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CONCERNING THE L4 NORMS OF TYPICAL EIGENFUNCTIONS

ON COMPACT SURFACES

CHRISTOPHER D. SOGGE AND STEVE ZELDITCH

Abstract. Let (M, g) be a two-dimensional compact boundaryless Riemannian man-

ifold with Laplacian, ∆g. If eλ are the associated eigenfunctions of
√

−∆g so that

−∆geλ = λ2eλ, then it has been known for some time [18] that ‖eλ‖L4(M) . λ1/8,

assuming that eλ is normalized to have L2-norm one. This result is sharp in the sense
that it cannot be improved on the standard sphere because of highest weight spherical
harmonics of degree k. On the other hand, we shall show that the average L4 norm of

the standard basis for the space Hk of spherical harmonics of degree k on S2 merely

grows like (log k)1/4. We also sketch a proof that the average of
∑2k+1

j=1 ‖eλ‖
4
L4 for

a random orthonormal basis of Hk is O(1). We are not able to determine the max-
imum of this quantity over all orthonormal bases of Hk or for orthonormal bases
of eigenfunctions on other Riemannian manifolds. However, under the assumption
that the periodic geodesics in (M,g) are of measure zero, we are able to show that

for any orthonormal basis of eigenfunctions we have that ‖eλjk
‖L4(M) = o(λ

1/8
jk

) for

a density one subsequence of eigenvalues λjk . This assumption is generic and it is
the one in the Duistermaat-Gullemin theorem [6] which gave related improvements
for the error term in the sharp Weyl theorem. The proof of our result uses a recent
estimate of the first author [20] that gives a necessary and sufficient condition that

‖eλ‖L4(M) = o(λ1/8).

1. Introduction.

The purpose of this note is to introduce a new problem on Lp norms of eigenfunctions
on compact Riemannian manifolds (M, g). We prove some initial results on the problem,
and also include some conjectures and heuristic remarks.

The problem, roughly speaking, is to determine the asymptotic average of the L4

norms ||eλ||4 of the elements of an orthonormal basis of eigenfunctions

−∆geλ = λ2eλ

of the associated Laplace-Beltrami operator. In practice it is simpler to consider the
fourth power Weyl sums,

(1.1)
1

N(λ)

∑

j:λj≤λ

||eλj ||44

where
N(λ) = #{λj ≤ λ},
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is the Weyl counting function. The asymptotics of (1.1) depend on the entire orthonor-
mal basis and, as will be seen below, can behave quite differently from the behavior of
individual eigenfunctions in the basis.

Before stating our results, let us recall the results on Lp norms of individual eigen-
functions. In 1988, one of us showed in [18] that for 2 < q ≤ ∞ and

(1.2) σ(q) = max
(

2(1/2− 1/q)− 1/2, 12 (1/2− 1/q)
)

=

{

2(1/2− 1/q)− 1/2, q ≥ 6
1
2 (1/2− 1/q), 2 < q ≤ 6,

we have

(1.3) ‖eλ‖Lq(M) . λσ(q),

assuming as we shall do throughout that the eigenfunctions are L2-normalized so that

‖eλ‖L2(M) = 1,

where the norms are taken with respect to the volume element, dV . This result is sharp
since certain spherical harmonics on the sphere, S2, with the round metric saturate the
estimate (1.3). Specifically, when q ≥ 6, L2-normalized zonal functions, Zk satisfy

‖Zk‖Lq(S2) ≈ k2(1/2−1/q)−1/2, q ≥ 6,

while the L2-normalized highest weight spherical harmonics, Qk = ck(x1 + ix2)
k satisfy

‖Qk‖Lq(S2) ≈ k
1
2 (1/2−1/q), q ≥ 2.

Both are eigenfunctions of the standard Laplacian on S2 with eigenvalue λ2 = k(k + 1)
in the above notation. Also, we are taking S2 to be {(x1, x2, x3) : x2

1 + x2
2 + x2

3 = 1},
so that, as k → ∞, the Qk become highly concentrated on the equator where x3 = 0.
The orthonormal basis of joint eigenfunctions of ∆g and of x3-axis rotations are generally
denoted by Y k

m,m = −k, . . . , k; in particular, Zk = Y k
0 and Qk = Y k

k .

Even though (1.2) cannot be improved on the sphere, it is thought that for generic
manifolds one has at least

(1.4) ‖eλ‖Lq(M) = o(λσ(q)), as λ → ∞,

for a given q > 2. In [22] we showed that for generic (M, g) this is true for q > 6 (and
also corresponding results for higher dimensions). This just followed from showing that
under a certain generic condition on (M, g) one can improve the L∞ estimate in (1.3)
to be ‖eλ‖∞ = o(λ1/2), which implies (1.4) for all q > 6 by interpolating with (1.3) for
q = 6. The results in [22] were recently improved in [21]. The key point was to show that
the bound ‖eλ‖∞ = O(λ1/2) can only be obtained on (M, g) possessing a “peak point” or
“pole” z0 with the property that a positive measure of directions in S∗

z0M exponentiate
to geodesic loops which return to z0 at some time. This behavior occurs at poles of a
surface of revolution, since all meridians are closed geodesics through the pole, and in
particular explains why the sup norm bounds are attained by zonal functionsZk on the
round sphere (see §3 below).

