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Electron and nuclear spins have been employed in many of the early demonstrations of quantum technology
(QT). However applications in real world QT are limited by the difficulty of measuring single spins. Here we
show that it is possible to rapidly and robustly amplify a spin state using a lattice of ancillary spins. The model
we employ corresponds to an extremely simple experimental system: a homogenous Ising-coupled spin lattice in
one, two or three dimensions, driven by a continuous microwave field. We establish that the process can operate
at finite temperature (imperfect initial polarisation) and under the effects of various forms of decoherence.

PACS numbers:

The standard approach to implementing a quantum technol-
ogy is to identify a physical system that can represent a qubit:
it must exhibit two (or more) stable states, it should be ma-
nipulable through external fields and possess a long decoher-
ence time. Provided that the system can controllably interact
with other such systems, then it may be a strong candidate.
Electron and nuclear spins, within suitable molecules or solid
state structures, can meet these requirements. However the
drawback with spin qubits is that they have not been directly
measured through a detection of the magnetic field they pro-
duce. The magnetic moment of a single electron spin is orders
of magnitude too weak to be detected by standard ESR tech-
niques and even the most sensitive magnetometers still fall
short of single spin detection [1] - meanwhile the situation
with nuclear spins is worse still. In a few special systems it
is possible to convert the spin information into another degree
of freedom. For example, a spin-dependent optical transition
allow spin to photon conversion in some crystal defects [2–4],
self-assembled semiconductor quantum dots [5], and trapped
atoms held in a vacuum [6]. Alternatively, spin to charge con-
version is an established technology in lithographic quantum
dots [7]. However, the majority of otherwise promising spin
systems do not have such a convenient property [8] and there-
fore cannot be measured directly.

One suggested solution is to ‘amplify’ a single spin, by us-
ing a set of ancillary spins that are (ideally) initialised to |0〉.
We would look for a transformation of the form

|0〉 |0〉⊗n → |0〉 |0〉⊗n |1〉 |0〉⊗n → |1〉 |1〉⊗n , (1)

the idea being that the n ancillary spins constitute a large
enough set that state of the art magnetic field sensing tech-
nologies can detect them. Note that the transformation need
not be unitary or indeed even coherent: since the intention is
to make a measurement of the primary spin, it is not necessary
to preserve any superposition (that is, we need not limit our-
selves to transformations that take α |0〉 |0〉⊗n + β |1〉 |0〉⊗n
to a cat state like α |0〉⊗n+1

+ β |1〉⊗n+1).
This is a rather broadly defined transformation and there

are a number of ways that one might perform it. Clearly
one would like to find the method that is the least demanding
experimentally. Previous authors have proposed schemes us-

ing a strictly one-dimensional (1D) homogeneous lattice with
continuous global driving [9], and an inhomogeneous three-
dimensional (3D) lattice with alternating timed EM pulses
[10]. The former result has the advantage of simplicity but the
rate at which amplification occurs will inevitably be limited
by the single dimension of the array; moreover such a sys-
tem must be highly vulnerable to imperfect initialisation (i.e.
finite temperature). Here we generalise to a homogeneous
two-dimensional (2D) square lattice, showing that a contin-
uous global EM field can drive an amplification process that
succeeds at finite temperatures (imperfect initialisation of the
ancilla spins) and in the presence of decoherence. By bringing
the global EM field onto resonance with certain transitions, we
are able to create a set of rules that govern locally how spins
propagate over the lattice. We then look at the rate of increase
in the total number of flipped spins as a measure of quality of
the scheme. While our focus is on the 2D case, we are also
able to predict the performance of the amplification protocol
for a homogeneous 3D lattice with continuous driving.

The case of a 1D lattice has been studied in detail by Lee
and Khitrin [9]. Before moving to the 2D spin lattice that will
form the core of the paper, we first recall how to simplify the
description of this (semi-infinite) 1D spin chain, with nearest
neighbour Ising (ZZ) interactions. Under a microwave driving
field of frequency ω, the Hamiltonian is given by

H =

∞∑
i=1

εiσ
i
z + Jiσ

i
zσ

i+1
z + 2Ωiσ

i
x cos(ωt) (2)

εi is the on-site Zeeman energy of spin i, and Ji is the magni-
tude of the coupling between spins i and i+1. Ω describes the
coupling of spin i and the microwave field. In this case, spin
i = 1 is the one whose state is supposed to be amplified. If
we assume that the chain is uniform, such that Ωi = Ω, εi = ε
and Ji = J , then moving into a frame rotating at frequency
ω, making a rotating wave approximation and setting ω = ε
leads to

H =

∞∑
i=1

Jσi
zσ

i+1
z + Ωσi

x. (3)

In order to understand the dynamics of the system, is it in-
structive to explicitly separate all terms that involve a particu-
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lar spin k:

H = J(σk−1
z +σk+1

z )σk
z+Ωσk

x+
∑

i 6={k,k−1}

Ωσi
x+Jσi

zσ
i+1
z +Ωσk−1

x

(4)
Choosing a driving field such that Ω � J means that spin k
will only undergo resonant oscillations when the first term in
Eq. 4 goes to zero - i.e. when the two spins neighbouring spin
k are oriented in opposite directions. In any other configura-
tion the Ising coupling takes the spin k off resonance with the
microwave and no appreciable dynamics are expected.

