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ON ISOMORPHISMS OF CERTAIN FUNCTORS FOR CHEREDNIK

ALGEBRAS

IVAN LOSEV

Abstract. Bezrukavnikov and Etingof introduced some functors between the cate-
gories O for rational Cherednik algebras. Namely, they defined two induction functors
Indb, indλ and two restriction functors Resb, resλ. They conjectured that one has functor
isomorphisms Indb

∼= indλ,Resb ∼= resλ. The goal of this paper is to prove this conjecture.

1. Introduction

The goal of this paper is to establish isomorphisms between certain functors arising in
the representation theory of rational Cherednik algebras. These functors are parabolic
induction and restriction functors introduced by Bezrukavnikov and Etingof in [BE].

Let us recall the definition of a rational Cherednik algebra that first appeared in [EG].
The base field is the field C of complex numbers. Let h be a finite dimensional vector
space and W ⊂ GL(h) be a finite subgroup generated by the subset W ⊂ S of complex
reflections. By definition, a complex reflection is an element s ∈ GL(h) of finite order with
rk(s− id) = 1. For s ∈ S pick elements α∨

s ∈ im(s− id) and αs ∈ (h/ ker(s− id))∗ ⊂ h∗

with 〈αs, α
∨
s 〉 = 2. Also pick a W -invariant map c : S → C. Define the rational Cherednik

algebra H(= Hc(W, h)) as the quotient of T (h⊕ h∗)#W by the relations

[x, x′] = 0,

[y, y′] = 0,

[y, x] = 〈y, x〉 −
∑

s∈S

c(s)〈αs, y〉〈α
∨
s , x〉s,

x, x′ ∈ h∗, y, y′ ∈ h.

(1)

We have the triangular decomposition H = S(h)⊗CW⊗C[h]. Using this decomposition
one can introduce the categoryO := Oc(W, h) forH as the full subcategory of the category
of left H-modules consisting of all modules M satisfying the following two conditions:

(1) M is finitely generated as a C[h]-module.
(2) h acts on M locally nilpotently.

Now pick a parabolic subgroupW ⊂ W , i.e., the stabilizer of some point in h. The space
h decomposes into the direct sum hW⊕hW , where hW stands for the space of W -invariants
in h, and hW is a unique W -stable complement to hW . Consider the rational Cherednik
algebra H+ := Hc(W, hW ), where, abusing the notation, c stands for the restriction of c
to S ∩W . Consider the category O+ := Oc(W, hW ).
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2 IVAN LOSEV

For b ∈ h, λ ∈ h∗ with Wb = Wλ = W Bezrukavnikov and Etingof in [BE], Subsection
3.5, defined the restriction functors Resb, resλ : O → O+ and the induction functors
Indb, indλ : O+ → O. The definitions will be recalled in Subsection 2.2. The functors
Resb, Indb do not depend on b up to a (non-canonical) isomorphism, and the similar
claim holds for resλ, indλ. Conjecture 3.17 in [BE] asserts that there are non-canonical
isomorphisms Resb ∼= resλ, Indb

∼= indλ. In this paper we prove the conjecture. In
particular, the conjecture implies that the functors Resb, Indb are biadjoint. This result
was obtained earlier by Shan, [S], under some mild restrictions on the parameter c.

The paper is organized as follows.
In Section 2 we gather all necessary definitions and preliminary results. In Subsection

2.1 we recall the isomorphism of completions theorem of Bezrukavnikov and Etingof, [BE],
Theorem 3.2. The functors in interest are defined using this theorem. Their definitions are
recalled in Subsection 3.1. In Subsection 2.3 we recall some other results on isomorphisms
of completions obtained in [L] that are used in the proof of the main result.

In Section 3 we prove an isomorphism of the functors Resb, resλ. In Subsection 3.1 we
introduce some auxiliary functors Resb,λ, resb,λ such that Resb,λ ∼= Resb, res0,λ ∼= resλ. Our
strategy is to establish embeddings resb,λ →֒ Resb,0, res0,λ →֒ resb,λ. We can establish the
latter directly, this is done in Subsection 3.4. However, we arrive at some convergence
issue with the former embedding. To fix these issues we need to work with algebras and
modules not over C but over R := C[t−1, t]]. We treat this case in Subsection 3.2 and
then establish an embedding resb,λ →֒ Resb,0 in Subsection 3.3. Finally, in Subsection 3.5
we show that the resulted embedding res0,λ →֒ Resb,0 is actually an isomorphism.

The proof of an isomorphism Indb
∼= indλ is similar to that of Resb ∼= resλ. In Section

4 we explain necessary modifications.
Acknowledgements. I am grateful to P. Etingof and I. Gordon for stimulating dis-

cussions.

2. Preliminaries

2.1. Isomorphisms of completions, I. In this subsection we will recall some results
from [BE] related to isomorphisms of completions of different rational Cherednik algebras.
Namely, we define the completions H∧b, H∧λ, H∧b , H∧λ , where H := Hc(W, h) and de-
scribe isomorphisms between H∧b (resp., H∧λ) and some matrix algebra with coefficients
in H∧b (resp, in H∧λ).

Pick a point b ∈ h with Wb = W . Let C[h]∧Wb denote the completion of C[h] at Wb.
Define the completion H∧b := C[h]∧Wb ⊗C[h] H of H at b. The space H∧b comes equipped
with a topology, and has a unique topological algebra structure extended from H by
continuouty.

Similarly, we can define the completion H∧b := C[h]∧b ⊗C[h] H of H at b.
A relation between H∧b and H∧b is as follows. In [BE], Subsection 3.2, for finite groups

G0 ⊂ G and an algebra A containing CG0 Bezrukavnikov and Etingof considered the right
A-module FunG0

(G,A) of G0-equivariant maps G→ A. Then they defined the centralizer
algebra Z(G,G0, A) as the endomorphism algebra of the right A-module FunG0

(G,A).
Below we write C(•) for Z(W,W, •).

The following proposition is a slightly modified version of [BE], Theorem 3.2.
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Proposition 2.1. There is a unique continuous homomorphism ϑb : H
∧b → C(H∧b) such

that

[ϑb(u)f ](w) = f(wu),

[ϑb(xα)f ](w) = xwαf(w),

[ϑb(ya)f ](w) = y
wa
f(w) +

∑

s∈S\Wb

2cs
1− λs

αs(wa)

xαs

(f(sw)− f(w)).

u, w ∈ W,α ∈ h∗, a ∈ h, f ∈ FunW (W,H∧b).

(2)

This homomorphism is an isomorphism of topological algebras.