Even though there are satisfactory results concerning (1.4) for relatively large expo-
nents q > 6, much less is known for relatively small exponents 2 < q < 6. In this case,
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it is thought that the enemy for (1.4) is maximal concentration along periodic geodesics,
as occurs for the highest weight spherical harmonics. Using the formula for the Qk one
checks that they have L2-mass bounded below on shrinking k−1/2 neighborhoods of the
equator γ = {(x1, x2, x3) ∈ S2 : x3 = 0}. In [20], (following an earlier result in [3]), the
first author proved that for 2 < q < 6, (1.4) is valid if and only if this type of concen-
tration does not occur. Specifically, a necessary and sufficient condition for (1.4) for this
range of exponents is that

(1.5) sup
γ∈Π

∫

distg(γ,y)≤λ−1/2

|eλ(y)|2 dV = o(1),

where Π is the space of all unit-length geodesics in M , and distg( ·, · ) is the geodesic
distance associated to the metric g.

The goal of this paper is to show that even though on some manifolds there are
eigenfunctions eλ having L4-norms of maximal size ≈ λ1/8 as λ → ∞, they are very
sparse. Our first result of this type says that given any orthonormal basis {eλj} of
eigenfunctions with eigenvalues λ1 ≤ λ2 ≤ . . . on a two-dimensional compact Riemannian
manifold (M, g) with a zero measure of periodic geodesics, one can find a density one
subsequence of eigenvalues, {λjk}, for which

(1.6) ‖eλjk
‖L4(M) = o(λ

1/8
jk

).

By interpolation with the L6-estimate in (1.3) and the trivial L2-estimate, this implies

that we also have ‖eλjk
‖Lq = o(λ

σ(q)
jk

) for every 2 < q < 6. Presently, we do not how
to prove the corresponding results for q ≥ 6, or how to obtain any results like this for
higher dimensions n ≥ 3. The condition that (M, g) have a zero set of periodic geodesics
is generic and it is the assumption in the Duistermatt-Guillemin theorem [6], which
involved a similar o-improvement of the error term in the Weyl formula.

The assumptions that the periodic orbits are of measure zero of course is not valid for
the sphere. Nonetheless, we can prove a much stronger result for the standard basis {Y k

m}
on S2, even though, as we pointed out before, this eigen-basis has functions saturating
(1.3) for each 2 < q ≤ ∞.

To be more specific, we recall that the Laplace-Beltrami operator on S2 ⊂ R
3 with

the standard round metric has eigenvalues λ2 = k(k + 1) repeating with multiplicity
2k + 1, meaning that the corresponding eigenspace Hk of spherical harmonics of degree
k has this dimension. If we use longitudinal coordinates φ ∈ [0, π] and latitudinal ones
θ ∈ [0, 2π] so that S2 ∋ x = (sinφ cos θ, sinφ sin θ, cosφ), then in these coordinates the
standard basis for Hk has elements

(1.7) Y k
m(φ, θ) = cm,kP

m
k (cosφ)eimθ, −k ≤ m ≤ k,

where Pm
k are Legendre functions and cm,k are L2-normalizing constants. When m = 0,

Y k
0 is the zonal function Zk, and when m = ±k it is a highest weight spherical harmonic

of degree k. For this basis, we shall show that the average L4-norm is of size ≈ (log k)1/4,
as k → ∞, i.e.,

(1.8)
1

2k + 1

k
∑

m=−k

∫

S2

|Y k
m|4 dV ≈ log k, k ≥ 2,
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which of course is much stronger than (1.6) since it shows that there must be a density
one sequence of eigenfunctions among this basis with L4-norms growing logarithmically
with respect to the eigenvalues. It seems somewhat paradoxical at first that (1.8) is valid
for the standard basis on the sphere, while the same basis is the worst case for (1.3). But
this holds because the left side of (1.8) is a functional of an orthonormal basis rather than
of individual eigenfunctions, and most elements Y k

m have relatively small L4 norms. It is
doubtful that the {Y k

m} maximize this functional among orthonormal bases of spherical
harmonics. In Section 4 we explain this further.

These observations raise the following

Problem Let dimM = 2. For which (M, g) (if any) does there exist an orthonormal
basis of eigenfunctions for which there exists a positive density subsequence eλjk

so that

||eλjk
||L4 = Ω(λ

1/8
jk

).? Or is a result like (1.6) is valid on any compact surface?