Let us now define a subset of states S that exist in the spin
chain Hilbert space, |n〉, which have the first n spins of the
chain in state |↑〉 with the rest |↓〉. If the rule we just derived
holds exactly these states define a closed subspace. We may
then write a very simple isolated Hamiltonian for this sub-
space:

HS = Ω

∞∑
n=1

|n〉 〈n+ 1| . (5)

With this simplification of the 1D Hamiltonian in mind,
we progress now to a semi-infinite square spin lattice with
nearest-neighbour ZZ interactions. For this case we have

H =

∞∑
i=1

∞∑
j=1

εσi,j
z +Jσi,j

z σi+1,j
z +Jσi,j

z σi,j+1
z +2Ωσi,j

x cos(ωt).

(6)
By again considering the terms affecting a particular spin in
the main body of the lattice (k(> 1), l(> 1) say) we find for
ω = ε and after moving to a rotating frame and making the
rotating wave approximation:

H = Jσk,l
z (σk+1,l

z + σk,l+1
z + σk−1,l

z + σk,l−1
z ) + ... (7)

where we do not explicitly write out terms not involving spin
(k, l). The microwave is now only resonant for spin (k, l) if it
has two neighbour spins in each orientation. For a spin on the
edge of the lattice there are an odd number of neighbours so
resonance cannot be achieved in this case. However, applying
a second microwave with ω = ε − J allows resonant flips on
the edge if two neighbours are down and one up - and this
second field has no effect on the bulk spins.

The spin to be measured is the corner spin (i = j = 1)
and so would form part of a wider computational apparatus.
We may therefore assume that it is a different species with a
unique resonant frequency. The dynamics of the whole lattice
may then be summarised by three rules (in order of prece-
dence):

1. The corner (test) spin is fixed.

2. An edge spin can flip if it has one of its neighbours up
and two down.

3. A body spin can flip if it has two of its neighbours up
and two down.
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FIG. 1: Partition states arranged into a lattice. Edges represent a
coupling through the Hamiltion of strength Ω. Weights represent the
number of different paths through the lattice to a given state.

We begin by supposing all spins are initialised in the ‘down’
state apart from the test spin, which is located in the upper left
hand corner of our lattice. We can describe this initial state by
choosing two basis elements: |0〉 when the test spin is down,
and |1〉 when the test spin is up. Using our heuristic rules we
can see that these two states do not couple to each other - that
〈0|H |1〉 = 0. In fact |0〉 does not couple to any other state, so
if we start in the |0〉 state no amplification occurs, as desired.

We will now seek to construct a basis for the subspace con-
taining our system evolution, by looking at states connected
by our Hamiltonian. It will be convenient to represent these
states on the nodes of a graph, using the edges to represent
non-zero elements of the Hamiltonian.

Our starting point is the state |1〉, with just the corner spin
‘up’. From this position our rules allow two possibilities: ei-
ther the spin to the right of the corner flips, or the spin below
it flips (see Fig. 1). In each case the magnitude of the transi-
tion matrix element is Ω. As we continue this procedure, we
notice that the states that arise for each excitation number can
be characterised by a non-increasing sequence of integers that
represent the number of ‘up’-spins in each column of the lat-
tice (see Fig. 1). Such sequences can also be used to define
partitions of at integer: ways of splitting an integer up into a
sum of other integers, e.g. 3 = 3 = 2 + 1 = 1 + 1 + 1.
In fact, the states that arise are in 1-to-1 correspondence with
such partitions; we call these states ‘partition states’ and de-
note them with standard partition notation (see Fig. 1). The
graph we have just described is depicted in Fig. 1 is known
as ‘Young’s lattice’ and arises in areas of pure mathematics,
such as the representation theory of the symmetric group, and
the theory of differential posets. We have drawn weights be-
neath each state, recording the number of ways the state can
be constructed. We will now further reduce the dimension of
this basis by eliminating combinations of states which are in-
accessible.
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Starting with |1〉 we see that
〈1|H (α1,1 |ψ1,1〉+ α2 |ψ2〉) = Ω (α1,1 + α2) so |1〉
does not couple to the two-excitation state |ψ1,1〉 − |ψ2〉. We
can eliminate this, leaving a single orthogonal, coupled state
with two excitations: |2〉 := 1√

2
(|ψ1,1〉+ |ψ2〉).

