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We derive two classes of multi-mode Bell inequalities under local realistic assumptions, which are
violated only by the entangled states negative under partial transposition in accordance with the
Peres conjecture. Remarkably, the failure of local realism can be manifested by exploiting wave
and particle correlations of readily accessible continuous-variable states, with very large violation of
inequalities insensitive to detector-efficiency, which makes a strong case for a loophole-free test.
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Introduction—Whether there exists a strong correla-
tion that no local realistic theories can grasp has been an
issue of crucial importance since the Einstein-Podolsky-
Rosen (EPR) argument [1], which was later cast into an
experimentally testable form by J. S. Bell [2]. The Bell
test not only provides an opportunity to look into fun-
damental aspects of quantum mechanics, but also can be
used for practical applications in quantum information
science, e.g., the security test for quantum cryptography
[3] and the entanglement witness. Numerous experimen-
tal data have been obtained to date in support of quan-
tum mechanics, however, there still remain some impor-
tant issues to resolve. First, no experiment ever closed
both the locality and the detector-efficiency loopholes to
conclusively rule out local hidden variable (LHV) theo-
ries [4, 5]. Second, although the original EPR argument
considered the correlation of continuous variables (posi-
tion and momentum), almost all experiments were so far
performed for discrete variables (e.g. spin-1/2 states [6]).

The Bell test using continuous variables (CVs) can pro-
vide a new insight into quantum world via their enriched
structure in infinite dimension. Furthermore, the CV Bell
test is considered practically desirable for a loophole-free
test because the measurement scheme (homodyne detec-
tion) is highly efficient. However, the proposals so far
have not been made to take the merits of CVs fully. To
begin with, the EPR state (two-mode squeezed state) is
not adequate as such for the CV Bell test due to a non-
negative distribution in phase space, admitting a LHV
description [7]. It was thus suggested to exploit the cor-
relation of discrete nature, photon-number parity [8] or
pseudo-spin observables [9], which are hard to implement
due to inefficient photon counting. In order to utilize
the merit of homodyne detection, a different approach,
i.e. transforming a nonnegative distribution to a non-
positive one by photon subtraction, was proposed but
the violation of Bell inequality was very small [10]. This
small violation may be attributed to the binning pro-
cess that converts CV data to binary ones; binning is

used to adopt the Bell-inequalities typically established
for discrete variables [2], leading undesirably to the loss
of information on CV correlation. Remarkably, Acin et

al. found some CV states that maximally violate multi-
mode Bell inequalities under the binning and proposed
a 3-mode state for a loophole-free test, which however is
not very practicable in current technologies [11].
Therefore, it is important both fundamentally and

practically to have Bell-inequalities that can directly
probe CV correlations in full capacity [12]. Recently,
such an inequality was derived by Cavalcanti et al. [13],
however, its test appears demanding as it requires at least
10-mode entangled states. Although the case was im-
proved to use 5-mode states by optimizing the functional
form of the inequalities [14], it is necessary to obtain Bell
inequalities that can reveal nonlocality for a broad class
of CV entangled states including, desirably, easily acces-
sible ones. In this Letter, we derive two classes of Bell
inequalities by using the Cauchy inequality under local
realistic conditions. We show that these inequalities can
be violated only by the quantum entangled states that
are negative under partial transposition (NPT), in accor-
dance with the Peres conjecture [15–17]. Remarkably, the
violation of our inequalities occurs at all levels of n-mode
(n ≥ 2), illustrated by well-known, readily accessible,
two-mode entangled states. Our inequalities require the
comparison of two distinct correlations, wave-like (homo-
dyne detection) and particle-like (photon-counting) cor-
relations. We show that the degree of violation can be
very large, and furthermore, that our tests are insensitive
to detector-efficiency, therefore suitable for a loophole-
free test within existing technologies.
Bell inequality—We first show how a Bell inequality

can be derived from LHV descriptions. Let rj be a real
random variable at two parties j = 1, 2. The LHV theory
accounts for the correlation of r1 and r2 by