We prove (1.8) by obtaining pointwise bounds for the ℓ4(m) norms of the basis elements
of Hk. Specifically, we shall prove sharp estimates for

‖Y k
m(x)‖ℓ4(m) =

(

k
∑

m=−k

|Y k
m(x)|4

)1/4

.

By the inclusion ℓ4 ⊂ ℓ2, this quantity is bounded by the corresponding ℓ2(m)-norm. On
the sphere, the ℓ2(m) norm is independent of x, and, in fact,

(1.9) ‖Y k
m(x)‖ℓ2(m) =

√

(2k + 1)/4π.

The ℓ4(m) norm is of this order of of magnitude for points x of distance O(1/k) from the
poles where φ = 0 or π, but in order to obtain (1.8) much better estimates are needed.
We shall obtain such an improvement, which turns out to be sharp, by using (1.7) and
well known asymptotics for the kernel of the projection onto the spherical harmonics of
degree k, Hk. Thus, we are very much using here special properties of S2. Our results
can be thought of as a natural analog for S2 of Zygmund’s [27] theorem for the two-torus
T
2, which says that the eigenfunctions of its Laplace-Beltrami operator have uniformly

bounded L4-norms. As we pointed out before, this is far from true on S2, but in an
averaged sense it is almost true since the average L4-norms just grow like powers of logs
of the eigenvalues.

For general Riemannian manifolds of dimension n, the local Weyl formula says that if
N is large enough and fixed then

(1.10)





∑

|λj−λ|≤N

|eλj (x)|2




1/2

≈ λ(n−1)/2.

It would be interesting to see to what extent there is an improvement in the general case
when one replaces this ℓ2-norm by ℓq norms with q > 2 and to what extent results of this
type perhaps depend on properties of the geodesic flow starting at x. In a future work,
we intend to carry out the analysis for round spheres of dimension n ≥ 3 and certain
surfaces of revolution. Understanding the case of general manifolds and to what extent
these results might depend on x seems difficult at present. On the other hand, by using
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estimates like (1.3), one can see that for most points x ∈ M , once can improve on the
trivial consequence of (1.10) that





∑

|λj−λ|≤N

|eλj (x)|q




1/q

. λ(n−1)/2.

For instance, if q = 4 and n = 2, then using (1.3) and Tchebyschev’s inequality one sees
that if C < ∞ is fixed then

∣

∣

∣

∣

∣

∣







x ∈ M :
(

∑

|λj−λ|≤N

|eλj (x)|4
)1/4 ≥ Cλ1/2







∣

∣

∣

∣

∣

∣

= O(λ−1/2),

which, not surprisingly, is exactly the size of the sets on which the highest weight spherical
harmonics are concentrated.

This paper is organized as follows. In the next section we shall present the proof of
(1.6). Then we shall turn our attention to the sphere S2 and prove the much stronger
bounds (1.8) for S2.

2. L4 norms of generic eigenfunctions.

In this section we shall establish (1.6). Specifically, we shall prove the following

Theorem 2.1. Let (M, g) be a two-dimensional compact Riemannian manifold. If Φt :
S∗M → S∗M is geodesic flow on the cosphere bundle, assume that the set

(2.1) P = {(x, ξ) ∈ S∗M : Φt(x, ξ) = (x, ξ), some t > 0}
has measure zero in S∗M with respect to the volume element. Then if eλj is an orthonor-

mal basis of eigenfunctions, −∆eλj = λ2
j , with λ1 ≤ λ2 ≤ . . . there is a subsequence of

eigenvalues λjk satisfying

(2.2) lim
λ→∞

#{λjk ≤ λ}
N(λ)

= 1,

so that

(2.3) ‖eλjk
‖L4(M) = o(λ

1/8
jk

).

To prove this we shall use an estimate from [20] and arguments from [5] and [26]. The
estimate from [20] says given (M, g) as above there is a uniform constant C so that if
−∆eλ = λ2eλ and N = 1, 2, 3, . . . then
∫

M

|eλ(x)|4 dV ≤ CN−1/2λ1/2‖eλ‖4L2(M)

+ CNλ1/2‖eλ‖L2(M)

[

sup
γ∈Π

∫

T
λ−1/2(γ)

|eλ(x)|2 dV
]

+ C‖eλ‖4L2(M).

Here dV = dVg is the volume element, Π is the space of all unit-length geodesics, and

Tε(γ) = {y ∈ M : distg(y, γ) ≤ ε},
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denotes an ε-tube about γ. By optimizing the choice of N , we see that the preceding
inequality implies that

(2.4) ‖eλ‖L4(M) ≤ Cλ1/8‖eλ‖5/6L2(M) sup
γ∈Π

‖eλ‖1/6L2(T
λ−1/2)

+ C‖eλ‖L2(M).

In addition to this we require the following result which is a simple consequence of the
local Weyl law (see [11]).

