified by the edges shown in the lower figure of Fig. 3.
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FIG. 3. The upper figure: The quantum circuit for imple-
menting a controlled phase operation on the first qubit and
the fourth qubit. Each shaded block indicates operations at
a node. H denotes a Hadamard operation, and detectors
denote projective measurements in the computational basis
(Z-measurement). The dotted line represents a controlled op-
eration depending on the measurement outcome. The lower

figure: The (horizontal) butterfly network corresponding to
the quantum circuit above, showing the amount of communi-
cation required in the protocol. The solid line denotes a single
qubit channel, the thick dotted line denotes a two bit channel
and the thin dotted line a single bit channel.

Since any controlled unitary operation is locally uni-
tary equivalent to a controlled phase operation, namely,
we can write CU = (v1⊗v2)CUθ

(u1⊗u2) using appropri-
ate single qubit unitary operations u1, u2, v1 and v2, the
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protocol implementing CUθ
over the butterfly network al-

lows one to implement any controlled unitary operation
by adding the single qubit operations u1, u2, v1 and v2
at the nodes B1 and B2, respectively.
Note that this protocol does not use the full capacity

of the butterfly network at the edges G1 and G2, they
are only used for transmitting 1-bit, instead of the 2-bit
capacity allowed in Hayashi’s setting. This extra 1-bit
capacity could be used for another task, e.g. distribut-
ing a shared random bit. It is also remarkable that the
operations required at nodes A1, A2, B1 and B2 do not
depend on the angle θ of the controlled phase operation
CUθ

, thus, the distributed quantum computation CUθ
can

be implemented without revealing the identity of the op-
eration to the parties at the input and output nodes, as
well as the fact that the party at node C1 who is actually
performing the unitary operation only transmits classical
information.

IV. IMPLEMENTATION OF CONTROLLED

TRACELESS UNITARY OPERATIONS

In this section, we consider a situation where one of
the inner channels, say D2, is restricted to a single bit
classical channel. We find a protocol that implements
a slightly weaker class of controlled unitary operations,
controlled traceless unitaries, over such a restricted but-
terfly network by adding 1-ebit of entanglement shared
between the input nodes A1 and A2. At first sight this
protocol consumes more resources than the protocol pre-
sented in the previous section for implementing a weaker
class of controlled unitary operations, but as it only re-
quires classical communication of 1-bit for the channel
D2, comparison of the resource requirements between
these two protocols is not trivial.
This protocol is inspired by the entanglement assisted

LOCC implementation of controlled unitary operations
[14] shown in Fig. 4. This LOCC implementation re-
quires a 1-ebit entanglement resource and two-way clas-
sical communication (1-bit each way) between the two
distant parties.
However, this LOCC implementation is not directly

implementable over the butterfly network, because in the
latter the classical communication is also restricted. This
incompatibility is shown in the following way, where a
similar argument holds for any node at which the con-
trolled unitary operation CU appearing in the quantum
circuit is performed; here we will assume that CU is per-
formed at the node A2. Since no incoming communica-
tion from other nodes is allowed at node A2, the clas-
sically controlled X operation on the third qubit should
also be performed by A2. Then, the first controlled-NOT
operation must also be performed at A2 from the same
reason. But for implementation over the butterfly net-
work, the first qubit should be given at node A1 by defi-
nition, therefore it is not possible.
Our idea is that to find an alternative quantum circuit

X

U

H

Z

Φ+

FIG. 4. The quantum circuit for entanglement assisted LOCC
implementation of a controlled unitary operation presented in
[14]. There are only two nodes; the first two qubits are at the
first node (upper shaded area) while the third and forth qubits
are at the second (lower shaded area).

to implement CU on the first and the fourth qubits, where
CU on the third and fourth qubits is performed at the
nodeA2 before performing any other controlled operation
required on the third qubit, by restricting the class of
unitary operations U . If the order of CU on the third and
forth qubit and the (classically controlled) X operation
on the third qubit are changed such that

CU (X ⊗ I) = (A⊗B)CU , (1)

where A and B are some single qubit unitary operations
to compensate, then we arrive at a quantum circuit im-
plementing CU with the desired property. This quantum
circuit is shown in the upper figure of Fig.5. By perform-
ing the operations given in each shaded block at each
node, and transmission of quantum/classical information
between the nodes specified by the edges shown in the
lower figure of Fig.5, such a (restricted) CU operation is
implementable over the butterfly network.
A sufficient condition for U to satisfy Eq.(1) is that

trU = 0. To see this, we rearrange Eq.(1) as

A⊗B = CU (X ⊗ I)C†
U = |1〉〈0| ⊗ U + |0〉〈1| ⊗ U †. (2)

By taking partial traces of Eq.(2), we obtain

(trA)B = 0 and (trB)A = (ℜ trU)X + (ℑ trU)Y. (3)

Since B = 0 is uninteresting, we therefore have trA = 0
and denote A’s eigenvalues by ±α. Then B’s eigenvalues
are ±1/α or both 1/α since the eigenvalues of A ⊗ B
are equal to those of X ⊗ I, which are ±1. The case
when B’s eigenvalues are degenerate is trivial: B is equal
to the identity up to some factor. Otherwise trB = 0
and from Eq.(3) we can conclude trU = 0. Thus, a
controlled traceless unitary operation is implementable
over this butterfly network.