〈r1r2〉 =
∫

dλρ(λ)r1(λ)r2(λ), (1)

where it is assumed that the local values r1(λ) and r2(λ)
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are predetermined (realism) independent of each party
(locality). The realistic values r1(λ) and r2(λ) can be
identified if the hidden variable λ, with the probabilistic
distribution ρ(λ), is revealed. This can be extended to
complex variables C1 and C2 that essentially represent
two real random variables at each site, as

〈C1C2〉 =
∫

dλρ(λ)C1(λ)C2(λ), (2)

which refer to four correlations collectively [Cf. Eq. (9)].
We impose no conditions on random variables that may
be bounded/unbounded and continuous/discrete.
One can use the Cauchy inequality to obtain the upper

bound of the correlation as

|〈C1C2〉|2 =

∣

∣

∣

∣

∫

dλρ(λ)Cp
1 (λ)C

q
2 (λ)C

1−p
1 (λ)C1−q

2 (λ)

∣

∣

∣

∣

2

≤
∫

dλρ(λ) |Cp
1 (λ)C

q
2 (λ)|

2
∫

dλρ(λ)
∣

∣

∣
C

1−p
1 (λ)C1−q

2 (λ)
∣

∣

∣

2

= 〈|C1|2p |C2|2q〉〈|C1|2(1−p) |C2|2(1−q)〉,

where the last line again follows in view of the LHV
description in Eq. (1), with real numbers p, q ∈ [0, 1].
Therefore, we obtain a Bell inequality

|〈C1C2〉|2 ≤ 〈|C1|2p |C2|2q〉〈|C1|2(1−p) |C2|2(1−q)〉. (3)

If one starts with the complex conjugate C∗
2 instead of

C2, another inequality similarly emerges,

|〈C1C
∗
2 〉|2 ≤ 〈|C1|2p |C2|2q〉〈|C1|2(1−p) |C2|2(1−q)〉. (4)

In (3) and (4), the correlation of C1 and C2 is bounded
from above. We particularly note that considering C1

and C2 as complex amplitudes, the upper bound—the

product of 〈|C1|2p |C2|2q〉 and 〈|C1|2(1−p) |C2|2(1−q)〉—
refers to the (fractional-order) “intensity” correlations.
Now, we want to know if the inequalities (3–4) can

be violated by quantum systems. We first discuss how
the correlations in our inequalities can be experimentally
tested. The left-hand side (LHS) of each inequality refers
to the correlation of complex amplitudes Cj ≡ Cjx+iCjy

(j = 1, 2), which can be addressed in quantum me-
chanics by introducing the operators Ĉj ≡ Ĉjx + iĈjy

(Ĉjx, Ĉjy : Hermitian). On the other hand, the right-
hand side (RHS) of each inequality refers to the intensity
correlation. An intensity can generally be expressed in
two different forms, which, importantly, are not distin-
guished from each other in classical descriptions. First
is to represent a complex variable by its real and imag-
inary parts, C ≡ Cx + iCy, leading to |C|2 = C2

x + C2
y .

Second is to represent the intensity as the product of the
original variable and its conjugate, |C|2 = C∗C. The for-
mer indicates the correspondence to quantum operator as
|C|2 .

= Ĉ2
x + Ĉ2

y and the latter |C|2 .
= Ĉ†Ĉ.

Two unequal observables ( Ĉ2
x+ Ĉ2

y and Ĉ†Ĉ) in quan-
tum domain usually carry distinguished physical con-
texts. The distinction may be particularly related to the
wave-particle duality in quantum optics, as addressed be-
low. The classical LHV descriptions, however, disallow
the violation of inequalities (3–4) regardless of intensity
observables. Here we particularly focus on the second ap-
proach, |C|2 .

