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Quantum-noise quenching in quantum tweezers
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The efficiency of extracting single atoms or molecules from an ultracold bosonic reservoir is theo-
retically investigated for a protocol based on lasers, coupling the hyperfine state in which the atoms
form a condensate to another stable state, in which the atom experiences a tight potential in the
regime of collisional blockade, the quantum tweezers. The transfer efficiency into the single-atom
ground state of the tight trap is fundamentally limited by the collective modes of the condensate,
which are thermally and dynamically excited and constitute the ultimate noise sources. This quan-
tum noise can be quenched for sufficiently long laser pulses, thereby achieving high efficiencies, and
showing that this protocol can be applied for quantum information processing based on tweezer
traps for neutral atoms.

PACS numbers:

Optical tweezers hold and manipulate microparticles,
from molecules to living cells [1–3]. The concept on which
they are based find applications down to the level of sin-
gle atoms [4, 5, 7]. Indeed, the progress in the mechanical
manipulation of atoms by means of lasers has allowed,
amongst others, to control the position and transport of
cold particles loaded in dispersive potentials [5–8]. Such
control is at the basis of several protocols for quantum
information processing with neutral atoms [9–12]. In this
context a relevant issue is the initialization of the quan-
tum register, namely, their preparation in target quan-
tum states of the single atom trap, the quantum tweezers.

FIG. 1: (Color online) An atom is transferred from a Bose-
Einstein condensate (prepared in the electronic state |b〉) to
the ground state of a tweezer trap (realized when the atom
is in state |a〉) by a Raman transition coherently coupling
the two states. The protocol is based on spectrally resolving
the one-atom ground states of the tweezer trap, which is in
the collisional blockade regime [16]. The efficiency of the ex-
traction protocol can be enhanced by quenching the quantum
noise due to the condensate excitations.

Proposals for extracting atoms on demand from a
quantum reservoir are based either on tunneling and/or
dynamical modification of the trapping potential [4, 13–
15], or on lasers. In the latter case, transfer of a single

atom from a condensate into the ground state of a tweezer
trap is achieved by coupling two internal atomic states
with different spin-dependent potentials [16–19]. The ba-
sic idea is that the ground state of the tweezers trap can
be spectrally resolved in the collisional blockade regime,
so that the single atom ground state can be coupled on
resonance with the ultracold reservoir, while all other
states of the quantum tweezers are set significantly out
of resonance. This condition however cannot be realized
for the collective excitations of the reservoir, the Bose-
Einstein condensate. These excitations are present at
finite temperature and non-vanishing interactions. They
are also created by the dynamics of the extraction pro-
cess and the collisions between the atom in the tweez-
ers trap and the condensate atoms. They are hence a
source of quantum noise, which is inherently due to mat-
ter wave fluctuations and which is expected to reduce the
efficiency of the protocol.
In this Letter we show that quantum noise due to

matter wave fluctuations can be quenched in quantum
tweezers for accessible experimental parameters, thereby
reaching high fidelities for quantum state preparation of
the tweezers. Quenching of noise is achieved by means of
a destructive interference between dynamics of different
physical origin. Our findings are in agreement with and
generalize the predictions in Ref. [18], which have been
derived under specific assumptions, and show interesting
analogies with quantum noise quenching in quantum op-
tical systems, such as the correlated emission laser [20].
The setup we consider is sketched in Fig. 1. Here,

a coherent Raman transition couples two internal,
stable states of the atoms, |b〉 and |a〉, in which the
atoms experience a shallow and a steep confining
potential, respectively. Transitions between the two
states hence allow for switching between the two con-
finements. The atoms are identical bosons of mass M
and form a Bose-Einstein condensate in state |b〉, i.e.,
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the quantum reservoir. In absence of perturbations
their dynamics is described by Hamiltonian Hb =
∫

drψ†
b(r)

[

− ~
2

2M∇2 + Vb(r) + (gb/2)ψ
†
b(r)ψb(r)

]

ψb(r),

with Vb(r) the potential, ψb and ψ†
b the bosonic field

operators annihilating and creating an atom in state
|b〉 at position r, and gb = 4π~2ab/M the interaction
strength of two-body, s-wave collisions with scattering
length ab. A radiation pulse couples state |b〉 to |a〉, in
which the atomic center of mass is confined by the steep
potential Va(r) in the regime of collisional blockade, i.e.,
the quantum tweezers. We denote by ψa(r) and φa(r)
the field operator and wave function of the atom in
the ground state of the tweezer trap, here assumed to
be harmonic. The pulse is a standing-wave with wave
vector k and is homogeneous over the volume of the
tweezers. It has duration τ , characteristic frequency
ωL and maximum value of the Rabi frequency Ω0. The
Hamiltonian, describing the dynamics due to atom-light
coupling, reads Hint(t) = Hr(t) +Hoff(t) +Hc, where

Hr(t) =
~Ω0

2
f(t)

∫

dr cos(k · r)ψ†
a(r)ψb(r)e

−iωLt +H.c.