Here xα, xα denote the elements of H,H corresponding to α ∈ h∗, ya, ya have the similar

meaning. Of course, when one views 1
xαs

as an element of C[h]∧b , one expands this fraction

near b.
The completion H∧b is naturally isomorphic to the completion H∧0,x := C[h]∧0 ⊗C[h]H.

An isomorphism H∧b
∼
−→ H∧0,x is given by w 7→ w, xα 7→ xα − 〈b, α〉, ya 7→ y

a
.

Similarly, one can consider the completions H∧λ , H∧λ at λ ∈ h∗ with Wλ = W . Then

one has an isomorphism ϑ̃λ : H∧λ → C(H∧λ). It is given by

[θ̃λ(u)f ](w) = f(wu),

[θ̃λ(xα)f ](w) = xwαf(w)−
∑

s∈S\Wλ

2cs
1− λ−1

s

α∨
s (wa)

y
α∨
s

(f(sw)− f(w)),

[θ̃λ(ya)f ](w) = y
wa
f(w).

(3)

We remark that both completions we considered were ”partial” we allowed power series
either only in x’s or only in y’s. If we allow both, then the product will not be well
defined.

2.2. Definition of functors. In this subsection we will introduce exact functors Resb, resλ :
O → O+, Indb, indλ : O+ → O for b ∈ h, λ ∈ h∗ with Wb = Wλ = W .

We need to define some auxiliary categories of H,H,H+-modules. For µ ∈ h∗ consider
the category Oµ consisting of all Hc-modules M satisfying

(1) M is finitely generated over S(h∗).
(2) S(h)W acts on M with generalized eigencharacter µ.

It is easy to see that O0 = O. More generally, one can consider the category Õµ of all H-

modules satisfying (2). Any module in Õµ is the direct limit of modules in Oµ. Similarly,

we have the categories Õ, Õ
+
.

Now let us recall the definitions of the functors Resb, resλ, Indb, indλ from [BE].
First, we define Resb. Pick M ∈ O and consider its completion M∧b := C[h]∧Wb⊗C[h]M

atWb. ThenM∧b is anH∧b-module and hence we can consider the push-forward ϑb∗(M
∧b)

that is a C(H∧b)-module. There is a natural equivalence I : H∧b-Mod
∼
−→ C(H∧b)-Mod,

see [BE], Subsection 3.2. So we get a H∧b-module I−1 ◦ θb∗(M
∧b). For a H∧b-module N ′

and λ ∈ h∗W let Eλ(N
′) stand for the space of vectors annihilated by (y

a
−〈λ, a〉)n for all

a ∈ h and n≫ 0. For an H-module N set

ζλ(N) :=
⋂

a∈h∗W

ker(y
a
− 〈λ, a〉).
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We set Resb(M) := ζ0 ◦ E0 ◦ I
−1 ◦ θb∗(M

∧b).
The proof of the following lemma is easy (compare with Lemma 3.4 below).

Lemma 2.2. For any λ ∈ h∗W the functor ζλ ◦ Eλ is an equivalence

• from the category of H∧b-modules that are finitely generated over C[h]∧0,
• to the category O+.

Moreover, the functors ζλ ◦ Eλ are naturally isomorphic for all λ ∈ h∗W .

Let us construct a functor Indb : O+ → O. We have an equivalence F := ϑ−1
b∗ ◦ I ◦

E−1
0 ◦ ζ

−1
0 from O+ to the category O∧b of H∧b-modules that are finitely generated over

C[h]∧Wb . Now for a H∧b-module M ′ let Eλ(M
′) be the generalized eigenspace of S(h)W

with eigenvalue λ : S(h)W → C. Set Indb(N) := E0 ◦ F(N). In [BE], Subsection 3.5, it

was shown that Indb(O
+) ⊂ O (a priory, one only sees that Indb(O

+) ⊂ Õ) and that Indb

is exact and right adjoint to Resb.
Proceed to the definition of resλ. PickM ∈ O. Again, consider the completionM∧b . For

an H-module M1 let Eλ(M1) stand for the generalized eigenspace of S(h)W corresponding
to the character λ in M1. Consider the H-module Eλ(M

∧b). The H-action on this module

extends to H∧λ. So we can consider the push-forward θ̃λ∗ ◦ Eλ(M
∧
b ) and also the H∧λ-

module N ′ := I−1◦ θ̃λ∗◦Eλ(M
∧
b ). The operators ya act locally with generalized eigenvalue

λ on N ′, in other words, N ′ ∈ Õ
λ
.

The proof of the following lemma is again easy.

Lemma 2.3. The functor ζλ is an isomorphism Õ
λ
→ Õ

+
.

So we set resλ(M) := ζλ ◦ I
−1 ◦ ϑ̃λ∗ ◦ Eλ(M

∧
b ).

To define indλ we reverse the procedure. Pick N ∈ O+. Then, according to [BE],

Corollary 3.3, M0 := ϑ̃−1
λ∗ ◦ I ◦ ζ

−1
λ (N) ∈ Oλ. Set indλ(N) := E0(M

∧0

0 ).
The functors resλ, indλ were constructed in [BE]. In fact, their initial definition was

quite different, but [BE], Proposition 3.13, established an equivalence with the definition
given above. From the initial definition of [BE] it follows that resλ, indλ are exact, their
images lie in O+,O, respectively, and indλ is left adjoint to resλ.

2.3. Isomorphisms of completions, II. In this section we will explain some results
from [L]. In [L] we worked with the homogenized versions of the algebras. More precisely,
define the C[h]-algebraHh as the quotient of T (h⊕h

∗)[h]#W by the homogeneous versions
of the relations (1), namely with the third relation replaced with

(4) [y, x] = h(〈y, x〉 −
∑

s∈S

c(s)〈αs, y〉〈α
∨
s , x〉s).

We can sheafifyHh over h⊕h
∗/W , compare with [L], Subsection 2.4, using the procedure

similar to the formal microlocalization. We get a pro-coherent sheaf Hh of C[[h]]-algebras
on h⊕ h∗/W .

Similarly, picking a parabolic subgroup W ⊂ W one can define a C[h]-algebra Hh and
sheafify it over h⊕ h∗/W to get a sheaf Hh.

Let π : h⊕ h∗ → h⊕ h∗/W denote the quotient morphism. Consider the locally closed
subvariety of h ⊕ h∗ consisting of all points (b, λ) with W(b,λ) = W . Let L denote the
image of this subvariety in h⊕ h∗/W . Then L is a symplectic leaf of the Poisson variety
h⊕ h∗/W .
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As in [L], Subsection 2.4, we can define the completion H∧L

h of the sheaf Hh along L
and its sheaf-theoretic restriction H∧L

h |L to L.
Similarly, we can define the open subvariety L ⊂ hW ⊕ h∗W ⊂ (h ⊕ h∗)/W and the

completion H
∧L

h |L. We remark that L is naturally identified with the quotient L/Ξ,
where Ξ := NW (W )/W .