V. IMPLEMENTATION OF CLIFFORD

OPERATIONS

In this section we construct a protocol for imple-
menting Clifford operations on the butterfly network by



5

|ψ1〉

B

A H

Φ
+

U

A2

C1 C2

B1

B2

Z

|ψ2〉

2-bit

1-qubit

1-bit

1-ebit

A1

A2

C1 C2

B1

B2

FIG. 5. The upper figure: The quantum circuit for imple-
menting a controlled traceless unitary operation on the first
qubit and the fourth qubit. The lower figure: The (horizon-
tal) butterfly network corresponding to the quantum circuit
above, showing the amount of communication required in the
protocol.

slightly modifying the protocol for the swap operation
Uswap of section II. Here, a Clifford operation UCl is
defined as any operation that maps the Pauli group to
itself, the group of which is known to be generated by
a controlled-NOT operation, a Hadamard operation H ,
a phase operation S = |0〉〈0| + i|1〉〈1|, and Pauli opera-
tions. Any two qubit Clifford operation can be written in
the form of UCl · Uswap by an appropriate choice of UCl,
since Uswap also belongs to the Clifford group. Her we
construct a protocol for implementing UCl · Uswap over
the butterfly network.
Suppose that a given Clifford operation UCl satis-

fies UCl(X1 ⊗ I) = (P1 ⊗ P2)UCl and UCl(Z1 ⊗ I) =
(Q1 ⊗ Q2)UCl, where P1, P2, Q1, Q2 represent Pauli
operators. The initial state of the protocol is given by
|ψ1〉S1

|Φ+〉H1,1H2,1
|ψ2〉S2

|Φ+〉H2,2H1,2
, using the notation

introduced in section II. First, perform a Bell measure-
ment on S1 and H1,1 at the node A1 and then perform
UCl at the node A2 on H2,1 and S2. By denoting the
measurement outcomes at the node A1 to be i, j, the
resulting state can be written as

|Φ̃ij〉S1H1,1
|ψ̃ij

12〉H2,1S2
|Φ+〉H2,2H1,2

, (4)

where the states

|Φ̃ij〉 = X iZj|Φ+〉 (5)

and

|ψ̃ij
12〉 = (P1 ⊗ P2)

i(Q1 ⊗Q2)
jUCl|ψ1〉|ψ2〉 (6)

denote the post measurement states corresponding to the
outcome i, j. Next, perform another Bell measurement
on S2 and H2,2 at the node A2 and denote the measure-
ment outcomes by k, l. This effects a teleportation of

|ψ2〉. The the state is now transformed to

|Φ̃ij〉S1H1,1
|ψ̃ijkl

12 〉H1,2H2,1
|Φ̃kl〉S2H2,2

(7)

where

|ψ̃ijkl
12 〉 = (I⊗Xk

2Z
l
2)(P1⊗P2)

i(Q1⊗Q2)
jUClUswap|ψ1〉|ψ2〉

(8)
denote the post measurement state after the second Bell
measurement, corresponding to the outcome i, j, k, l. The
parties at the nodes A1 and A2 now hold the uncorrected
outputsH1,2 andH2,1, respectively. Next A1 and A2 per-

form X i
2Z

j
2P

i
2Q

j
2 and P

k
1 Q

l
1 on their qubit H1,2 and H2,1,

respectively, while sending their measurement outcomes
to the node C2, just as in the protocol in [1]. The parties
at the B nodes receive the classical outcomes i+k and j+l
from the corresponding A nodes. Node B1 can correct

the quantum information by performing X i+k
1 Zj+l

1 on

her received qubit, whereas node B2 performs P i+k
1 Qj+l

1 .
This completes the protocol.

VI. SUMMARY AND DISCUSSIONS

In this paper, in order to investigate distributed quan-
tum computation under restricted network resources, we
introduce a quantum computation task over the butterfly
network where both quantum and classical communica-
tions are limited. We have studied protocols implement-
ing two qubit unitary operations over a particular but-
terfly network introduced in [1] by showing several con-
structions. We have shown that any controlled unitary
operation is implementable without an additional entan-
glement resource. We have shown another construction
of a protocol for the case where one of the inner channels
of the butterfly network is severely restricted in that it
only allows one bit of classical information to be sent.
We also presented a modification of the Hayashi proto-
col that implements global Clifford operations over the
butterfly network.

We did not, however, consider optimality of the pro-
tocols in this work – proving the impossiblity of certain
global operations would be very interesting. One of the
reasons for this is because the circuit model is incompati-
ble with the network model for evaluating upper bounds,
which is useful for constructing and verifying protocols.
This incompatibility may also result in the difficulty of
analyzing protocol for gate arrays. For example, in gen-
eral we cannot say that U1U2 is implementable even if
we know U1 and U2 are implementable on a network.
For evaluating outer upper bounds, the min-cut max-flow
theorem [7] or the resource inequality [9] approach can
be useful for analyzing the situation where concurrency
is properly taken into account.
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