We may continue to build up coupled states with larger ex-
citation numbers, and in fact we find that there is only a sin-
gle coupled state in each case (i.e. we can always eliminate
k − 1 combinations of partition states with k excitations). To
see this, first suppose we have the coupled state with k exci-
tations, which by analogy with the 1D case we write as |k〉.
We can write |k〉 = 1

Nk

∑
i∈P (k) ci |ψi〉, where P (k) is the

set of partitions of the integer k and Nk a normalisation fac-
tor. We want to construct the state |k + 1〉 by eliminating the
k-dimensional subspace with k + 1 excitations, to which |k〉
does not couple.

Let |ψ〉 =
∑

j∈P (k+1) αj |ψj〉 and consider the states |ψ〉
such that

0 = 〈k|H |ψ〉 =
∑

i∈P (k)

∑
j∈P (k+1)

c∗iαj 〈ψi|H |ψj〉

but 〈ψi|H |ψj〉 = Ω if i is a parent of j (a state connect to j,
in the lattice row above it), and 0 otherwise, so

0 = 〈k|H |ψ〉 =
∑

j∈P (k+1)

αj

∑
i∈parents(j)

c∗i .

This is the equation of a hyperplane in |P (k + 1)| dimen-
sions, defining the states that are not coupled to |k〉 through
the Hamiltonian. There is a unique single state orthogonal to
this hyperplane, βj =

∑
i∈parents(j) ci, to which |k〉 couples.

So the only state with k + 1 ‘up’-spins that |k〉 couples has
coefficients proportional to βj . After normalisation, we call
this state |k + 1〉.

Unfortunately there is no easy way to write down the par-
tition states and weights for the nth row of the lattice. Fortu-
nately, for our purposes, we only need to know that the states
|k〉 exist and what the coupling between them is. To find this
coupling, consider

gn−1,n = 〈n|H |n− 1〉

=
1

Nn−1Nn

∑
i∈P (n)

∑
j∈P (n−1)

c∗i cj 〈ψi|H |ψj〉

=
1

Nn−1Nn
Ω
∑

i∈P (n)

c∗i
∑

j∈parents(i)

cj

=
1

Nn−1Nn
Ω
∑

i∈P (n)

|ci|2 = Ω
Nn

Nn−1
(8)

To find the Nn we need the sum of the squares of the weights
of partitions in a given row. A standard result about Young’s
lattice [11] immediately gives us this sum: n!. In deriving this
result, it is crucial [15] that each partition state has one more
child than it does parents, and also that every two states that
share a parent also share precisely one child.
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FIG. 2: Expected total polarisation against time. Time in units of
1
Ω

, dephasing rate Γ = 1. The gradient of the ’one dimension with
decoherence’ line tends to 1

2
asymptotically.

Referring back to Eq. (8), and using Ni =
√
i!, we see that

H = Ω
∑
n

√
n |n− 1〉 〈n| . (9)

In essence we have established a linear sequence of states,
each coupled to the the next analogously to the states on a 1D
chain 5. However, each of our states is in fact a superposition
of many configurations of the 2D array, and crucially the cou-
pling from each state to the next increases along the sequence.

It has been shown (e.g. [12]) that a quantum state released
at the end of a semi-inifinite chain of states, with constant
couplings, will travel ballistically: the average position of the
state along the chain is proportional to the time passed, and
inversely proportional to the coupling strength. Since, in the
one-dimensional case, the position is proportional to the num-
ber of spins that have flipped, we have that the total polarisa-
tion will increase linearly with time.

We can establish the rate of propagation in the 2D case
using the ansatz that the time taken to travel between two
neighbouring nodes is inversely proportional to the strength
of the coupling between them. The total time is then t2D ∝∑n

i=1
1√
i
' n 1

2 . As in the one-dimensional case, the position
along the chain corresponds to the the number of spins that
have flipped, and so we would expect the total polarisation to
be proportional to t2. This prediction of a quadratic speed-
up of signal going from 1D to 2D is the central result of our
paper, and was confirmed by simple numerical simulations of
Eq. (9) (Fig. 2).

Unfortunately the mapping from 2D to 1D is not readily
extendible to 3D. However, our results so far could have been
anticipated using simple dimensional arguments; if one pos-
tulates that the rate of spin propagation is proportional to the
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boundary of the region, one can predict the correct scaling be-
haviour. In 1D the boundary size is independent of the region
size; no matter how many spins have flipped, it still has size
one. The coupling strength between states |n〉 is constant. In
the 2D case, the boundary size scales with the square root of
the area, and the coupling goes with

√
n. In 3D, the bound-

ary scales like the cube root of the volume squared, and so we
expect the coupling to scale as n

2
3 . Following similar logic to

that used in 2D case: t3D ∝
∑n

i=1
1

i
2
3
' n 1

3 , and so n ∼ t3.
We now consider the effect of decoherence. Much the early

work on continuous time quantum random walks looked at the
speedup they afforded over their classical counterparts [13],
but didn’t make any statement about the conditions under
which we would expect the quantum walk to become clas-
sical. We would expect that, in a regime of suitably heavy
dephasing, our quantum walk would be reduced to an ‘equiv-
alent’ classical one.