The sheaves we have introduced come equipped with certain group actions. First of all,
let us notice that the 2-dimensional torus (C×)2 acts on Hh: (z1, z2).w = w, (z1, z2).x =
z1x, (z1, z2).y = z2y, (z1, z2).h = z1z2h, w ∈ W ⊂ Hh, x ∈ h∗ ⊂ Hh, y ∈ h ⊂ Hh. This
(C×)2-action extends to actions on Hh,H

∧L

h ,H∧L

h |L by sheaf of algebras automorphisms.

The sheaf H
∧L

h |L also carries a similar (C×)2-action. Moreover, Hh is acted on by
NW (W ) (the action is being induced from the natural NW (W )-action on h ⊕ h∗). This

action again extends to H
∧L

h |L.

Consider the sheaf C(H
∧L

h |L) on L. There is a natural action of Ξ on this sheaf by
algebra automorphisms, see [L], Subsection 2.3. Let ρ : L → L denote the projection (i.e.,

the quotient by Ξ). Abusing the notation we write C(H
∧L

h |L)
Ξ instead of ρ∗(C(H

∧L

h |L))
Ξ.

This is a sheaf of algebras on L.
So we have constructed two sheaves of algebras H∧L

h |L,C(H
∧L

h |L)
Ξ on L. These sheaves

are not isomorphic but they become isomorphic if we twist one of them by a 1-cocycle of
inner automorphisms. More precisely, let us fix an open covering

⋃
i Ui of L by (C×)2-

stable open affine subvarieties.

Proposition 2.4. There are (C×)2-equivariant C[[h]]-linear isomorphisms

Θi : H∧L

h |L(Ui)→ C(H
∧L

h |L)
Ξ(Ui)

and (C×)2-invariant elements

Xij ∈ zh(C(H
∧L

h |L)
Ξ)(Uij),

where Uij := Ui ∩ Uj, such that

(1) Modulo h the isomorphism Θi coincides with the natural isomorphism Θ0 : (S(h⊕

h∗)#W )∧L |L → (C(S(h⊕ h∗)#W )∧L |L)
Ξ, see [L], Subsection 2.5.

(2) Θi = exp(adXij)Θ
j for all i, j.

Here for a C[h]-algebra A by zh(A) we denote the preimage of the center of A/hA in A.
This proposition is a weaker version of Theorem 2.5.3 in [L] (in fact, in that theorem we

have only C
×-actions, but the proof extends directly to the sheaves with (C×)2-actions).

We will apply Proposition 2.4 in the following situation. Let U1 := [(hW )r × h∗W ]/Ξ,
U2 := [hW × (h∗W )r]/Ξ ⊂ L, where (hW )r, (h∗W )r denote the open subsets of all points
with stabilizer exactly W . Consider the algebra H∧L

h |L(U1). We can complete Hh at b:
take the ideal mb ⊂ Hh, compare with [L], Subsection 1.2, and set H∧b

h := lim
←−n→∞

Hh/m
n
b .

In fact, the natural homomorphism Hh → H∧b
h factors throughH∧L

h |L(U1). Moreover, H∧b
h

is the completion of H∧L |L(U1) with respect to the ideal analogous to mb ⊂ Hh, compare
with [L], Subsection 2.5.

A similar construction works for Hh so we get the completion H∧b
h . We conclude that

Θ1 induces an isomorphism Θb : H∧b
h

∼
−→ C(H∧b

h ). We remark that this isomorphism is
equivariant with respect to the second copy of C× in (C×)2 (the one acting on y’s).
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Note however, that we can produce an isomorphism H∧b
h → C(H∧0

h ) by taking a homo-
geneous version of ϑb. Namely, define ϑb on the generators of Hh by

[ϑb(u)f ](w) = f(wu),

[ϑb(xα)f ](w) = xwαf(w),

[ϑb(ya)f ](w) = y
wa
f(w) + h

∑

s∈S\Wb

2cs
1− λs

αs(wa)

xαs

(f(sw)− f(w)).
(5)

Then ϑb uniquely extends to a topological algebra isomorphism H∧b
h → C(H∧b

h ). We
remark that ϑb is also C×-equivariant.

Lemma 2.5. There is an invertible element X ∈ C[h/W ]∧b such that Θb = Ad(X) ◦ ϑb.

Proof. This follows from [L], Lemma 5.2.1. �

Being C×-equivariant both Θb, ϑb restrict to isomorphisms between the subalgebras
in H∧b

h ,C(H∧0

h ) consisting of all C×-finite vectors (”C×-finite” means ”lying in a finite
dimensional C×-stable subspace”). Take the quotient of these subalgebras by h− 1. We
get the algebras H∧b,C(H∧b). Let θb denote the isomorphism of these algebras induced
by Θb. We still have the equality θb = Ad(X) ◦ ϑb.

Applying the same considerations to U2, we get an isomorphism

θ̃λ : H∧λ → C(H∧λ).

and an invertible element X̃ ∈ C[h∗/W ]∧λ with θ̃λ = Ad(X̃) ◦ ϑ̃λ.

3. Isomorphism of the restriction functors

3.1. Functors Resb,λ, resb,λ. Let b ∈ hW , λ ∈ h∗W .
Suppose Wb = W . Let us define a functor Resb,λ : O → O+ by

Resb,λ(M) = ζλ ◦ I
−1 ◦ Eλ ◦ (θb)∗(M

∧b).

Here the functor Eλ on the category of C(H)-modules is defined as before using the
natural embedding C[h∗]W →֒ HW →֒ C(H) (see [L], Subsection 2.3).

Lemma 3.1. There is an isomorphism Resb,λ ∼= Resb for all λ.

Proof. First of all, let us remark that Eλ and I−1 commute. Since ζλ ◦ Eλ is isomorphic
to ζ0 ◦ E0 (Lemma 2.2), we see that Resb,λ ∼= Resb,0.

Recall X from Lemma 2.5. The existence of X implies that the functors (θb)∗ and
(ϑb)∗ between the categories of H∧b- and of C(H∧b)-modules are isomorphic. Our claim
follows. �

In fact, it will be useful for us to rewrite the definition of Resb,λ a little bit. Namely, for
a H∧b-module M let Eθ

λ denote the generalized eigenspace of the algebra C[h∗/W ] with
eigenvalue λ, where C[h∗/W ] acts on M via θ−1

b . So we have

Resb,λ(M) = ζλ ◦ I
−1 ◦ (θb)∗ ◦ E

θ
λ(M

∧b).

