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Equivalence of O(3) nonlinear σ model and the CP1 model: A path integral approach
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A rigorous proof is given on the equivalence of the O(3) nonlinearσ model and the CP1 model via path
integral approach.

The low energy dynamics of anti-ferromagnetically corre-
lated spins can be well described by the O(3) nonlinearσ

model (NLσM), which abandoned the strong requirement of
global order and only assumes thelocal Neel order [1, 2]. The
central idea is to express the local spin fieldsi by a unimodular
Neel field|n̂(xµ)| = 1 and a small canting field|m̂(xµ)| ≪ 1,

si = (−1)in̂(xµ)
√

1− m̂(xµ)2 + m̂(xµ)

wherexµ represents the Euclidean space of the continuum
background lattice. By integrating out the small canting field
m̂(xµ) in the path integral formalism, people obtained the de-
sired effective action:
∫

D
3n̂D

3m̂δ(n̂2 − 1)e−S[n̂,m̂] =

∫

D
3n̂δ(n̂2 − 1)e−Seff [n̂]

where the original actionS[n̂, m̂] is derived from the Heisen-
berg model [2] and the effective action takes the form:

Seff [n̂] =
1

4g

∫ dx∂µn̂ · ∂µn̂

where summation over repeated indices is assumed andg is
the coupling strength determined by the experiments. The
integration is taken overd + 1 dimensional Euclidean space
∫ dx =

∫

dτdx.
While O(3) NLσM manifests great usefulness in the study

of antiferromagnetic systems near their critical points, people
usually solve the model, however, by transforming it into
the celebratedCP 1 model [3] by the Hopf map̂n = z†σ̂z
(σa =normalized Pauli matrices) wherez is theCP 1 field.
The High -Tc superconductivity is a good example among
these situations where theCP 1 model is often taken as a
starting point [4]. A striking property of theCP 1 model
is the gauge field minimally coupled toCP 1 field acquires
Maxwell dynamics in the long wave length limit, by which
electrons with opposite spins become attractive [3, 4]. How-
ever, although the equivalence of the two models serves as
a crucial foundation in these applications, a proof of their
exact equivalence still bears mathematical restrictions and
complexities [5, 6].

In this notes, we perform a simple but rigid proof of this
equivalence via the path integral approach. To start with, we
write down explicitly the amplitude for the O(3) NLσM:

Z1 =

∫

D
3n̂δ(n̂2 − 1)e−

1

4g

∫ dx∂µn̂·∂µn̂ (1)

and the amplitude for theCP 1 model:

Z2 =

∫

D
4zDAµδ(|z|2 − 1)e−

1

g

∫ dx|(∂µ−iAµ)z|2 (2)

Proof of the equivalence between the two models is nothing
but to showZ1 is proportional toZ2 under the Hopf map
n̂ = z†σ̂z. Let us express theCP 1 field asz = (z1, z2)

T =
(reiα, seiβ)T , and it is easy to check thatr2 + s2 = 1 due to
the constraint̂n2 = |z|2 = |z1|2 + |z2|2 = 1. This means the
CP 1 field is constrained on the unit complex sphere. In terms
of r, s, α, andβ, the action inZ1 can be written as:

1

4g

∫ dx∂µn̂ · ∂µn̂

=
1

g

∫ dx[r2s2(∂µα− ∂µβ)
2 + (∂µr)

2 + (∂µs)
2] (3)

Next, we integrate out the gauge field in the amplitudeZ2

which is a Gaussian integral and then express the action also
in terms of the new variablesr, s, α, andβ:

Z2 =

∫

D
4zDAµδ(|z|2 − 1)e−

1

g

∫ dx|(∂µ−iAµ)z|2

=

∫

D
4zDAµδ(|z|2 − 1)

e−
1

g

∫ dx∂µz
†∂µze−

1

g

∫
dx[A2

µ
+iAµ(z

†∂µz−z∂µz
†)]

=(πg)2
∫

D
4zδ(|z|2 − 1)e

1

g

∫
dx(r2∂µα+s2∂µβ)

2

e−
1

g

∫
dx[r2(∂µα)

2+s2(∂µβ)
2+(∂µr)

2+(∂µs)
2] (4)

Consideringr4 = r2(1 − s2) and s4 = s2(1 − r2), it is
straightforward to show that the action in the above path inte-
gral just equals the action obtained in Eq. (3). Put it another
way, while the two path integrals have different variables,their
integrands (the actions) are equal:

Z1 =

∫

D
3n̂δ(n̂2 − 1)e−S1[n̂] (5)

Z2 = (πg)2
∫

D
4zδ(|z|2 − 1)e−S2[n̂(z)] (6)

with S1[n̂] = S2[n̂(z)] = S[r, s, α, β]

To proceed, we are to show that the entire amplitudes of
Eq. (5) and Eq. (6) are proportional, i.e., the equality:
∫

D
4zδ(|z|2 − 1)e−S[n̂(z)] = c

∫

D
3n̂δ(n̂2 − 1)e−S[n̂] (7)
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wherec is an overall constant that can be eliminated by proper
normalization.

