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Non-trivial Compositions of Differential Operations

and Gateaux Directional Derivative
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Abstract. This paper is devoted to the enumeration of non-trivial compositions

of higher order of differential operations and Gateaux directional derivative in Rn.

We present recurrences for counting non-trivial compositions of higher order.
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1. Non-trivial compositions of differential operations and

Gateaux directional derivative of the space R3

In the three-dimensional Euclidean space R3 we consider following sets

A0 = {f :R3−→R | f ∈C∞(R3)} and A1 = {~f :R3−→R3 | ~f ∈ ~C∞(R3)}.

Gradient, curl, divergence and Gateaux directional derivative in direction ~e,
for a unit vector ~e = (e1, e2, e3) ∈ R3, are defined in terms of partial derivative
operators as follows
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Research is partially supported by the MNTRS, Serbia, Grant No.144020, No.174032.

1

http://arxiv.org/abs/1011.0189v1


grad f = ∇1 f = ∂f

∂x1

~i+ ∂f

∂x2

~j+ ∂f

∂x3

~k, ∇1 : A0 −→ A1,

curl ~f = ∇2
~f =

(
∂f3
∂x2

− ∂f2
∂x3

)
~i+

(
∂f1
∂x3

− ∂f3
∂x1

)
~j+

(
∂f2
∂x1

− ∂f1
∂x2

)
~k, ∇2 : A1 −→ A1,

div ~f = ∇3
~f = ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
, ∇3 : A1 −→ A0,

dir~e f = ∇0 f = ∇1 f · ~e = ∂f

∂x1
e1+

∂f

∂x2
e2+

∂f

∂x3
e3, ∇0 : A0 −→ A0.

Let A3 = {∇1,∇2,∇3} and B3 = {∇0,∇1,∇2,∇3}. The number of compo-
sitions of the kth order over the set A3 is f(k) = Fk+3, where Fk is the kth

Fibonacci number (see [2] for more details). A composition of differential
operations that is not 0 or ~0 is called non-trivial. The number of non-trivial
compositions of the kth order over the set A3 is g(k) = 3 (see for instance
[1]). In paper [4], it is shown that the number of compositions of the kth

order over the set B3 is fG(k) = 2k+1 . According to the above results,
it is natural to try to calculate the number of non-trivial compositions of
differential operations from the set B3. Straightforward verification shows
that all compositions of the second order over B3 are

dir~e dir~e f = ∇0 ◦ ∇0 f = ∇1

(
∇1f · ~e

)
· ~e,

grad dir~e f = ∇1 ◦ ∇0 f = ∇1

(
∇1f · ~e

)
,

∆f = div grad f = ∇3 ◦ ∇1 f,

curl curl ~f = ∇2 ◦ ∇2
~f,

dir~e div
~f = ∇0 ◦ ∇3

~f =
(
∇1 ◦ ∇3

~f
)
· ~e,

grad div ~f = ∇1 ◦ ∇3
~f,

curl grad f = ∇2 ◦ ∇1 f = ~0,

div curl ~f = ∇3 ◦ ∇2
~f = 0,

and that only the last two are trivial. This fact leads us to use the following
procedure for determining the number of non-trivial composition over the set
B3. Let us define a binary relation σ on the set B3 as follows: ∇i σ∇j iff the
composition ∇j ◦ ∇i is non-trivial.
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Relation σ induces Cayley table

σ ∇0 ∇1 ∇2 ∇3

∇0 1 1 0 0
∇1 0 0 0 1
∇2 0 0 1 0
∇3 1 1 0 0

For convenience, we extend set B3 with nowhere-defined function ∇−1, whose
domain and range are empty sets, and establish ∇−1 σ∇i for i = 0, 1, 2, 3.
Thus, graph G of the relation σ is rooted tree with the root ∇−1

q
∇
−1 gG(0) = 1

   
   