The definition of resb,λ is more technical. Let Wλ = W .
Below we will need certain ”Euler elements” in H,H,H+, see [GGOR], Subsection 3.1.

Pick some basis y1, . . . , yn ∈ h ⊂ H and let x1, . . . , xn ∈ h∗ be the dual basis. We set
eu :=

∑n
i=1

1
2
(xiyi+yixi). This element does not depend on the choice of y1, . . . , yn, is W -

invariant and satisfies the commutation relations [eu, x] = x, [eu, y] = −y, x ∈ h∗, y ∈ h.
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Similarly, we can introduce the Euler elements eu ∈ H, eu+ ∈ H+.
For a topological H-module M consider the subspace M♥ ⊂ M , whose elements, by

definition, are sums
∑

a∈C

∑
i>0ma,i, where

• the first sum is finite,
• there is Na such that (eu−a− i)Nama,i = 0,
• and the sum

∑
i>0ma,i converges.

Then M♥ is an H-submodule in M . For example, let M ∈ O. Consider the completion
M∧0 at 0. The element eu acts diagonalizably on any simple module in O. Since any
object in O has finite length it follows that eu acts locally finitely M . From here it is
easy to see that M∧0♥ = M∧0 .

For M ∈ O we set

resb,λ(M) = ζλ ◦ I
−1 ◦ (θ̃λ)∗ ◦ Eλ(M

∧b♥)

By construction, the operators y
a
act on I−1◦(θ̃λ)∗◦Eλ(M

∧b♥) with generalized eigenvalue

λ, so resb,λ(M) ∈ Õ
+
. Later we will see that resb,λ(M) is actually in O+.

Lemma 3.2. We have res0,λ = resλ.

Proof. This follows from the equality M∧0♥ = M∧0 and the existence of an element

X̃ ∈ C[h/W ]∧λ , compare with the proof of Lemma 3.1. �

We remark that Eλ(M) coincides with the generalized eigenspace of S(h)W with eigen-

value λ, where S(h)W acts on M via θ̃−1
λ .

Below we will show that res0,λ →֒ resb,λ and resb,λ →֒ Resb. The first embedding is
established in Subsection 3.4. The proof is not very complicated, although it is somewhat
unsatisfactory because it works only for the field C (perhaps it should be possible to make
the same ideas work over an arbitrary algebraically closed field of characteristic 0, but we
do not know how). The embedding resb,λ →֒ Resb,λ is more complicated. Let us explain
where complications come from.

Basically, we need to produce an embedding

(6) (θ̃λ)∗ ◦ Eλ ◦ (•
∧b♥) →֒ (θb)∗ ◦ E

θ
λ(•

∧b)

of functors O → Õ
λ
. That is, for M ∈ O we need to construct a functorial embedding

ΥM : Eλ(M
∧b♥)→M∧b such that ΥM(θ̃−1

λ (h).m) = θ−1
b (h).ΥM(m) for all h ∈ C(H).

Recall the notation used in Subsection 2.3, and in particular, isomorphisms

Θi : H∧L

h |L → C(H
∧L

h |L)
Ξ(Ui), i = 1, 2,

and an element

X12 ∈ zh(C(H
∧L

h |L)
Ξ)(U12),

with Θ1 = exp(adX12)Θ
2.

Our goal will be to produce ΥM from exp((Θ2)−1(X12)). A rough idea here is to make
exp((Θ2)−1(X12)) act on Eλ(M

∧b♥) by ”setting h = 1”. However, it is unclear why the
infinite sum exp((Θ2)−1(X12))m has to converge for any m ∈ Eλ(M

∧b♥). In fact, we can
make the sum to converge but we need to change our setting for this. Namely, we will
replace C with the field R := C[t−1, t]] of formal Laurent series and a point (b, λ) with
(b, λ/t). In the next subsection we will see that the required sum converges and define an
embedding similar to (6). Then we will introduce functors resb,λ/t,Resb,λ/t and establish
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an embedding resb,λ/t →֒ Resb,λ/t ∼= Resb,0/t. Next, in Subsection 3.3 we will see that the
embedding resb,λ/t →֒ Resb,0/t gives rise to an embedding resb,λ →֒ Resb,0.

3.2. Functors Resb,λ/t, resb,λ/t. Set R := C[t−1, t]]. Consider the R-algebra R[h∗/W ] :=
R ⊗C C[h∗/W ]. It has a maximal ideal mλ/t corresponding to λ/t, so we can form the
completion R[h∗/W ]∧λ/t with respect to this ideal. Consider the algebrasHR := R⊗H,HR

and the sheavesH∧L

R,h|L, etc. The isomorphisms Θ1,Θ2 naturally extend to isomorphisms of

the algebras of sections of the corresponding sheaves. Now form the algebras H
∧λ/t

R , H
∧λ/t

R

similarly to the above. The isomorphism Θ2 induces an isomorphism θ̃λ/t : H
∧λ/t

R →

C(H
λ/t
R ). Similarly, we have the completions H∧b

R , H∧b
R and their isomorphism θb induced

by Θ1.
The algebras considered above come with the ”t-Euler” derivation t d

dt
. Since Θ1,Θ2

are defined over C, we see that they intertwine t d
dt
. It follows that θb, θ̃λ/t also intertwine

these derivations.
Now let M ∈ O. Consider the HR-module M [t−1, t]] and its completion M [t−1, t]]∧b

in the mb-adic topology, where we view mb as a maximal ideal in R[h/W ]. We equip
M [t−1, t]]∧b with a topology taking Uk,l := tkM∧b [[t]] +ml

bM [t−1, t]], k ∈ Z, l ∈ Z>0 for the
fundamental system of neighborhoods of 0. In other words, a sequence mi of elements
in M [t−1, t]]∧b converges if the images of mi in M [t−1, t]]∧b/mn

b = M/mn
b [t

−1, t]] converge
in the t-adic topology for all n. We can define the HR-submodule Eλ/t(M [t−1, t]]∧b)
similarly to the above. Our goal now will be to produce a certain family of maps
Eλ/t(M [t−1, t]]∧b)→M [t−1, t]]∧b .

Define a derivation d of HR,h by d.w = 0, d.xα = 0, d.yα = yα, d.h = h, d.t = −t. The
algebra HR,h acts on M [t−1, t]]∧b via the homomorphism HR,h ։ HR given by xα 7→
xα, ya 7→ ya, h 7→ 1, w 7→ w. Consider the ideal m in zh(HR,h) corresponding to the point

(b, λ/t). Let (HR,h)d−fin, Ã denote the subalgebras of d-finite elements in HR,h, H
∧b,λ/t

R,h ,
where the latter stands for the completion of HR,h with respect to m.