= Ĉ†Ĉ. For simplicity, let {p, q} = {0, 1},
and then, we have only two distinct cases.
(i) p = q = 1: One class of inequalities follows from (4),

∣

∣

∣
〈Ĉ1Ĉ

†
2〉
∣

∣

∣

2

≤ 〈Ĉ†
1Ĉ1Ĉ

†
2Ĉ2〉 : 1st− inequality. (5)

There is another inequality from (3),
∣

∣

∣
〈Ĉ1Ĉ2〉

∣

∣

∣

2

≤
〈Ĉ†

1Ĉ1Ĉ
†
2Ĉ2〉, which is, however, never violated by any

quantum states as shown below.
(ii) p = 0, q = 1 : Another class follows from (3)

∣

∣

∣
〈Ĉ1Ĉ2〉

∣

∣

∣

2

≤ 〈Ĉ†
1Ĉ1〉〈Ĉ†

2 Ĉ2〉 : 2nd− inequality. (6)

The other inequality from (4),
∣

∣

∣
〈Ĉ1Ĉ

†
2〉
∣

∣

∣

2

≤
〈Ĉ†

1Ĉ1〉〈Ĉ†
2Ĉ2〉, is never violated as shown below.

Peres Conjecture—We now prove that only NPT en-
tangled states can violate the Bell inequalities (5) and (6)
regardless of Ĉ1 and Ĉ2. First, note that for any operator
f̂ , the positive operator f̂ †f̂ must give 〈f̂ †f̂〉 ≥ 0 for all
quantum states. Furthermore, if the state remains non-
negative under partial transposition (PT), we also require

〈f̂ †f̂〉PT ≥ 0 [12]. Below, we use the general relation

〈

ÔAÔB

〉

ρPT

=
〈

ÔAÔ
†∗
B

〉

ρ
, (7)

where ÔA and ÔB are operators acting on subsystems A
and B, respectively, with PT taken for B [17]. The sym-
bol ∗ denotes complex conjugation of matrix elements.
First, taking f̂ = a + bĈ1Ĉ2, the condition 〈f̂ †f̂〉 ≥ 0

must be satisfied for arbitrary a and b, which gives
∣

∣

∣
〈Ĉ1Ĉ2〉

∣

∣

∣

2

≤ 〈Ĉ†
1Ĉ1Ĉ

†
2Ĉ2〉 for all quantum states—

therefore, no violation at all. In contrast, the PT condi-
tion 〈f̂ †f̂〉PT ≥ 0 with f̂ = a+ bĈ1Ĉ

∗
2 gives the inequal-

ity (5). That is, if the Bell inequality (5) is violated, the

state must be NPT. Secondly, with f̂ = aĈ1 + bĈ2, the

condition 〈f̂ †f̂〉 ≥ 0 gives
∣

∣

∣
〈Ĉ1Ĉ

†
2〉
∣

∣

∣

2

≤ 〈Ĉ†
1Ĉ1〉〈Ĉ†

2Ĉ2〉
for all quantum states. In contrast, its PT version with
f̂ = aĈ1 + bĈ∗

2 gives the inequality (6), so its violation
again confirms NPT entanglement. The Peres conjecture
[15–17] that only NPT entanglement is incompatible with
LHV descriptions is thus supported in our framework.
CV case—Let us first apply the inequalities (5) and (6)

to two-mode CV states. The simplest among all possible
tests is to take Ĉj = âj (j = 1, 2), where âj is the anni-
hilation operator describing the field amplitude of mode
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j. It can be decomposed into two Hermitian operators,
âj = X̂j + iŶj (j = 1, 2), where X̂j ≡ 1

2 (âj + â
†
j) and

Ŷj ≡ 1
2i(âj − â

†
j) are two orthogonal quadrature ampli-

tudes. Thus, to test the 1st-inequality (5), which reads

|〈â1â†2〉|2 ≤ 〈N̂1N̂2〉 : 1st− inequality, (8)

with N̂j = â
†
j âj (j = 1, 2), the field amplitude correlation

|〈â1â†2〉|2 can be measured in 4 segments importantly by
local homodyne measurements,

|〈â1â†2〉|2 =
(

〈X̂1X̂2〉+ 〈Ŷ1Ŷ2〉
)2

+
(

〈X̂1Ŷ2〉 − 〈Ŷ1X̂2〉
)2

.