   
  

q

∇0 ��
��
�

q

∇1 HH
HH

H

q

∇2 ```
```

```
``

q

∇3 gG(1) = 4

�
��

q

∇0 @
@@

q

∇1
q

∇3
q

∇2 �
��

q

∇0 @
@@

q

∇1
gG(2) = 6

��AA ��AA ��AA gG(3) = 9

Fig. 1

Here we would like to point out that the child of ∇i is ∇j if composition
∇j ◦ ∇i is non-trivial. For any non-trivial composition ∇ik ◦ . . . ◦ ∇i1 there
is a unique path in the tree (Fig. 1), such that the level of vertex ∇ij is j,
1 ≤ j ≤ k. Let gG(k) be the number of non-trivial compositions of the
kth order of functions from B3 and let gG

i
(k) be the number of non-trivial

compositions of the kth order starting with ∇i. Then we have

gG(k) = gG
0(k) + gG

1(k) + gG
2(k) + gG

3(k).

According to the graph G we obtain the equalities

gG
0(k) = gG

0(k − 1) + gG
1(k − 1), gG

1(k) = gG
3(k − 1),

gG
2(k) = gG

2(k − 1), gG
3(k) = gG

0(k − 1) + gG
1(k − 1).

Since the only child of ∇2 is ∇2, we can deduce

gG
2(k)=g

G
2(k − 1)=gG

2(k − 2)= . . .=gG
2(1)=1.
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Putting things together we obtain the recurrence for gG(k):

gG(k)=gG
0(k) + gG

1(k) + gG
2(k) + gG

3(k)

=
(
gG
0(k−1)+gG

1(k−1)
)
+gG

3(k−1)+gG
2(k−1)+

(
gG
0(k−1)+gG

1(k−1)
)

=gG(k−1)+gG
0(k−1)+gG

1(k−1)

=gG(k−1)+
(
gG
0(k−2)+gG

1(k−2)
)
+gG

3(k−2)+gG
2(k−2)−g2(k−2)

=gG(k−1)+gG(k−2)−1.

Substituting t(k) = gG(k) − 1 into previous formula we obtain recurrence
t(k) = t(k − 1) + t(k − 2). With initial conditions gG(1) = 4,gG(2) = 6,
respectively t(1) = 3,t(2) = 5, we conclude that gG(k) = Fk+3 + 1.

2. Non-trivial compositions of differential operations and

Gateaux directional derivative of the space Rn

We start this section by recalling some definitions of multivariable calculus.

Let Rn denote the n-dimensional Euclidean space and consider set of smooth
functions A0 = {f : Rn −→ R | f ∈ C∞(Rn)}. The set of all differential k-
forms on Rn is a free A0-module of rank

(
n

k

)
with the standard basis {dxI =

dxi1 . . . dxik | 1 ≤ i1 < . . . < ik ≤ n}, denoted Ωk(Rn). Differential k-form
ω can be written uniquely as ω =

∑
I∈I(k,n) ωIdxI , where ωI ∈ A0 and

I(k, n) is the set of multi-indices I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n.
The complement of the multi-index I is the multi-index J = (j1, . . . , jn−k) ∈
I(n − k, n), 1≤ j1<. . .<jn−k≤n, where components jp are elements of the
set {1, . . . , n}\{i1, . . . , ik}. We have dxIdxJ = σ(I)dx1 . . . dxn, where σ(I) is
the signature of the permutation (i1, . . . , ik, j1, . . . , jn−k).
Note that σ(J) = (−1)k(n−k)σ(I). With the notions mentioned above we
define ⋆k(dxI) = σ(I)dxJ . The map ⋆k : Ωk(Rn) −→ Ωn−k(Rn) defined by
⋆k(ω) =

∑
I∈I(k,n) ωI ⋆k (dxI) is Hodge star operator and it provides natural

isomorphism between Ωk(Rn) and Ωn−k(Rn). The Hodge star operator twice
applied to a differential k-form yields ⋆n−k(⋆kω) = (−1)k(n−k)ω. So for the
inverse of the operator ⋆k holds ⋆k