Proposition 3.3. For anym ∈ Eλ/t(M [t−1, t]]∧b) the map (HR,h)d−fin →M [t−1, t]]∧b), h 7→

h.m extends uniquely to a continuous map Ã →M [t−1, t]]∧b.

Proof. We need to show that for all a ∈ Z, n1, n2 ∈ Z>0 there is n such that (HR,hm
n)a.m ⊂

Un1,n2
, where (HR,hm

n)a denotes the subspace of all elements f ∈ HR,hm
n with d(f) = af

(we remark that m is d-stable). First of all, let us define some d-stable filtration on HR,h

that is equivalent to HR,hm
n. Choose elements f1, . . . , fk generating the ideal of b in C[h]W

and elements g1, . . . gr ∈ R[h∗]W generating the ideal of λ/t. The latter ideal is d-stable, so
we may assume that all gi are eigenvectors for d with some integral eigenvalues α1, . . . , αr.
The R-algebra zh(HR,h) is finite over its subalgebra generated by fi, gi, i = 1, . . . , r and
h. Let F1, . . . , Fl be a finite set of generators that are eigenvectors for d with eigenvalues,
say, β1, . . . , βl. Then it is easy to see that HR,hm

n is equivalent to the filtration mi defined
as follows:

mi :=
∑

j+k+s=i

fi1 . . . fij SpanR(F1, . . . Fl)h
sgi′

1
. . . gi′k .

Consider a monomial f := hsλqfi1 . . . fikFtgi′
1
. . . gi′l ∈ mi such that d acts on f by a. The

last condition can be rewritten as s− q + βt +
∑l

j=1 αi′j
= a. For sufficiently large l, say

l > l1, where l1 depends only on m, we have gi′
1
. . . gi′lm = 0. So we may assume that

l 6 l1. Also if k > n2, then fi1 . . . fikM [t−1, t]]∧b ⊂ mn2

b M [t−1, t]]∧b ⊂ Un1,n2
. So we may
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assume that k 6 n2. This means that s > i− n2− l1 and so q > i−M , where M is some
constant depending only on n2, l1. The C-linear span of all vectors of the form λ−qf.m
for all monomials f with l 6 l1, k 6 n2 is finite dimensional (recall that h acts by 1). It
follows that for sufficiently large i we get λq(λ−qf.m) ∈ Un1,n2

. �

Set Ah := (Θ2)−1(X12). Let us view Ah as an element of Ã. It is annihilated by d. So
it is also annihilated by t d

dt
modulo m and hence lies in C modulo m. Subtracting the

corresponding element of C, we may assume that Ah ∈ m. So the element exp(Ah) ∈ Ã
is defined and is d-invariant as well. So it defines a linear map Eλ/t(M [t−1, t]]∧b) →
M [t−1, t]]∧b .

Moreover, let f ∈ C(HR,h). Then f is d-finite, where d is the derivation of C(HR,h)

defined similarly to d. The isomorphisms Θ1,Θ2 : H
∧b,λ/t

R,h → C(H
∧b,λ/t

R,h ) both intertwine

d and d. It follows that (Θ1)−1(f) exp(Ah) = exp(Ah)(Θ
2)−1(f) in H

∧b,λ/t

R,h and so the

actions of the two sides on Eλ/t(M [t−1, t]]∧b) agree. But (Θ−1)(f) acts as θ−1
b (f1), while

(Θ2)−1(f) acts as θ̃−1
λ/t(f1). Here f1 is the image of f in C(HR). We remark that any

d-finite element of C(HR) is represented in this form. Set ΥM,t(m) := exp(Ah).m. We
conclude that

(7) θ−1
b (h)ΥM,t(m) = ΥM,t(θ̃

−1
λ/t(h)m),

for all d-finite (and then, automatically, for all) elements of C(HR).
So we get the map ΥM,t : Eλ/t(M [t−1, t]]∧b) → M [t−1, t]]∧b . Thanks to (7), the im-

age of this map is contained in Eθ
λ/t(M [t−1, t]]∧b). We claim that ΥM,t is a bijection

Eλ/t(M [t−1, t]]∧b) → Eθ
λ/t(M [t−1, t]]∧b). Indeed, analogously to Proposition 3.3, one can

prove that the action of (Θ1)−1(C(HR,h)d−fin) on Eθ
λ/t(M [t−1, t]]∧b) extends to that of Ã.

Then it is easy to see that the map m 7→ exp(−Ah).m is inverse to ΥM,t.
Also we remark that M [t−1, t]] comes equipped with an endomorphism t d

dt
. This en-

domorphism extends to M [t−1, t]]∧b by continuouty, the extension will be denoted by
euM

t . It is compatible with the derivation t d
dt

of HR,h in the sense that euM
t (fm) =

(t d
dt
f)m + f euM

t m for all m ∈ M [t−1, t]]∧b, f ∈ HR,h. It is easy to see that both

Eλ/t(M [t−1, t]]∧b) and Eθ
λ/t(M [t−1, t]]∧b) are euM

t -stable. Since d
dt
Ah = 0, we see that

ΥM,t intertwines the operators euM
t .

Now let us define certain functors Resb,λ/t, resb,λ/t : O → O+
R. Here O+

R stands for
the category of H+

R-modules N equipped with an operator euN
t subject to the following

conditions:

(1) N is finitely generated over R[hW ],
(2) the operators ya, a ∈ hW act locally nilpotently on N ,
(3) the operator euN

t is compatible with the derivation t d
dt

of H+
R.

Then we will establish isomorphism resb,λ/t
∼
−→ Resb,λ/t

∼
−→ Resb,0/t.

Let us construct a functor Resb,λ/t.
Take a module M ∈ O. Form the HR-module M [t−1, t]]∧b and the endomorphism eMt

of this module. Consider the C(H∧b
R )-module (θb)∗(M [t−1, t]]∧b). Set euM,θ

t := (θb)∗(eu
M
t ).

Since θb intertwines the derivations t d
dt
, we see that euM,θ

t is compatible with t d
dt
.

Consider the subspace

(8) ζλ/t ◦ Eλ/t ◦ I
−1 ◦ (θb)∗(M [t−1, t]]∧b)
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in (θb)∗(M [t−1, t]]∧b). This subspace is H+
R-stable. Also this subspace is preserved by

euM+
t := euM,θ

t + λ/t. Indeed, (8) consists of all elements that are annihilated by ya −
〈a, λ〉/t with a ∈ hW and by some powers of ya with a ∈ hW . Both these conditions are

preserved by euM+
t .