(9)

On the other hand, the intensity correlation 〈N̂1N̂2〉 can
be measured by photon counting at each mode. There
are some broad classes of two-mode states that violate the
inequality (8). The most practically feasible among them
is the single-photon entangled state, |Ψs〉 = cos θ|1, 0〉+
sin θe−iφ|0, 1〉, giving |〈â1â†2〉|2 = 1

4 sin
2 2θ and 〈N̂1N̂2〉 =

0. In view of (8), the degree of violation can be measured

by the deviation of the ratio LHS
RHS =

|〈â1â
†
2
〉|2

〈N̂1N̂2〉
from unity,

which becomes infinite in this case.
We note that the same inequality (8) was derived also

by Hillery and Zubairy [18], but within a distinct context
of separability condition along a different route for non-
Gaussian entanglement [19, 20]. The proposed schemes
to test the inequality (8) in [18, 19] considered collec-
tive measurements from the SU(2) algebra, not local
ones as proposed here, thus unsuitable for nonlocality
test. A closely-related Bell inequality was also derived
by Cavalcanti et al. in [13], where the intensity corre-
lation 〈|C1|2|C2|2〉 in (4) was addressed by the squared-
quadrature correlation, 〈(X̂2

1 + Ŷ 2
1 )(X̂

2
2 + Ŷ 2

2 )〉. Thus,
they considered only the wave-like correlations in both
sides [21], and it is known that no violation occurs for
two-mode states within their framework [15]. In contrast,
our inequality incorporates two distinct aspects of field
correlations in (8), the wave-like (LHS) and the particle-
like (RHS) correlation. In this sense, our approach em-
phasizes the role of the wave-particle dual aspects in man-
ifesting the failure of local realism [22].
Let us turn our attention to the 2nd-inequality (6).

Again, by the substitution Ĉj = âj (j = 1, 2), we obtain

|〈â1â2〉|2 ≤ 〈N̂1〉〈N̂2〉 : 2nd− inequality, (10)

which also appeared as a separability condition in
[18]. In this case, the optical EPR state (two-

mode squeezed state), |TMSS〉 = er(a
†
1
a
†
2
−a1a2)|0, 0〉 =

∑∞
n=0

tanhn r
cosh r

|n, n〉, violates the inequality regardless of r
(degree of squeezing). The degree of violation measured

by |〈a1a2〉|
2

〈a†
1
a1〉〈a

†
2
a2〉

− 1 = tanh−2 r − 1 (r > 0) increases with

r decreasing and becomes extremely large as r → 0.

Loophole-free test—Let us now address how our tests
can avoid both the locality and the detector-efficiency
loopholes. First, to enforce a strict locality condition, a
random-number generator yielding R = 0, 1, and 2 can
be used at each observer to choose local measurement
settings, similar to the method of [4]. In the balanced
homodyne detection, the local oscillator (LO) with ad-
justable phase is mixed with a signal at a 50:50 beam-
splitter (BS). In our case, an electronic attenuator can be
put between the LO and the BS to reduce/unblock the
LO. For R = 0 (R = 1) case, the LO phase is adjusted
to X (Y ) quadrature with the attenuator off (homodyne
detection). For R = 2, the attenuator turns on to reduce
the LO, measuring the signal intensity (photon counting)
as below. If R is randomly generated at the last instant
when the signal impinges on the BS, the time-like com-
munication between two observers can be ruled out [4].

Second, we consider a full LHV model including all
non-detection events to address the detection-loophole
issue. For the case that the real or the imaginary part
of Cj ≡ Cjx + iCjy (j = 1, 2) is undetected, one may
assign a fixed value 0 to such events and the inequal-
ity (3) still holds. The intensities of the RHS can be de-
composed as 〈|Cj |2〉 = pj,D〈|Cj |2〉D + (1− pj,D)〈|Cj |2〉U
for the 2nd-inequality (6), where 〈|Cj |2〉D,U denotes
the intensity average for detected/undetected ensembles,
with pj,D the detection probability in photon count-
ing. A consequence of nonideal efficiency η < 1 is
〈|Cj |2〉U ≤ 〈|Cj |2〉D, which can be proved within clas-
sical description. In turn, it gives 〈|Cj |2〉U ≤ 〈|Cj |2〉,
where 〈|Cj |2〉 = 〈C2

jx + C2
jy〉 is the total intensity aver-

age that can be alternatively measured via homodyne
detection. Therefore, a full LHV inequality leads to

|〈â1â2〉|2 ≤ ∏

j=1,2

[

pj,D〈N̂j〉D + (1− pj,D)〈X̂2
j + Ŷ 2

j 〉
]

.