−1(ψ) = (−1)k(n−k) ⋆n−k (ψ), where
ψ ∈ Ωn−k(Rn).
A differential 0-form is a function f(x1, x2, . . . , xn) ∈ A0. We define df to
be the differential 1-form df =

∑n

i=1
∂f

∂xi
dxi. Given a differential k-form
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∑
I∈I(k,n) ωIdxI , the exterior derivative dkω is differential (k+1)-form dkω =∑
I∈I(k,n) dωIdxI . The exterior derivative dk is a linear map from k-forms to

(k + 1)-forms which obeys Leibnitz rule: If ω is a k-form and ψ is a l-form,
then dk+l(ϕψ) = dkω ψ + (−1)kϕdlψ. The exterior derivative has a property
that dk+1(dkω) = 0 for any differential k-form ω.
Consider sets of functions

Ak = {~f :Rn−→R(
n

k) | ~f ∈ ~C∞(Rn)},

0 ≤ k ≤ m, m = [n/2]. Let pk : Ωk(Rn) → Ak be presentation of differential
forms in coordinate notation. Let us define functions ϕi (0 ≤ i ≤ m) and
ϕn−j (0 ≤ j < n−m) as follows

ϕi = pi : Ω
i(Rn) → Ai

and
ϕn−j = pj ⋆

−1
j : Ωn−j(Rn) → Aj .

Aj Ωj(Rn)

Ωn−j(Rn)

-

?
@
@
@R

pj
−1

⋆j

Then the combination of the Hodge star operator and the exterior deriva-
tive generates differential operations ∇k = ϕk dk−1 ϕ

−1
k−1, 1 ≤ k ≤ n, in

n-dimensional space Rn (see [3]).

An (n=2m):

∇1=p1 d0 p
−1
0 :A0→A1

∇2=p2 d1 p
−1
1 :A1→A2

...
∇i=pi di−1 p

−1
i−1 :Ai−1→Ai

...
∇m=pm dm−1 p

−1
m−1 :Am−1→Am

∇m+1=pm−1 ⋆
−1
m−1 dm p−1

m :Am→Am−1

∇m+2=pm−2 ⋆
−1
m−2 dm+1 ⋆m−1 p

−1
m−1 :Am−1→Am−2

...
∇n−j=pj ⋆

−1
j dn−(j+1) ⋆j+1 p

−1
j+1 :Aj+1→Aj

...
∇n−1=p1 ⋆

−1
1 dn−2 ⋆2 p

−1
2 :A2→A1

∇n=p0 ⋆
−1
0 dn−1 ⋆1 p

−1
1 :A1→A0,

An (n=2m+ 1):

∇1=p1 d0 p
−1
0 :A0→A1

∇2=p2 d1 p
−1
1 :A1→A2

...
∇i=pi di−1 p

−1
i−1 :Ai−1→Ai

...
∇m=pm dm−1 p

−1
m−1 :Am−1→Am

∇m+1=pm ⋆−1
m dm p−1

m :Am→Am

∇m+2=pm−1 ⋆
−1
m−1 dm+1 ⋆m p−1

m :Am→Am−1

∇m+3=pm−2 ⋆
−1
m−2 dm+2 ⋆m−1 p

−1
m−1 :Am−1→Am−2

...
∇n−j=pj ⋆

−1
j dn−(j+1) ⋆j+1 p

−1
j+1 :Aj+1→Aj

...
∇n−1=p1 ⋆

−1
1 dn−2 ⋆2 p

−1
2 :A2→A1

∇n=p0 ⋆
−1
0 dn−1 ⋆1 p

−1
1 :A1→A0.

List of differential operations in Rn
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Formulae for the number of compositions of differential operations from the
set An and corresponding recurrences are given by Malešević in [2].
The following theorem provides a natural characterization of the number of
non-trivial compositions of differential operations from the set An . For the
proof we refer reader to [2].

Theorem 2.1. All non-trivial compositions of differential operations from

the set An are given in the following form

(∇i◦)∇n+1−i ◦ ∇i ◦ · · · ◦ ∇n+1−i ◦ ∇i

where 2i, 2(i − 1) 6= n, 1 ≤ i ≤ n. Term in bracket is included in if the

number of differential operations is odd and left out otherwise.