(1)
is the Hamiltonian for the resonant coupling between
the condensate and the single-atom ground state in the
tweezers, with f(t) the temporal shape of the pulse, here
assumed to be a step function, while Hoff(t) includes
the coupling to all other bound states of the tweezers,

and Hc = (gab/2)
∫

drψ†
b(r)ψ

†
a(r)ψa(r)ψb(r) describes s-

wave collisions with strength gab between atoms in |b〉
and |a〉. In the regime of collisional blockade the fre-
quency ωgap ∼ (ga/2~)

∫

dr |φa(r)|
4 gives the gap be-

tween the single- and the two-atom ground state in the
tweezers, with ga the strength of interparticle collisions
in |a〉. For a harmonic potential Va(r) with frequen-
cies of the order of hundreds of KHz till MHz, ωgap can
reach the order of several to hundreds KHz, and the gap
can be spectrally resolved [4, 16–18]. In this regime
the laser resonantly couples the condensate with the
single-atom ground state of the tweezers with strength
Ωeff = Ω0

∫

dr cos(k · r)φa(r)φb(r), while the dynamics
due to Hoff can be neglected. This requires ωgapτ ≫ 1
and Ωeff ≪ ωgap. Correspondingly, the Hilbert space of
the tweezers is reduced to the states |0〉a and |1〉a, i.e., no
atoms and one atom in the tweezers ground state, respec-
tively. It is convenient to define the operators σ = |0〉a〈1|,
such that ψa(r) = φa(r)σ.
We now focus on the effect of the condensate excita-

tions over the efficiency of the extraction dynamics. In
the following we assume that the probability of populat-
ing non-condensed states during the extraction process is
small. For sufficiently low temperature the field operator
for the atoms in the condensate can be decomposed into
the sum

ψb(r) = φb(r) + δψb(r) , (2)

where φb(r) is the macroscopic wave function of
the condensate, satisfying the Gross-Pitaevskii equa-

tion
(

−~
2∇2

2M + Vb(r) + gb|φb|
2
)

φb(r) = µφb(r) with

µ the chemical potential. Operator δψb(r) repre-
sents the quantum fluctuations about the mean value,
and in the Bogoliubov expansion reads δψb(r) =
∑

q

[

uq(r)bq − v∗
q
(r)b†

q

]

, with bq and b†
q

the annihila-
tion and creation operators, respectively, of a quasipar-
ticle with frequency ωq, and uq(r) and vq(r) the corre-
sponding wave functions, such that the Hamiltonian for
the atoms in state |b〉 reads Hb ≃ ~

∑

q
ωq b

†
q
bq . The

total system dynamics is thus mapped to a spin-boson
model [18, 21], where the bosonic bath are the Bogoli-
ubov excitations of the condensate and the spin is com-
posed by the tweezers states |0〉a and |1〉a, eigenstates of
the Pauli matrix σz . Using Eq. (2) into Eq. (1), the cou-
pling between condensate and ground state of the tweez-
ers is given by Hamiltonian Hs = ~Ωefff(t)σx/2, while
the coupling involving the Bogoliubov excitations, which
emerges from the corresponding terms in Hr +Hc, reads

Hsb =
~

2

∑

q

(αx,q(t)σx + iαyq(t)σy + 2αzqσz) bq +H.c.(3)

Here, the first two terms on the right hand side originate
from the coupling of the pseudospin to the bosonic bath
via the laser, with coupling strengths

αxq(t) =
Ω0

2
f(t)

∫

dx cos(k · x)φa(x) [uq(x)− vq(x)](4)

αyq(t) =
Ω0

2
f(t)

∫

dx cos(k · x)φa(x) [uq(x) + vq(x)](5)

while the third term is due to collisions between the con-
densate trap and the tweezers,

αzq =
gab
2~

∫

dx |φa(x)|
2
φb(x) [uq(x) − vq(x)] . (6)

These two kinds of perturbation couple the effective spin
with the condensate excitations and may interfere [18].
We evaluate now the fidelity of preparing the tweezers

in a target state, which we denote by |θ〉a = cos θ|0〉a −
i sin θ|1〉a, assuming that initially the tweezers trap is
empty and all atoms are in state |b〉 at finite tempera-
ture T . The density matrix of tweezers and condensate
excitations at t = 0 reads ρ(0) = |0〉a 〈0| ⊗ ρB, with
ρB = e−Hb/KBT /Z and Z = Tr