To enhance the detection probability pj,D, one may mix
the signal with LO (amplitude∼ β) at a beam splitter
and measure the intensity sum S of two outputs. In each
event, the signal intensity is assigned the value S−〈I〉LO

where 〈I〉LO is the LO intensity average that can be sep-
arately measured. Our LHV inequalities are still valid
with the LO field included as another (predetermined)
random variable, and pj,D rapidly approaches 1 by in-
creasing β for any η and squeezing r. In this case, the
contribution of the second term 〈X̂2

j + Ŷ 2
j 〉 is negligible.

The photodetection with efficiency η is practically
equivalent to the ideal detection after the signal âj is
mixed with a vacuum v̂j at a beam-splitter of trans-
missivity

√
η. Namely, the observed signal âoj is ex-

pressed by âoj =
√
ηâj +

√
1− ηv̂j (j = 1, 2). This gives

〈N̂o1N̂o2〉 = η2〈N̂1N̂2〉 and 〈N̂o1〉〈N̂o2〉 = η2〈N̂1〉〈N̂2〉 in
the above-mentioned intensity measurement. In the bal-
anced homodyne detection to measure quadrature ampli-
tudes X̂j and Ŷj at each mode, the same model applies,
âoj =

√
ηâj +

√
1− ηv̂j , in the limit of large-intensity

local oscillator [23]. This gives |〈âo1âo2〉|2 = η2|〈â1â2〉|2
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and |〈âo1â†o2〉|2 = η2|〈â1â†2〉|2. Therefore, η2 becomes an
overall factor in both sides of (8) and (10), which makes
our scheme insensitive to detector efficiency.
Multipartite systems—The inequalities (5) and (6) can

be further generalized to N -partite systems as

∣

∣

∣

∣

∣

∣

〈

k
∏

i=1

Ĉi

N
∏

j=k+1

Ĉ
†
j

〉

∣

∣

∣

∣

∣

∣

2

≤
〈

N
∏

i=1

Ĉ
†
i Ĉi

〉

: 1st, (11)

∣

∣

∣

∣

∣

〈

N
∏

i=1

Ĉi

〉∣

∣

∣

∣

∣

2

≤
〈

k
∏

i=1

Ĉ
†
i Ĉi

〉〈

N
∏

j=k+1

Ĉ
†
j Ĉj

〉

: 2nd,

(12)

where N -parties are divided into two groups of k- and
N−k modes (k = 1, . . . , N−1). It is again readily proved
that only NPT entangled states can violate the inequal-
ities (11) and (12): Take f̂ = A +B

∏k
i=1 Ĉi

∏N
j=k+1 Ĉ

∗
j

and f̂ = A
∏k

i=1 Ĉi + B
∏N

j=k+1 Ĉ
∗
j , respectively, for

the condition 〈f̂ †f̂〉PT ≥ 0. The N -mode GHZ state
with a mixture of vacuum, ρ = pS |GHZ〉〈GHZ| + (1 −
pS)|0 · · · 0〉〈0 · · · 0|, where |GHZ〉 = c1|{1}k, {0}N−k〉 +
c2|{0}k, {1}N−k〉 is the superposition of k modes (N − k

modes) all occupying one (no) photon and vice versa, vi-
olates the inequality (11). The multimode EPR state,
produced by injecting single-mode squeezed states into a
series of beam splitters [24], violates the inequality (12).
The violation can occur with any partition numbers
(k = 1, . . . , N − 1), thereby manifesting the true mul-
tipartite nature of nonlocality to some extent.
In summary, we derived two classes of multi-mode

Bell inequalities that can be greatly violated by read-
ily accessible n-mode CV states for n ≥ 2. Remarkably,
our proposed tests are insensitive to detector-efficiency
making a loophole-free test very feasible within existing
technologies. The role of wave and particle correlations
is highlighted particularly for single-photon nonlocality
[25], and this may suggest possibilities for addressing Bell
theorem and related issues in a new perspective.
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†
j âj +
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