Lemma 2.2. Let (M, g) be a compact Riemannian manifold and let A ∈ Ψ0
cl(M) be a

classical pseudo-differential operator on M of order zero. Then if A0 is the principal

symbol of A,

(2.5)
∑

λj≤λ

∫

M

|Aeλj (x)|2dV = (2π)−nλn

∫

T∗B

|A0(x, ξ)|dV dξ +O(λn−1).

Here, T ∗B ⊂ T ∗M is the ball bundle, {(x, ξ) :∑jk g
jk(x)ξjξk ≤ 1}, where gjk is the

cometric, i.e., (gjk(x))−1 = (gjk(x)). Note that (2.5) with A being the identity operator
is the sharp Weyl formula ([1], [12], [9]), and the proof of the more general case just
follows from a straightforward modifications of that of this special case.

As a first step in the proof of Theorem 2.1, let us use some ideas from the proof of the
Duistermaat-Guillemin theorem [6] (see also [8]). Given (x, ξ) ∈ S∗M we define L(x, ξ)
for (x, ξ) ∈ P to be the minimal t > 0 so that Φt(x, ξ) = (x, ξ) and we define L(x, ξ) to be
+∞ if (x, ξ) /∈ P , where P is as in (2.1). Then L(x, ξ) is clearly a lower semicontinuous
function on S∗M . As a result, since we are assuming that P has measure zero, it follows
that for a given T > 0

PT = {(x, ξ) ∈ S∗M : L(x, ξ) ≤ T }
is a closed subset of S∗M which is of measure zero since PT ⊂ P . Therefore, given ε > 0,
we can find a pseudodifferential operator b ∈ Ψ0

cl(M) whose principal symbol satisfies
0 ≤ b0(x, ξ) ≤ 1, b0(x, ξ) = 1 for (x, ξ) ∈ N (PT ), where N (PT ) is a neighborhood of Π
in S∗M and

∫

B∗M

|b0(x, ξ)|2dV dξ < ε/3.

By Lemma 2.2, we conclude from this that

(2.6)
1

N(λ)

∑

λj≤λ

∫

M

|beλj |2 dV < ε/3 +Ob(λ
−1),

since we are assuming that |T ∗B| = 1.

If we let B = Id−b ∈ Ψ0
cl(M) then we claim that there is a uniform constant C, which

is independent of ε and T above so that

(2.7) sup
γ∈Π

∫

T
λ
−1/2
j

(γ)

|Beλj |2 dV ≤ C/T + C′
B,Tλ

−1/2.

If T is chosen large enough so that C/T < ε/3, the preceding inequalities imply that
there is an λ0 = λ0(ε) so that

(2.8)
1

N(λ)

∑

λj≤λ

sup
γ∈Π

∫

T
λ
−1/2
j

(γ)

|eλj (x)|2 dV < ε, if λ > λ0.
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As we shall see, this and (2.4) immediately yield Theorem 2.1.

Our main estimate (2.7) would follow from showing that there is a constant C as above
so that

(2.9) sup
γ∈Π

∫

γ

|Beλ|2 ds ≤ CT−1λ1/2 + C′
T,B .

Here ds is the geodesic arclength measure on γ. Estimate (2.9) yields (2.10) due to the
simple fact that if f ≥ 0 then for any γ0 ∈ Π

∫

T
λ−1/2(γ0)

f dV ≤ Cλ−1/2 sup
γ∈Π

∫

γ

f ds

for a uniform constant C since Tλ−1/2(γ0) is a tube of width λ−1/2 about γ0.
1 Let Πcl

be the set of unit geodesics that are part of a periodic geodesic. In [20] one of us showed
that

∫

γ

|eλ|2 ds = o(λ1/2), if γ ∈ Π\Πcl,

which was an o-improvement of the restriction bounds in [4]. The proof of (2.9) is an
adaptation of the one used to establish this result.

To prove (2.9), let us fix a real-valued even function χ ∈ S(R) with χ(0) = 1 and
χ̂(t) = 0, |t| > 1/4, where χ̂ denotes the Fourier transform of χ. We then have that

χ(T (P − λ))eλ = eλ

if P =
√

−∆g. Therefore, in order to prove (2.9), it suffices to show that

(2.10)

∫

γ

|Bχ(T (P − λ))f |2 ds ≤ CT−1λ1/2‖f‖2L2(M) + C′
T,B‖f‖2L2(M), γ ∈ Π,

where C (but not C′
T,B) is a uniform constant independent of T and B. We shall assume

in what follows that T is fixed but large, in particular T > 10.

Note that Π is compact. Therefore, in order to prove (2.10), it suffices to show that
given γ0 ∈ Π there is a neighborhood N (γ0) of γ0 in Π on which the analog of (2.10)
holds with constants independent of γ ∈ N (γ0). Different arguments are needed for the
cases where γ0 is or is not part of a periodic geodesic of period ≤ T , where T is as above.