We begin by considering a collective noise operator: L =∑
n n |n〉 〈n|. This represents noise that applies uniformly to

the whole lattice: global fluctuations in the magnetic field, for
example. As the effect of this type of noise depends only on
the number of ‘up’ spins, the system remains in the reduced
basis of number states calculated earlier, with only the coher-
ences between these states affected.

Our starting point is the Lindblad master equation

ρ̇ = i [ρ,H] +
1

2
Γ
(
2LρL† − L†Lρ− ρL†L

)
. (10)

We proceed by splitting up the equation into diagonal and off-
diagonal terms:

ρ̇ii = i
∑
k=±i

(ρikgki − ρkigik) = −2
∑
k=±i

Re [ρikgki] (11)

˙ρij = i

∑
k=±j

ρikgkj −
∑
k=±i

ρkjgik

− Γρij (12)

where gij is the coupling between states i and j. In the limit
of heavy dephasing (Γ � g), we have a process similar to
adiabatic following, and we can make the approximation

Γρij ≈ i

∑
k=±j

ρikgkj −
∑
k=±i

ρkjgik

 .

We consider the ρij as a set of n(n−1)
2 variables and solve for

them in terms of the ρii. Neglecting terms that are second
order in g

Γ , and substituting back into Eq. (11) gives

ρ̇ii = −
∑

j=i±1

2|gij |2
Γ

(ρii − ρjj) .

Our quantum chain reduces to a classical Markov chain on
the same statespace, with transition rates proportional to the
coupling squared.

Although states with more ‘up’ spins decohere more
quickly, the decoherence rate Γ is not multiplied for higher

states, as it is the relative decoherence rate between neigh-
bouring states, which is of importance.

In one-dimension gij = 1 and we are reduced to a simple
random walk on a semi-infinite line. By analogy with simple
diffusion we expect that the resulting distribution is roughly
Gaussian, with the expected number of flipped spins going
with

√
t: the rate of spin propagation drops from t to

√
t. This

result was confirmed numerically (Fig. 2).
In the two-dimensional case gij =

√
j, j = i + 1: We get

a random walk with increasing transition rates. Numerically
(Fig. 2), we find that the rate of spin propagation drops from
t2 to t - still an encouraging scaling.

The collective noise case is convenient to analyse for our
system, as the system remains in the subspace covered by our
basis of accessible states. However, a more realistic model in-
volves treating the noise occurring at each site as independent.
In this case we have Lindblad operators of the form

Li = σi
z (13)

for lattice sites i. Following a similar procedure to before we
find the equivalent classical chain to be

ρ̇ii = −
∑

j∈P (i)

2|gij |2
Γ

(ρii − ρjj) (14)

where, crucially, the index now runs over all the partition
states, rather than our basis of accessible states. In fact, in
the 1D case these states are one and the same, and so the spin
propagation goes as

√
t, as found in the collective noise case.

In the 2D case, we are now performing a continuous-time clas-
sical random walk on Young’s lattice. We are able to use the
property that each node always has one more child than par-
ents, to predict that the rate of spin propagation will be pro-
portional to t - the same as the collective noise case. Thus for
both forms of decoherence we find that the amplification still
functions; when the noise is severe then it will take longer to
flip a given number of spins.

Finally we consider imperfect initial polarisation (i.e. fi-
nite temperature). Any real experimental system will have
this property. To examine the behaviour of the scheme un-
der imperfect initialisation, we consider initial states where a
random subset of the lattice spins are in the ‘up’ state. A con-
cern with any spin amplification scheme is that such imperfec-
tions in the initial state themselves become amplified, leading
to false positives. Thanks to our spin propagation rules our
scheme is highly robust against this sort of error; the fact that
two neighbouring spins need to be ‘up’ for a spin to flip makes
it difficult for imperfections to spread. Numerical simulations
suggest that below an initialisation threshold of approximately
5% [16], is it extremely unlikely that a false positive occurs. In
fact this threshold is a very loose lower bound, as it assumes
deterministic growth of impurities, rather than the quantum
oscillations that will occur. We anticipate that a real system
could tolerate even higher levels of imperfection, and there-
fore our protocol should be well within experimental capabil-
ities. For example for an array placed in a standard W-band
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electron spin resonance system (100 GHz) and cooled using
liquid 4He to 1.4 degrees Kelvin, only 3.1% of electron spins
will be in the ‘up’ state.
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