Let us check that (8) lies in O+
R. For this we will need the following lemma that is a

ramification of Lemma 2.2. Let O′
R denote the category of all H ′

R := C[h][t−1, t]]∧b⊗C[h]H-
modules M ′ that are finitely generated over C[h][t−1, t]]∧b and come equipped with an
operator euM ′

t that is compatible with t d
dt
.

Lemma 3.4. The assignment (M ′, euM ′

t ) 7→ (ζλ/t ◦ Eλ/t(M
′), eu+

t := euM ′

t +λ/t) defines

an equivalence between O′
R and O+

R. This equivalence does not depend on λ up to an
isomorphism.

Proof. An isomorphism ζ0 ◦E0(M
′)→ ζλ/t ◦Eλ/t(M

′) is given by m 7→ eλ/tm (this map is

well-defined by the definition of O′
R). So it remains to prove that ζ0 ◦E0(M

′) is a finitely
generated over R[hW ]. For this it suffices to check that E0(M

′) is finitely generated
over R[h]. To prove this one first shows that eu acts locally finitely on E0(M

′). Then
the proof of that E0(M

′) is finitely generated is easy, compare with [BE], the proof of
Theorem 2.3. �

So (8) is indeed an object of O+
R. By Resb,λ/t we denote a functor that assigns (8) to

M . By Lemma 3.4, this functor does not depend on λ.
Now let us proceed to defining the functor resb,λ/t. Again, we consider the HR-module

M [t−1, t]] and then its completionM [t−1, t]]∧b . Consider theHR-submodule Eλ/t(M [t−1, t]]∧b)
of M [t−1, t]]∧b . It is straightforward to see that this module is stable under euM

t . Recall

that θ̃λ/t intertwines the derivations t d
dt
. We have the operator ẽuM

t := (θ̃λ/t)∗(eu
M
t ) on

(θ̃λ/t)∗(Eλ/t(M [t−1, ]]∧b)) compatible with t d
dt
.

Consider the subspace

(9) ζλ/t ◦ I
−1 ◦ (θ̃λ/t)∗(Eλ/t(M [t−1, ]]∧b))

in (θ̃λ/t)∗(Eλ/t(M [t−1, ]]∧b)). It comes equipped with the operator ẽu+M
t defined similarly

to eu+M
t . Then we can define resb,λ/t similarly to Resb,λ/t.

Recall that we have the isomorphism

ΥM,t : (θ̃λ/t)∗(Eλ/t(M [t−1, ]]∧b))→ Eλ/t ◦ (θb)∗(M [t−1, t]]∧b).

By the construction this isomorphism intertwines the operators eu+M
t , ẽuM+

t . Therefore
it induces an isomorphism resb,λ/t

∼
−→ Resb,λ/t.

Our conclusion is that resb,λ/t
∼
−→ Resb,0/t.

3.3. An embedding resb,λ →֒ Resb,0. First of all, let us relate Resb,0/t and Resb,0. We
remark that M∧b is nothing else as the 0-eigenspace for euM

t in M [t−1, t]]∧b . From here,
tracking the constructions of Resb,0/t,Resb,0, we see that Resb,0(M) is the 0-eigenspace

of eu+M
t in (8). The latter subspace is H+

R-stable. Moreover, it is easy to see that
E0 ◦ (θb)∗(M [t−1, t]]∧b) = R ⊗ E0 ◦ (θb)∗(M

∧b). Therefore Resb,0/t(M) = R ⊗ Resb,0(M).
In particular, Resb,0(M) = Resb,0/t(M)fin/(t− 1), where the subscript “fin” denotes the

subspace of all eu+M
t -finite elements.

So we need to produce a functorial embedding resb,λ(M) →֒ resb,λ/t(M)fin/(t− 1). For
this we will need to technical lemmas concerning Euler elements.
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Lemma 3.5. Θ2(eu)− eu ∈ Ch.

Proof. The center of H∧0,x
h coincides with C[[h]], this follows easily from the claim (see

[BG]) that the center of H is C. Therefore the centers of H∧b
h and C(H∧b

h ) coincide with
C[[h]]. Let us show that [Θ2(eu), ·] = [eu, ·]. The derivation [eu, ·] is the image of 1 ∈ C

under the C
×-action on Hh given by z.x = zx, z.y = z−1y, z.w = w, z.h = h. A similar

claim holds for eu. The required equality follows from the claim that Θ2 intertwines the
corresponding C×-actions. Now consider the C×-actions induced by the gradings on H,H.
They are also intertwined by Θ2. Since both eu and eu have degree 2 with respect to
these actions, we see that Θ2(eu)− eu ∈ Ch. �

Let α ∈ C be such that Θ2(eu) = eu + αh. It follows that θ̃λ/t(eu) = eu + α.

Lemma 3.6. Let M be a H-module. Then eu acts as eu+ + λ+ dim hW/2 on zλ(M).

Proof. Pick a basis y1, . . . , yn in such a way that y1, . . . , yk is a basis in hW , while
yk+1, . . . , yn is a basis in hW . So we see that eu = eu+ +

∑n
i=k+1

1
2
(xiyi + yixi) =

eu++
∑n

i=k+1 xiyi+
n−k
2
. The element

∑n
i=k+1 xiyi acts by

∑
i=k+1 xi〈λ, yi〉 = λ on zλ(M).

Hence our claim. �

Pick a section ϕ : C/Z →֒ C of the natural projection C ։ C/Z. Define an embedding
ι : M∧b♥ →֒ M [t−1, t]]∧b by sending a sum

∑
i∈Z>0

mα,i (in the notation of Subsection

3.1) to
∑

i∈Z>0
tϕ(α)−α−imα,i. It is easy to see that this embedding induces an embedding

ι : resb,λ(M) →֒ resb,λ/t(M). Moreover, the last embedding becomes an H+-module
homomorphism if we modify the action of H+ on the image by w.ι(m) = wι(m), x.ι(m) =
t−1xι(m), y.ι(m) = tyι(m), w ∈ W,x ∈ h∗W , y ∈ hW . We remark that eu+ + eu+M

t acts

locally finitely on ι(resb,λ(M)). Indeed, thanks to Lemmas 3.5, 3.6, eu+ + eu+M
t coincides

(up to adding a scalar) with the operator on resb,λ(M) induced by eu+ euM
t . But if

m =
∑

i>0mα,i, then ι(m) is a generalized eigenvector for eu+ euM
t with eigenvalue ϕ(α).