{

e−Hb/KBT
}

. The fi-
delity can be cast in the form

P (θ, τ) = Tr{|θ〉〈θ|e−iHeffτ/~ρ(0)eiHeffτ/~}

= cos2 (θ − Ωeffτ/2)− g(θ, τ) (7)

where Heff = Hs + Hb + Hsb and g(θ, τ) is due to the
Bogoliubov modes. In second order in the coupling Hsb,
maximum transfer efficiency is achieved setting τ = τ0 ≡
2θ/Ωeff , namely, to the value at which perfect transfer
is observed in the ideal dynamics. With this choice, the
transfer efficiency reads P (θ, τ0) = 1− g(θ, τ0), where

g(θ, τ0) = π2
∑

q

{A1q cos θ (8)

+(2nq + 1) [A2q cos 2θ +A3q +A4q]} > 0 ,
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with n̄q = Tr
{

b†
q
bqρB

}

the mean thermal phonon num-
ber of the mode ωq. The other coefficients take the form

A1q = −αxqδ
(τ0) (ωq)

[

α−qδ
(τ0)

(

ω−
q

)

+ α+qδ
(τ0)

(

ω+
q

)

]

,

A2q =
(α+qα−q

2

)

δ(τ0)
(

ω−
q

)

δ(τ0)
(

ω+
q

)

,

A3q =
1

4

[

(

α−qδ
(τ0)

(

ω−
q

)

)2

+
(

α+qδ
(τ0)

(

ω+
q

)

)2
]

,

A4q = α2
xqδ

(τ0) (ωq)
2
,

with δ(τ) (x) = sin (xτ/2)/ (πx), α±q = αyq ± 2αzq, and
ω±
q
= ωq ±Ωeff . Rewriting Eq. (8) as a function of these

latter coefficients explicitly shows that the quantum noise
due to the laser can interfere with the quantum noise
due to interspecies collisions at sufficiently long times,
for which one can spectrally resolve the frequencies ω±

q
.

We now focus on the parameter regime in which quan-
tum noise can be quenched, and study the dependence
of the interference condition on the temperature T and
on the “Bloch” angle θ of the target state. At zero tem-
perature (nq = 0) the condition on the parameters, for
which function (8) is minimal, depends on the angle θ.
Maximal quantum noise quenching for the target state
|θ〉a = ±|1〉a requires that condition

ωqαyq − 2Ωeffαzq ∼ 0 (9)

is fulfilled, for which gmin(π/2, τ0) = π2
∑

q
A4q. Using

Eqs. (4)-(6) in Eq. (9), one finds that the parameter Ω0

simplifies, such that the interference condition just de-
pends on the trap, density, and interparticle interaction
strength. Condition (9) can be further simplified in the
limit in which only long-wavelength modes of the conden-
sate are involved, and reduces to the expression gab = gb,
which agrees with the result obtained in Ref. [18] and
which was derived for a low energy model. For other
target states one finds different conditions on the param-
eters, and also lower efficiencies: It results, in fact, that
for θ 6= mπ/2, it is not possible to disentangle the conden-
sate excitations from the tweezer state. In particular, it
turns out that the target state at θ = (2m+ 1)π/4, with
m = 0, 1, 2, 3, corresponding to the most non-classical
state, equal superposition of one and zero atom in the
tweezers, is most sensitive to quantum noise. The depen-
dence of the fidelity on the target state θ is even more
enhanced at finite temperatures: In this case the most ef-
ficient procedure is the preparation of state |θ〉a = ±|1〉a,
for which the quenching condition is still given by Eq. (9),
and gmin(π/2, τ0) = π2

∑

q
(2nq+1)A4q. We remark that

one general physical consequence is that maximal coher-
ence can be achieved provided that the noise due to col-
lision between condensate and tweezers is significantly
different from zero: This noise source can be tuned by
means of a Feshbach resonance so to interfere destruc-
tively with the laser excitation. We also note that the
function gmin(π/2, τ0) scales with the coupling strength
Ω2

0, as it originates from the excitations due to the laser
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FIG. 2: Efficiency of atomic extraction P from a quasi one-
dimensional Bose-Einstein condensate as a function of the
interspecies collision strength in 1D, g′ab, in units of g′b (in
1D) when the target state is (a) |1〉

a
(θ = π/2) and (b)