Given γ ∈ Π we let T ∗γ ⊂ T ∗M and S∗γ ⊂ S∗M be the cotangent and unit cotangent
bundles over γ, respectively. Thus, if (x, ξ) ∈ T ∗γ then ξ♯ is a tangent vector to γ at x if
T ∗M ∋ ξ → ξ♯ ∈ TM is the standard musical isomorphism, which, in local coordinates,

sends ξ = (ξ1, ξ2) ∈ T ∗
xM to ξ♯ = (ξ1♯ , ξ

2
♯ ) with ξj♯ =

∑

k g
jk(x)ξk. Note that if γ ∈ Πcl

then L(x, ξ) ≡ t(γ) < ∞ for (x, ξ) ∈ S∗γ. With this in mind, we shall let Πcl(T ) denote
those γ ∈ Πcl for which L(x, ξ) ≤ T if (x, ξ) ∈ S∗γ.

1Note that, in R2, the integral of f ≥ 0 over an 1×λ−1/2 rectangle is dominated by λ−1/2 times the
supremum of integrals over the line segments in the rectangle that are parallel to the center segment,
and a similar argument works for the above tubes if one uses Fermi normal coordinates about a geodesic
which intersects γ0 orthogonally.
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Let us first see that a stronger version of (2.9) must be valid whenever γ ∈ Πcl(T ).
We first note that if A ∈ Ψ0

cl(M) then

(2.11) Aχ(T (P − λ))f(x) = T−1

∫

χ̂(t/T ) e−iλt
(

AeitP f
)

(x) dt,

and recall that because of the support properties of χ̂(t), the integral vanishes when
|t| ≥ T/2. The operator

f →
(

AeitP f
)

(x)

is a Fourier integral operator with wave front set

(2.12)
{

(x, t, ξ, τ, y,−η) : Φt(x, ξ) = (y, η), ±τ = p(x, ξ), (x, ξ) ∈ supp A(x, ξ)
}

,

where p(x, ξ) is the principal symbol of P =
√

−∆g and A(x, ξ) is the symbol of A. If
Rγ denotes the restriction to γ then we are really concerned with the operator

(2.13) f → RγAe
itP f.

Regarded as an operator from C∞(M) → C∞(γ0× [−T/2, T/2]), if supp A(x, ξ)∩S∗γ =
∅, this is a Fourier integral operator of order zero which is locally a canonical graph 2. If
γ = γ0 ∈ Πcl(T ) and we take A = B, where B is as above, then this is automatically the
case since B = Id − b and b has a symbol which equals one in a neighborhood of S∗γ0
if γ0 ∈ Πcl(T ). Therefore, by Hörmander’s [10] L2-estimates for nondegenerate Fourier
integral operators we have

∫ T/4

−T/4

∫

γ0

|BeitP f |2 dsdt ≤ C‖f‖2L2(M).

The constant C here of course depends on T and γ0 (with its main dependence being
on dist(S∗γ0, supp B(x, ξ)). Since the Fourier integral (2.13) with A = B will also be
nondegenerate if γ is close to γ0, we conclude that whenever γ0 ∈ Πcl(T ), there must be
a neighborhood N (γ0) in Π and a constant Cγ0,B,T so that

∫ T/4

−T/4

∫

γ

|BeitP f |2 dsdt ≤ Cγ0,B,T‖f‖2L2(M), γ ∈ N (γ0).

If we use the Schwarz inequality and (2.11) we conclude from this that

(2.14)

∫

γ

|Bχ(T (P − λ))f |2 ds ≤ TCγ0,B,T ‖f‖2L2(M), γ ∈ N (γ0),

which is stronger than (2.10) for these γ.

Let us now see that we also have favorable bounds on Π\Πcl(T ). If we fix a γ0 in this
set and choose a C ∈ Ψ0

cl(M) whose symbol vanishes on a conic neighborhood of T ∗γ0
then by the above arguments there must be a conic neighborhood of γ0 on which we have
the analog of (2.14) when B is replaced by C ◦B. This fact is independent of whether or
not γ0 is periodic. It is just our earlier observation that (2.13) is a nondegenerate Fourier
integral operator when the symbol of A vanishes in a conic neighborhood of T ∗γ0.

2Since, for fixed t, eitP : C∞(M) → C∞(M) is a nondegenerate Fourier integral operator, one needs
only to check this assertion for t = 0, in which case it is an easy calculation using any parametrix for the
half-wave operator.
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Thus, in order to show that we have uniform bounds as in (2.10) on a neighborhood of
such a γ0 ∈ Π\Πcl(T ), it is enough to show that if A ∈ Ψ0

cl(M) has a symbol supported
in a small neighborhood of T ∗γ0 then we have

(2.15)

∫

γ

|Aχ(T (P − λ))f |2 ds ≤ CT−1λ1/2‖f‖2L2(M) + C′
T,A,γ0

‖f‖2L2(M)

for every γ ∈ Π .