In particular, since eu+ acts locally finitely on any object inO+
R, we see that ι(resb,λ(M)) ⊂

resb,λ/t(M)fin. Now consider the induced map C[t−1, t] ⊗ ι(resb,λ(M)) → resb,λ/t(M)fin.

The kernel of this map is stable with respect to eu++eu+M
t and the action of this operator

on C[t−1, t] ⊗ ι(resb,λ(M)) is locally finite. So let v be an eigenvector in the kernel. But
the kernel is stable under the multiplication by elements from C[t−1, t] as well. However,
it is easy to see that for an appropriate k we have tkv ∈ ι(resb,λ(M)). Contradiction.

So let us pick M ∈ O(c). Let us introduce an embedding of resb,λ(M) →֒ resb,λ/t(M).

3.4. An embedding res0,λ →֒ resb,λ. Tracking the construction of resb,λ we see that we
need to prove the following claim:

(*) There is a functorial embedding Eλ(M
∧0) →֒ Eλ(M

∧b♥).

In fact we will show a weaker result.

Proposition 3.7. There is a sufficiently small W -stable neighborhood U of zero in h

such that for all b ∈ U there is a functorial homomorphism Eλ(M
∧0) → Eλ(M

∧b♥) that
is injective when M is projective.

Proof. Let U be a convex W -stable neighborhood of 0 in h. Set H(U) := C[U ] ⊗C[h] H ,
where C[U ] stands for the algebra of analytic functions on U . For M ∈ O set M(U) :=
C[U ] ⊗C[h] M . We can define Eλ(M(U)) similarly to the above. We have a natural
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homomorphism Eλ(M(U)) →֒ Eλ(M
∧0) (restricting a section to the formal neighborhood

of 0).

Lemma 3.8. The natural map M(U)→ M∧0 is an embedding for sufficiently small U .

Proof. Since both M 7→ M∧0 ,M 7→ M(U) are exact functors, it is enough to check the
claim when M is irreducible. Since there are only finitely many irreducibles, it is enough
to check the claim for any fixed M . Here it follows easily from the observation that M(U)
is a finitely generated and hence Noetherian C[U ]-module. �

Also we have a homomorphism Eλ(M(U)) → Eλ(M
∧b) (the restriction to a formal

neighborhood of b) for any b ∈ U . Any section s of M(U) is a sum
∑

a∈C

∑∞
i=0ma,i,

where the meaning of ma,i is the same as in the definition of •♥ in Subsection 3.1, that
converges on U . It follows that the image of the restriction embedding M(U) →֒ M∧b lies
in M∧b♥. So Eλ(M(U)) actually maps to Eλ(M

∧b♥).
Now we claim that for sufficiently small U the embedding Eλ(M(U)) → Eλ(M

∧0) is
actually an isomorphism. The categoryO is a length category, has enough projectives, and
the number of projectives is finite. The functor M 7→ Eλ(M(U)) is obviously left exact,
while the functor M 7→ Eλ(M

∧
0 ) is exact. Recall that the latter follows from the fact that

res0,λ is exact, see [BE], Subsection 3.5. Therefore the embedding Eλ(M(U)) →֒ Eλ(M
∧0)

is an isomorphism if and only if it is an isomorphism for any projective M .
Now it is known, see [GGOR], that any projective has a filtration by standard modules

and, in particular, is a free C[h]-module. The action of ya gives rise to a flatW -equivariant
connection on this bundle. The connection has regular singularities on the reflection
hyperplanes. Suppose that v is an element of M∧0 such that (ya − 〈λ, a〉)v = u′(a)
for some linear map u′ : h → M(U). Since the connection given by a 7→ ya has regular
singularities, we see that v extends to some smaller neighborhood U ′ of 0. But the module
Eλ(M

∧0) is finitely generated. So using an easy induction and shrinking U if necessary,
we see that all generators of Eλ(M

∧0) extend to U proving our claim.
Since any projective module is free over C[h], we see that the natural mapM(U)→M∧b

is injective, provided M is projective. �

3.5. Completion of the proof. Let us complete the proof of the theorem. We have a
homomorphism

resλ ∼= res0,λ → resb,λ →֒ Resb,λ ∼= Resb

for b sufficiently close to 0. But all functors Resb are isomorphic, see [BE], Subsection
3.7, so we have a homomorphism resλ → Resb for all b. Moreover, resλ(M) →֒ Resb(M)
for any projective M . As Bezrukavnikov and Etingof checked in [BE], Subsection 3.6,
on the level of the Grothendieck groups the functors resλ,Resb are the same (K0(O) =
K0(W −Mod), K0(O

+) = K0(W −Mod) and both Resb, resλ produce the restriction map
induced by the embedding W →֒ W ). So resλ(M),Resb(M) have the same class in the
Grothendiecck group for any M . In particular, resλ(M) = Resb(M) for projective M .
Now we have a natural transformation of two exact functors that is an isomorphism on
projectives. Such a transformation is necessarily an isomorphism.



ON ISOMORPHISMS OF CERTAIN FUNCTORS FOR CHEREDNIK ALGEBRAS 13

4. Isomorphism of the induction functors

First of all, we define auxiliary functors

Indb,0(N) = E0 ◦ (θb)
−1
∗ ◦ I ◦ (ζ0 ◦ E0)

−1(N),(10)

indb,λ(N) = E0(
(
(θ̃λ)

−1
∗ ◦ I ◦ ζ

−1
λ (N)

)∧b

)(11)

from O+ → Õ, where we consider ζ0 ◦ E0 as an equivalence O∧b → O+. We remark that
we do not need to apply •♥ in the definition of indb,λ. Indeed, E0(M

′) ⊂ M ′♥ for any

topological H-module because eu acts locally finitely on any object of Õ.
As in Subsection 3.1 one shows that Indb,0

∼= Indb, while ind0,λ
∼= indλ. Then, similarly,

to Subsection 3.5, it is enough to show that there are

(A) A homomorphism ind0,λ → indb,λ that is an embedding on projectives (for b suffi-
ciently close to 0),

(B) and an embedding indb,λ →֒ Indb,0.

Lemma 4.1. There is a natural transformation ind0,λ → indb,λ as in (A).