(|0〉 − i |1〉)a/
√
2 (θ = π/4). The curves are found by sum-

ming over 500 Bogoliubov modes in Eq. (7) for a condensate
of 87Rb atoms in a harmonic trap Vb(r) with axial and radial
frequencies ωb = 2π × 200 Hz and ω⊥ = 2π × 0.3 MHz, den-
sity at the center nL = 108m−1, and temperature T = 0 (solid
line), T = 50 nK (dash-dotted line), T = 100nK (dotted line
in (a)). Here, ωa = 2π × 1 MHz, ωgap ∼ 2π × 0.2 MHz and
Ωeff ∼ 2π × 0.45 kHz. The dashed line gives the efficiency
when g′ab = 0 and T = 0.
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FIG. 3: (a) Efficiency of preparing the tweezers in state |1〉
a

as a function of Ωeff (for the corresponding value of τ = τ0)
when the condensate is confined by a spherical harmonic trap
with ωb = 2π × 200 Hz and density at the trap center n =
2×1021m−3 (3×106 atoms). The curves are found by setting
gab = gb and T = 0 (solid line), and T = 300 nK (dash-dotted

line), taking ωj,ℓ =
√

2j2 + 2jℓ + 3j + ℓ for the condensate
modes [22, 24]: the gray lines are a sum over j ∈ [1, 500] and
ℓ = 0, the black lines take into account also the modes with
ℓ = 2 (modes with ℓ odd do not couple to the tweezer ground
state). The other parameters are as in Fig. 2. The subplots
show P at (b) Ωeff = 2π × 1.7 kHz and (c) Ωeff = 2π × 17
kHz as a function of the interparticle collision strength gab in
units of gb.

coupling which do not interfere with interspecies colli-
sions. This implies that higher efficiency are attained for
lower values of Ω0, and hence for longer transfer pulses.

We now provide some examples with experimental
numbers, and consider a condensate of 87Rb atoms in
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the Thomas-Fermi regime. When evaluating the fideli-
ties we consider only long-wavelength excitations of the
condensate, for which the explicit dispersion relations are
known for several trap geometries [22]. Figure 2(a) dis-
plays the transfer efficiency, Eq. (7), for θ = π/2 when
the reservoir is a quasi-one dimensional condensate, real-
ized in a highly anisotropic trap. In this case the mean
field in Eq. (2) is not strictly valid, but will be used here
in order to compare the transfer efficiency for reservoirs
of different dimensions. The collisional strength in the
condensate is g′b = gbMω⊥/2π~, with ω⊥ the transverse
trap frequency [22, 23]. The interspecies strength g′ab
also accounts for the condensate geometry. One clearly
observes a maximum at g′b ∼ g′ab, where the effects of
quantum noise are expected to interfere destructively,
and which lies well above the efficiency one would ob-
tain when g′ab = 0. By increasing the temperature the
condition on the parameters becomes more sensitive to
parameter fluctuations. The transfer efficiency is lower
when the target state is at θ = π/4 (Fig. 2(b)). In this
latter case quantum noise quenching improves by a little
amount the efficiency of transfer one would find setting
g′ab = 0. Figure 3(a) displays the efficiency of preparing
the state |1〉a by coupling the tweezers with a conden-
sate in a spherical harmonic trap, when the condition
gab = gb is met, illustrating that quantum noise quench-
ing is optimal when the laser pulse is sufficiently long, so
to minimize the effect of the excitations created by the
laser coupling which is out of phase with the interspecies
collisions. The subplots (b) and (c) highlight the con-
dition on the physical parameters in order to maximize
the transfer efficiency, showing that the contribution of
excitations at higher angular momentum decreases the

transfer efficiency. This latter coupling can be minimized
by an accurate design of the setup.

To conclude, the condensate excitations limit the effi-
ciency of preparing quantum tweezers by loading atoms
from a condensate, nevertheless their effect can be
quenched by means of an interference process emerging
from the dynamics induced by laser and particle-particle
collisions. This requires sufficiently long transfer pulses,
and tuning the various parameters, so to maximize the
interference and achieving high fidelities. These con-
cepts can be extended to protocols for creating entangled
atoms in two distant tweezers traps coupled to the same
condensate, developing on proposals in Refs. [25, 26]. In a
more general framework, the dynamics here reported are
another example of quantum reservoir engineering [27],
where quantum noise may compete in a counterintuitive
way in establishing quantum coherence in a physical sys-
tem. An interesting analogy is here found with the cor-
related emission laser, where vacuum fluctuations at two
different emission frequencies of an atom interfere lock-
ing the phase difference between the electric field am-
plitudes [20]. These phenomena are robust against pa-
rameters fluctuations and set the basis to novel paths to
quantum technologies.

We acknowledge discussions with J. Anglin, C. Foot,
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