Theorem 2.2. Let g(k) be the number of non-trivial compositions of the kth

order of differential operations from the set An. Then we have

g(k) =






n : 2 ∤ n,
n : 2 |n , k = 1,

n− 1 : 2 |n , k = 2,
n− 2 : 2 |n , k > 2.

The Hodge dual to the exterior derivative dk : Ωk(Rn) −→ Ωk+1(Rn) is
codifferential δk−1, a linear map δk−1 : Ωk(Rn) −→ Ωk−1(Rn), which is a
generalization of the divergence, defined by

δk−1 = (−1)n(k−1)+1 ⋆n−(k−1) dn−k⋆k = (−1)k ⋆−1
k−1 dn−k ⋆k .

Note that ∇n−j = (−1)j+1pj δj p
−1
j+1, for 0 ≤ j < n−m−1. The codifferential

can be coupled with the exterior derivative to construct the Hodge Laplacian,
also known as the Laplace-de Rham operator, ∆k : Ωk(Rn) −→ Ωk(Rn), a
harmonic generalization of Laplace differential operator, given by ∆0 = δ0d0
and ∆k = δkdk + dk−1δk−1, for 1 ≤ k ≤ m. The operator ∆0 is actually
the negative of the Laplace-Beltrami (scalar) operator. A k-form ω is called

harmonic if ∆k(ω) = 0. We say that ~f ∈ Ak is a harmonic function if

ω = pk
−1(~f) is harmonic k-form. If k ≥ 1 harmonic function ~f is also called

harmonic field. The best general reference here is [5].

Theorem 2.3. Let ~f ∈ Ak, 0 ≤ k ≤ m, be a harmonic function. Then all

compositions of order higher than two of differential operations from the set

An, n = 2m+ 1, acting on ~f are trivial.
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Proof. The proof will be divided into three parts. Let us first examine case
k = 0. Since f ∈ A0 is harmonic function we have ∆0f = δ0d0f = 0, hence
∇n ◦ ∇1f = 0 and finally (∇1◦)∇n ◦ ∇1 ◦ · · · ◦ ∇n ◦ ∇1f = 0. So we have
proved that all compositions acting on harmonic function f are trivial.
Our next concern will be the behavior of harmonic fields ~f ∈ Ak, 1 ≤ k < m.
According to Theorem 2.1 we only need to show that compositions of the
following form

(∇k+1◦)∇n−k ◦ ∇k+1 ◦ · · · ◦ ∇n−k ◦ ∇k+1
~f,

(∇n−(k−1)◦)∇k ◦ ∇n−(k−1) ◦ · · · ◦ ∇k ◦ ∇n−(k−1)
~f

are trivial. Since ~f is harmonic field, we have (δkdk + dk−1δk−1)(pk
−1 ~f) = ~0.

From this we see that ∇n−k ◦∇k+1
~f = ∇k ◦∇n−(k−1)

~f , which implies ∇k+1 ◦

(∇n−k ◦ ∇k+1)~f = ∇k+1 ◦ (∇k ◦ ∇n−(k−1))~f = (∇k+1 ◦ ∇k) ◦ ∇n−(k−1)
~f . The

previous composition is trivial, because ∇k+1◦∇k ~g = pk+1 dk dk−1p
−1
k−1 ~g = 0,

for any function ~g ∈ Ak−1. In the same manner we can see that composition
∇n−(k−1)◦∇k◦∇n−(k−1)

~f is trivial. Therefore all compositions of order higher

than two acting on harmonic field ~f are trivial.
It remains to prove the claim for k = m. Observe that ∇m+1 ◦ ∇m+1 =
pm ⋆−1

m dm⋆
−1
m dm p

−1
m = pm ⋆−1

m dm⋆m+1dm p
−1
m = (−1)m+1 pm δm dm p

−1
m . The

equality ∆m
~f = δmdm ~f +dm−1δm−1

~f = ~0 yields ∇m+1 ◦∇m+1 = ∇m ◦∇m+2.
Similarly, we can show that all compositions of order higher than two acting
on harmonic field ~f ∈ Am are trivial. �

The same conclusion can be drawn for compositions over the set An, n = 2m,
which act on a harmonic function ~f ∈ Ak, 0 ≤ k < m− 1.