Proof. The proof closely follows that of Proposition 3.7. We need to show that for all
b sufficiently close to 0 there is a functorial homomorphism E0(M

∧0) → E0(M
∧b) for

any M ∈ Oλ, and that this homomorphism is an embedding whenever M is projective.
This is done exactly as in the proof of Proposition 3.7, the only two claims that we
need to check are that Oλ is a length category with enough projectives, and that any
projective is a free C[h]-module. For a W -module µ one can define the standard object
∆λ(µ) = H ⊗Sh#W µ ∼= C[h] ⊗ (CW ⊗CW µ), where Sh acts on µ via λ. The functor

(ϑ̃λ)
−1
∗ ◦ I ◦ ζ

−1
λ
∼= (θ̃λ)

−1
∗ ◦ I ◦ ζ

−1
λ defines an equivalence O+ → Oλ. It is easy to check

that this equivalence maps standards to standards. Since any projective in O+ admits
a filtration, whose quotients are standards, we see that any projective in Oλ is free as a
C[h]-module. �

To establish an embedding indb,λ →֒ Indb,0 we argue as in Subsections 3.2,3.3. Namely,

we introduce a category ÕR of certain HR-modules equipped with an operator, compare
with the definition of O+

R in Subsection 3.2. Then we construct functors Indb,λ/t, indb,λ/t :

O+ → ÕR as follows:

Indb,λ/t(N) = E0 ◦ (θb)
−1
∗ ◦ I ◦ (ζλ/t ◦ Eλ/t)

−1(R ⊗N),(12)

indb,λ/t(N) = E0(
(
(θ̃λ/t)

−1
∗ ◦ I ◦ ζλ/t(R⊗N)

)∧b

).(13)

To get an operator euN
t on, say, Indb,λ/t, we reverse the procedure of obtaining eu+M

t from
eut

M , see Subsection 3.2. We also remark that in (12) we view ζλ/t ◦Eλ/t as an equivalence

O′
R

∼
−→ O+

R, see Subsection 3.2.
By Lemma 3.4, Indb,0/t

∼= Indb,λ/t. Next, similarly to the corresponding argument in
Subsection 3.2, we can construct a map

indb,λ/t(N)→ (θb)
−1
∗ ◦ I ◦ (ζλ/t ◦ Eλ/t)

−1(R⊗N).

This map is obtained by applying exp(X12). As in Subsection 3.2, this map gives rise to

an isomorphism indb,λ/t
∼
−→ Indb,λ/t.

The relation between the functors Indb,0 and Indb,0/t is completely analogous to that
between Resb,0 and Resb,0/t (see Subsection 3.3). Namely, Resb,0/t(N) = R ⊗ Resb,0(N),
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and Resb,0(N) is the quotient of the submodule of eu+t d
dt
-finite elements in Resb,0/t(N)

by t− 1.
Now let us relate indb,λ to indb,λ/t.

SetM := (θ̃λ)
−1
∗ ◦I◦ζ

−1
λ (N). First of all, let us identifyMt := (θ̃λ)

−1
∗ ◦I◦ζ

−1
λ/t(R⊗N) with

R⊗M . Namely, it is easy to see that Mt gets identified with R⊗M if we modify the HR-
module structure on R⊗M as follows: t·m = tm, w ·m = wm, x·m = txm, y ·m = t−1ym,
m ∈ M,w ∈ W,x ∈ h∗, y ∈ h, where in the l.h.s. we have the new action of HR, and
in the r.h.s. the action is standard. Under this identification M∧b

t gets identified with
(R ⊗ M)∧bt := R[h]∧bt ⊗C[h] M . So we need to relate the H-module E0(M

∧b) to the
HR-module E0((R⊗M)∧bt).

The module (R⊗M)∧bt comes equipped with an Euler operator euM
t induced from t d

dt

on R ⊗ M . We remark that the maximal ideal mbt ⊂ R[h]W is stable with respect to
[eu, ·] + t d

dt
. Consider the quotient Mn := (R ⊗ M)/mn

bt. We want to understand the
structure of the operator eu+ euM

t on Mn. Recall the section ϕ : C/Z → C chosen in
Subsection 3.3.

Lemma 4.2. There are finitely many elements β1, . . . , βk ∈ ϕ(C/Z) with βi − βj 6∈ Z

such that the eu+ euM
t -finite part of Mn is the direct sum of generalized eigenspaces of

eu+ euM
t with eigenvalues βi+n, n ∈ Z. All generalized eigenspaces are finite dimensional.

Moreover, if M0
n denotes the sum of generalized eigenspaces with eigenvalues β1, . . . , βk,

then the natural homomorphism R⊗M0
n →Mn is an isomorphism.

Proof. Consider the C[[t]]⊗H-module C[[t]]⊗M that maps naturally to R⊗M . Then we

have R⊗C[[t]] M
+
n

∼
−→Mn, where M+

n := C[[t]]⊗M/mn
bt. The operator eu+ eut

M also acts

naturally on M+
n , R ⊗C[[t]] M

+
n and the identification R ⊗C[[t]] M

+
n

∼
−→ Mn intertwines the

corresponding operators. The C[[t]]-module M+
n is finitely generated because C[[t]] ⊗M

is finitely generated over C[[t]] ⊗ C[h]. Hence M+
n is complete in the t-adic topology.

All subspaces tmM+
n are eu+ euM

t -stable. The claim of the lemma follows easily from
the observation that all quotients M+

n /t
mM+

n are finite dimensional over C and that the
multiplication by t increases the eigenvalue of eu+ euM

t by 1. �

The proof also shows that the subspace (M+
n )fin of eu+ eut

M -finite vectors in M+
n coin-

cides with (C[t]⊗M)/mn
bt embedded naturally into M+

n (the natural map is an embedding
because Mn = C[[t]] ⊗C[t] (C[t] ⊗M)/mn

bt and the torsion submodule of the C[t]-module
(C[t]⊗M)/mn

bt is supported at 0 thanks to the operator eu+ euM
t ).

Let us identify M0
n with M/mn

b . For m≫ 0 the space tmM0
n lies in the torsion-free part

of the C[[t]]-module M+
n . Then we just consider tmM0

n as a subspace in (C[t]⊗M)/mn
bt and

restrict the natural projection (=the quotient by t−1) (C[t]⊗M)/mn
bt ։ M/mn

b to tmM0
n.

From Lemma 4.2 it follows easily that this map is a bijection. We remark that the bijection
M0

n →M/mn
b is compatible with the natural projections M0

n+1 ։ M0
n ,M/mn+1

b ։ M/mn
b

(the claim that the first map is surjective is an easy corollary of Lemma 4.2).
It follows that M∧b gets identified with the sum of generalized eigenspaces of elements

of ϕ(C/Z) in M∧bt
t . This is an H-module identification (where H acts on the latter space

by x 7→ t−1x, y 7→ ty, w 7→ w). From here it is easy to see that E0(M
∧b) gets embedded

into E0(M
∧bt). This embedding produces an embedding indb,λ →֒ Indb,0 we need.
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