Note that for every x ∈ γ0, Txγ0 is one-dimensional and if ξ ∈ T ∗
xγ then −ξ ∈ T ∗

xγ0,
since ±ξ♯ ∈ Txγ are the corresponding tangent vectors to γ0 at x pointing in opposite
directions. Thus, T ∗γ0 naturally splits into two components, which we shall denote by
T ∗
±γ0, and in order to prove (2.15), it suffices to show that the estimate holds if the

symbol of A is supported in a small neighborhood of one of them, say, T ∗
+γ0, since the

same argument will apply to T ∗
−γ0.

We shall assume in what follows that the injectivity radius of (M, g) is 10 or more. If
not than we can subdivide γ into a finite number of segments of length smaller than one
tenth of the injectivity radius and use the argument that follows to prove the analog of
(2.15) for each of these, which in turn yields (2.15) for all of γ.

Let Sf = Aχ(T (P − λ))f |γ then we wish to show that

(

‖S‖L2(M)→L2(γ)

)2 ≤ CT−1λ1/2 + CT,A,γ0 .

This is equivalent to saying that the dual operator S∗ : L2(γ) → L2(M) with the same
norm, and since

‖S∗g‖2L2(M) =

∫

γ

SS∗g g ds ≤ ‖SS∗g‖L2(γ)‖g‖L2(γ),

we would be done if we could show that

(2.16) ‖SS∗g‖L2(γ) ≤
(

CT−1λ1/2 + CT,A,γ0

)

‖g‖L2(γ).

But the kernel of SS∗ is K(γ(s), γ(s′)) where γ(s) parameterizes γ by arclength and
K(x, y), x, y ∈ M is the kernel of the operator A ◦ ρ(T (P − λ)) ◦ A∗ with ρ = (χ(τ))2

being the square of χ. Its Fourier transform ρ̂ is the convolution of χ̂ with itself and thus
ρ̂(t) = 0, |t| ≥ 1/2. Consequently, we can write

(2.17) A ◦ ρ(T (P − λ)) ◦A∗ = T−1

∫ T/2

−T/2

ρ̂(t/T ) e−itλ
(

A ◦ eitP ◦A∗
)

dt.

The wave front set of the kernel of

A ◦ eitP ◦A∗

regarded as an operator from C∞(M) to C∞(M × R) is contained in

(2.18) {(x, t, ξ, τ ; y,−η) : Φt(x, ξ) = (y, η), τ = ±p(y, η), (x, ξ), (y, η) ∈ supp A}.
Our assumption that γ0 /∈ Πcl(T ) implies that if (x, ξ) ∈ S∗γ0 then {Φt(x, ξ) : 1 ≤
|t| ≤ T } must be a closed subset of S∗M which is disjoint from {(x, ξ)}. If we assume
also that (x, ξ) and (y, η) belong to the same component S∗

+γ0 of S∗γ0 then we have that
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Φt0(x, ξ) = (y, η) for some |t0| ≤ 1, and therefore Φt(x, ξ) 6= (y, η), for |t| ∈ [2, T −1] since
if Φt(x, ξ) = (y, η) then we must also have Φt−t0(x, ξ) = (x, ξ) for this t0. Consequently,

{(x, ξ,Φt(x, ξ)) : (x, ξ) ∈ S∗
+γ0, 2 ≤ |t| ≤ T − 1} ∩ S∗

+γ0 × S∗
+γ0 = ∅,

and since both are compact subsets of S∗M × S∗M , we deduce from (2.18) that if the
symbol of A is supported in a small conic neighborhood of S∗

+γ0, then K(t, x, y) will be
C∞ when |t| ∈ [2, T − 1].

Therefore, for such A, if if α ∈ C∞
0 (R) equals one if |t| ≤ 3 and zero for |t| ≥ 4, the

difference between the kernel K(x, y) in (2.17) and

K0(x, y) = T−1

∫

α(t)ρ̂(t/T )e−itλ
(

A ◦ eitP ◦A∗
)

(x, y) dt,

must be bounded, by a constant which is independent of x and y (but depends on T ,
γ0 and A). Since we are assuming that the injectivity radius of (M, g) is 10 or more
one can use the Hadamard parametrix construction for the wave equation and standard
stationary phase arguments (cf. Chapter 5 in [19] or the proof of Lemma 4.1 in [4]) to
see that for x, y ∈ M we have

|K0(x, y)| ≤ CT−1λ1/2 ( distg(x, y) )
−1/2 + CA.

Since this kernel restricted to γ × γ gives rise to an integral operator satisfying the
estimates in (2.16), we conclude that we also have uniform bounds of the form (2.10),
when A is as above.

This completes the proof that the analog of (2.10) holds for all γ in some neighborhood
of γ0 when γ0 ∈ Π\Πcl(T ).

Combining what we have done for Πcl(T ) and Π\Πcl(T ), since Π is compact, we con-
clude that (2.10) must be valid with uniform constants for every γ ∈ Π . This completes
the proof of (2.9) and hence (2.8). Since the latter holds for all ε > 0, we conclude from
(2.4) that

(2.19) lim sup
λ→∞

1

N(λ)

∑

λj≤λ

(

λ
−1/8
j ‖eλj‖L4(M)

)12
= 0.