By virtue of the selection rule of theδ function and the Hopf
mapn̂ = z†σ̂z we used above, we are able to rewrite the left
hand side of Eq. (7) in the form:
∫

D
4zδ(|z|2 − 1)e−S[n̂(z)]

=

∫

D
4zδ(|z|2 − 1)

∫

D
3n̂δ3(n̂− z†σ̂z)e−S[n̂] (8)

thus the equality of Eq. (7) would be proved if we can show
the following relation:

∫

D
4zδ3(n̂− z†σ̂z)δ(|z|2 − 1) = c δ(n̂2 − 1) (9)

In other words, the proof of the equivalence between the two
models is now a matter of demonstrating Eq. (9). To prove
Eq. (9), we first clarify the meaning ofD4z by:

D
4z =

∏

xµ,j=1,2

dRezj(xµ)dImzj(xµ) (10)

and then we carry out the integral in ther, s, α, β coordinates.
SinceRez1 = r cosα, Imz1 = r sinα, Rez2 = s cosβ, and
Imz2 = s sinβ, the Jacobian of the coordinate transformation
reads:

J =
∂(Rez1, Imz1,Rez2, Imz2)

∂(r, α, s, β)
= rs (11)

Then the left hand side of Eq. (9) becomes:

L.H.S.=
∫ ∞

0

rdr

∫ ∞

0

sds

∫ 2π

0

dα

∫ 2π

0

dβ δ(r2 + s2 − 1)

δ(nx − 2rs cos(α− β))δ(ny + 2rs sin(α− β))

δ(nz − (r2 − s2))

=
1

16

∫ ∞

0

dR

∫ ∞

0

dS

∫ 4π

0

dθ

∫ 2π

−2π

dφδ(R + S − 1)

δ(nx − 2
√
RS cos(φ))δ(ny + 2

√
RS sin(φ))

δ(nz − (R− S)) (12)

where some simple transformations of variables have been
used. Integrating outdR anddθ first and thendS, we obtain:

L.H.S.=
π

4

∫ ∞

0

dS

∫ 2π

−2π

dφδ(nx − 2
√

(1− S)S cos(φ))

δ(ny + 2
√

(1 − S)S sin(φ))δ(nz − (1− 2S))

=
π

4

∫ π

−π

dφ δ(nx −
√

1− nz
2 cos(φ))

δ(ny +
√

1− nz
2 sin(φ)) (13)

where in the last line we have taken into account the peri-
odicity of the integrand so that

∫ 2π

−2π
= 2

∫ π

−π
. The last

integration overdφ is somewhat tricky. Define the func-
tion f(φ) =

√
1− nz

2 cosφ − nx, it has two zero points at
φ0= ± arccos nx√

1−nz
2
, and the absolute values of its deriva-

tive at these points are:

|f ′(φ0)| =
√

1− nz
2 sinφ0 =

√

1− n2
x − n2

z (14)

using the relationδ[f(φ)] =
∑

φ0

δ(φ−φ0)
|f ′(φ0)| , we obtain:

L.H.S.=
π

4

∫ π

−π

dφ δ(ny +
√

1− nz
2 sin(φ))

δ(φ− arccos nx√
1−nz

2
) + δ(φ+ arccos nx√

1−nz
2
)

√

1− n2
x − n2

z

=
π

2
δ(n2

x + n2
y + n2

z − 1)

=
π

2
δ(n̂2 − 1) (15)

Therefore, Eq. (9) hence Eq. (7) is proved and the constant
c = π

2 . Finally, we are safe to claim the exact equivalence
of the O(3) NLσM and theCP 1 model in the path integral
formalism:

Z2 =

∫

D
4zDAµδ(|z|2 − 1) e−

1

g

∫
dx|(∂µ−iAµ)z|2

=
π3g2

2

∫

D
3n̂δ(n̂2 − 1)e−

1

4g

∫
dx∂µn̂·∂µn̂

=
π3g2

2
Z1 (16)

where the overall constant in front ofZ1 is a trivial factor that
can be eliminated by proper normalization.
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