Remark. Some analogous problems can be considered also in Discrete Ex-
terior Calculus [6] (see also [7, 8]) and Combinatorial Hodge Theory [9].

Let f ∈ A0 be a scalar function and ~e = (e1, . . . , en) ∈ Rn be a unit vector.
The Gateaux directional derivative in direction ~e is defined by

dir~e f = ∇0f =
n∑

k=1

∂f

∂xk
ek : A0 −→ A0.

Let us extend the set of differential operations An = {∇1,. . . ,∇n} with
Gateaux directional derivative to the set Bn = An∪{∇0} = {∇0,∇1, . . . ,∇n}.
Recurrences for counting compositions of differential operations from the set
Bn can be found in [4]. For an odd n we can obtain a simpler recurrence
fG(k) = 2fG(k − 1), which enable us to find easily explicit formula for the
number of compositions of the kth order over the set Bn f

G(k) = 2k−1(n+1).
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The number of non-trivial compositions of differential operations from the
set Bn is determined by the binary relation ν, defined by:

∇iν∇j iff (i=0∧ j=0)∨ (i=0∧ j=1)∨ (i=n∧ j=0)∨ (i+j=n+1∧ 2i 6= n).

Applying Theorem 2.2 to cases i = 2, . . . , n−1 we conclude that the number
of non-trivial compositions of the kth order starting with ∇2,. . . , ∇n−1 can
be express by formula

j(k) = g(k)− 2 =





n− 2 : 2 ∤ n,
n− 2 : 2 |n , k = 1,
n− 3 : 2 |n , k = 2,
n− 4 : 2 |n , k > 2.

Let gG(k) be the number of non-trivial compositions of the kth order of
operations from the set Bn. Let gG

0(k) , g
G
1(k) and gG

n
(k) be the numbers

of non-trivial the kth order compositions starting with ∇0 , ∇1 and ∇n ,
respectively. Then we have

gG(k) = gG
0(k) + gG

1(k) + j(k) + gG
n
(k).

Denote g̃
G
(k)=gG

0(k)+g
G
1(k)+g

G
n
(k). Hence, the following recurrences are true

gG
0(k) = gG

0(k−1)+gG
1(k−1),gG

1(k) = gG
n
(k−1),gG

n
(k) = gG

0(k−1)+gG
1(k−1).

Thus, the recurrence for g̃
G
(k) is of the form

g̃
G
(k) = gG

0(k) + gG
1(k) + gG

n
(k)

=
(
gG
0(k − 1) + gG

1(k − 1)
)
+ gG

n
(k − 1) +

(
gG
0(k − 1) + gG

1(k − 1)
)

= g̃
G
(k − 1) + gG

0(k − 1) + gG
1(k − 1)

= g̃
G
(k − 1) +

(
gG
0(k − 2) + gG

1(k − 2)
)
+ gG

n
(k − 2)

= g̃
G
(k − 1) + g̃

G
(k − 2).

With initial conditions g̃
G
(1) = 3, g̃

G
(2) = 5 we deduce g̃

G
(k) = Fk+3.

Therefore, we have proved following theorem.

Theorem 2.4. The number of non-trivial compositions of the kth order over

the set Bn is

gG(k) = Fk+3 + j(k) =





Fk+3 + n− 2 : 2 6 |n,
n + 1 : 2 |n , k = 1,
n + 2 : 2 |n , k = 2,

Fk+3 + n− 4 : 2 |n , k > 2.
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The values of function gG(k) are given in [10] as the following sequences
A001611 (n = 3), A000045 (n = 4), A157726 (n = 5), A157725 (n = 6),
A157729 (n = 7), A157727 (n = 8).
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