We can now finish the proof of Theorem 2.1 using a counting argument from [5] and
[26]. If S ⊂ {λj}, we define its density to be

D(S) = lim inf
λ→∞

#{λj ∈ S : λj ≤ λ}
N(λ)

.

Then if we use (2.19) we conclude that for every n = 2, 3, . . . we can find a subset Sn of
the eigenvalues {λj} so that

D(Sn) ≥ 1− 1

n
and λ

−1/8
j ‖eλj‖L4(M) ≤

1

n
, λj ∈ Sn.

Using this we conclude that there must be a set S∞ = {λjk} ⊂ {λj} of density 1 so that

lim sup
k→∞

λ
−1/8
jk

‖eλjk
‖L4(M) = 0.

Indeed, by the above, we can choose increasing Nν ∈ N, ν = 2, 3, . . . so that

#{λj ∈ Sν : λj ≤ λ}/N(λ) ≥ 1− 2/ν, ∀λ ≥ Nn−1.
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Consequently,

S∞ =

∞
⋃

ν=2

Sν ∩ {λj ≤ Nν}

will have the desired properties. �

3. Average L4 norms of spherical harmonics.

In this section we shall prove (1.8):

Theorem 3.1. Let {Y k
m(x)}km=−k, x = (sinφ cos θ, sinφ sin θ, cosφ), be the orthonormal

basis of spherical harmonics of degree k defined in (1.7). Then there is a uniform constant

C so that

(3.1)
1

2k + 1

k
∑

m=−k

∫

S2

|Y k
m|4dV ≤ C log k, k ≥ 2.

Moreover, if 1 = (0, 0, 1) and if r = min± dist(x,±1)

(3.2)
(

k
∑

m=−k

|Y k
m(x)|4

)1/4

≤











Ck1/4r−1/4
(

log(kr)
)1/4

, r ≥ 2/k

Ck1/2, r ≤ 2/k.

Clearly (3.2) implies (3.1), and so we just need to prove the second inequality in the
theorem. To prove this, we first realize that by Parseval’s theorem we have

2π
k
∑

m=−k

|Y k
m(x)|4 =

∫ 2π

0

∣

∣

∣

k
∑

m=−k

|Y k
m(x)|2eimθ

∣

∣

∣

2

dθ.

The kernel Πk(x, y) for projection on to spherical harmonics of degree k is given my the
formula

Πk(x, y) =

k
∑

m=−k

Y k
m(x)Y k

m(y),

which means that

(3.3) 2π
k
∑

m=−k

|Y k
m(x)|4 =

∫ 2π

0

|Πk(x, e
iθx)|2 dθ,

if we abuse notation a bit and let eiθx denote rotation of our vector x = (x1, x2, x3) by
angle θ about the x3-axis, i.e., e

iθx = (cos θx1, sin θx2, x3). Using the well known bounds
(see [23], [17]) for Πk,

|Πk(x, y)| ≤ Ck1/2(k−1 + dist(x, y))−1/2, x, y ∈ S2

we conclude that

(3.4)
k
∑

m=−k

|Y k
m(x)|4 ≤ Ck

∫ 2π

0

(

k−1 + dist(x, eiθx))−1 dθ.

Since dist(x, eiθ) ≤ Cr| sin θ|, we conclude that the right side of (3.4) is ≤ Ckr−1 log(kr)
if r ≥ 2/k, and ≤ Ck if r ≤ 2/k, for some uniform constant C when k ≥ 2, which is just
(3.2). �
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We believe this estimate to be sharp, but defer the analysis to the future.

4. L4 norms of orthonormal bases of spherical harmonics. The space of ONBk

of Hermitian orthonormal bases ofHk may be identified with the unitary group U(2k+1).
Any orthonormal basis Φk = {φk

1 , . . . , φ
k
2k+1} can be obtained by applying an element

U ∈ U(2k+1) to the standard orthonormal basis {Y k
m}. We then consider the functional

on ONBk defined by,

Λ4
k(Φk) =

2k+1
∑

m=1

||φk
m||4L4 .

We have just proved that Λ4
k of the standard orthonormal basis is bounded by k log k.

One may consider similar functionals on orthonormal bases of all eigenspaces with
λk ≤ λ, i.e. the direct sum

⊕

k≤λ Hk. The functional then has a natural generalization

to any (M, g) and is essentially the one studied in previous sections.

5. Random orthonormal bases of spherical harmonics. We now consider the Λ4
k

functional on a random basis of spherical harmonics. The question we pose is, what is
the average value of the functional on random orthonormal bases? In [SZ] we considered
problems of this kind for Lp norms of individual eigenfunctions, but there is a new
dimension to the problem for random orthonormal bases. For background on random
orthonormal bases we refer to [SZ].

We introduce the probability space (ONB, dν), where ONB is the infinite product of
the sets, and ν =

∏∞
k=1 νk, where νk is Haar probability measure on ONBk. A point of

ONB is thus a sequence Φ = {(φk
1 , . . . , φ

k
2k+1)}k≥1 of orthonormal bases of Hk.

The functionals we are interested in are

(5.5) Λ4
k(Φ) =

2k+1
∑

j=1

∫

S2

‖φk
j (x))‖4dV .

If we fix the standard ONB Yk = {Y k
m} and express every other as UkY

k, then our
functional is

(5.6) Λ4
k(U) =

2k+1
∑

j=1

∫

S2

‖(UY k)j(z)‖4dV.

Let dµk be normalized Haar measure on U(k) and let Ek denote expectation with
respect to this measure. We conjecture that

(5.7) EkΛ
4
k = 2(2k + 1),

i.e. the elements on average have L4 norm equal to 2.

We briefly sketch the proof. We start from the fact that

(5.8)

EΛ4
k(U) =

∑2k+1
j=1

∑k
m1,m2,m3,m4=−k

(

∫

S2 Y
k
m1

(x)Y
k

m2
(x)Y k

m3
(x)Y

k

m4
(x)dV

)

(

∫

U(2k+1)
U j
m1

U
j

m2
U j
m3

U
j

m4
dµk(U)

)

.
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In fact, the sum over j is constant, so the right side equals (2k + 1) times

k
∑

m1,m2,m3,m4=−k

(∫

S2

Y k
m1

(x)Y
k

m2
(x)Y k

m3
(x)Y

k

m4
(x)dV

)

×
(

∫

U(2k+1)

U1
m1

U
1

m2
U1
m3

U
1

m4
dµk(U)

)

.

The integrals
(

∫

U(2k+1) U
j
m1

U
j

m2
U j
m3

U
j

m4
dµk(U)

)

were first studied by Weingarten

[W]. The main result is that the random variables {
√
2k + 1Uij} behave asymptotically

like independent complex Gaussian random variables of mean zero and variance one.
Exact formulae are given in [CS], and the latter can be used to determine the asymptotics
of our sums over 2k+1 indices with different coefficients as k → ∞. The dominant terms
come from the cases where all mj are equal (then one has the fourth moment of the
Gaussian) or when the indices mj are paired into couples (one barred and one unbarred).
Then we have,
(5.9)

(2k + 1)2EΛ4
Nk(U)

∼ (2k + 1)
(

2
∑k

m=−k

∫

S2 |Y k
m(x)|4dV + 2

∑k
m1 6=m2=−k

(∫

S2 |Y k
m1

(x)|2|Y k
m2

|2dV
)

)

= 2(2k + 1)
∫

S2 |Πk(x, x)|2dV = 2(2k + 1)3.

Here, we use that the 4th moment of the complex normal Gaussian equals 2 and that
there are two ways to pair the indices in the off diagonal terms. Dividing by (2k + 1)2

then implies the result.

6. Other orthonormal bases. Theorem 3.1 shows that the Λ4
k functional on the stan-

dard basis {Y k
m} is only log k higher than for a random orthonormal basis. Hence it is

doubtful that it does not maximize Λ4
k. We do not know which ONB maximizes the func-

tional, but in this section we suggest a possible construction of one which has a higher
Λ4
k value than the standard basis.

As mentioned above, the highest wight spherical harmonic Y k
k has L4

4 equal to k1/2

on S2, thus maximizing the norm functional. This suggests constructing orthonormal
bases φk

γj
consisting in part of highest weight spherical harmonics with respect to a well-

separated set of closed geodesics γj . That is, for each closed geodesic γ, one introduces
the subgroup Gγ of rotations fixing γ (as a set) and then constructs Y k

m’s with respect
to this circle action.

Of course, the φk
γj

are not orthogonal, and their inner products 〈φk
γj
, φk

γi
〉 depend on

the angle ϑj,k between the geodesics γj , γi. To construct an orthonormal basis it would
be necessary to apply Gram-Schmidt to such φk

γj
, and in the process one may destroy

the high L4 norms of the resulting eigenfunctions. The question is, how many φk
γj

can be

used in such a construction while preserving the high L4 norms of these Gaussian beams?

The geodesics γj are points in the space G(S2, g0) of geodesics of S
2. A well-separated

set of 2k + 1 geodesics (i.e. a basis) would only have separation of order k−
1
2 . To
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beat the bound k log k for the standard basis one it would suffice to construct a partial
orthonormal basis containing k1−δ roughly Gaussian beams with roughly ||φk

γj
||44 ≃

√
k

and with δ < 1
2 . One would then complete it with an arbitrary orthonormal basis of the

ortho-complement of the span. It would be interesting to see how far separated the γj
would need to be so that Gram-Schmidt would not destroy the bounds ||φk

γj
||44 ≃

√
k too

much.
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