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Abstract

Many phenomena in physics, chemistry, and biology involve seeking an optimal
control to maximize an objective for a classical or quantum system which is open and
interacting with its environment. The complexity of finding an optimal control for
maximizing an objective is strongly affected by the possible existence of sub-optimal
maxima. Within a unified framework under specified conditions, control objectives
for maximizing at a terminal time physical observables of open classical and quantum
systems are shown to be inherently free of sub-optimal maxima. This attractive feature
is of central importance for enabling the discovery of controls in a seamless fashion in
a wide range of phenomena transcending the quantum and classical regimes.

1 Introduction

The control of quantum phenomena is a subject garnering increasing attention, and
the allied classical analog has a long history with rich applications. Controlled systems
naturally appear in physics [1, 2], chemistry [3] and biology [4, 5], and in many cases the
controlled systems are open to interact with their environments. Examples include laser
driven selective atomic or molecular excitations in the presence of an external bath [6],
laser cooling [7], manipulation by quantum dots interacting with a reservoir of nuclear
spins [8], control of chemical reactions in solution [9], adaptation of an organism’s
population to a natural or artificial environment [10], etc. For control of atomic or
molecular scale physical systems, quantum mechanics is a common description, whereas
for biology the classical regime generally provides a suitable framework. In chemistry
and other areas, either formulation may be appropriate, depending on the specific
situation.

The practical contexts for seeking control typically involve either laboratory exper-
iments or natural circumstances (e.g., an organism’s population evolution driven by
environmental pressure). A control problem may be expressed as maximization of an
objective function J [u], which is the desired property J for optimization by means of
the control u (the problem of minimizing an objective J is equivalent to maximizing
−J). The behavior of the objective J as a function of the control determines the
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control landscape for the corresponding problem. Various types of control problems
exist, including terminal-time problems aiming to maximize an objective determined
by the state of the system at some final (terminal) time [11], tracking control aiming
for a particular system observable or the system state to follow a prescribed evolution
pathway [12], control involving conditioning on measurement results [13], time-optimal
control [14], etc. The goal is to find an optimal control u∗ which produces the global
maximum value Jmax of the objective. Commonly maximizing J entails a search start-
ing from an initial trial control, likely far from being optimal, and sampling amongst
the available controls trying to identify the best solution u∗. If the objective J has
many sub-optimal maxima, then the search for an optimal control may become stuck
at a particular sub-optimal maximum with an objective value lower than the desired
maximum value Jmax. For this reason, sub-optimal maxima are referred to as traps
for a control problem. Even advanced search algorithms could suffer reduced efficiency
or become hopelessly lost if the control objective has a high density of sub-optimal
maxima. Therefore, the presence of sub-optimal maxima can greatly influence the
complexity of seeking optimal controls and the analysis for the existence or absence
of traps is of central importance for optimally controlling systems described either
classically or quantum mechanically.

Heretofore, control in the classical and quantum domains generally has been viewed
as separate subjects, but it is natural to explore their degree of mutual control behav-
ior. This work considers control problems for classical and quantum systems with
objectives determined by the state of the system at some final time. The paper draws
the important conclusion that the corresponding open classical and quantum control
landscapes share the same inherent property of lacking sub-optimal extrema based on
combining, in a unified framework, three facts that (a) the space of states (i.e., proba-
bility distributions for a classical system or density matrices for a quantum system) for
a classical or quantum system is convex, (b) the objective functions describing common
control and optimization problems are concave, and (c) concave functions do not have
sub-optimal maxima over convex domains. This finding has fundamental and practi-
cal significance, as it links the ease of searching for optimal controls in the classical
and quantum domains, including in systems whose various components may transcend
quantum and classical behavior.

The objective in this work is expressed as a function of the final state ρf of the
system at final time tf . The applied control u directs the evolution of the system from
the initial state ρi at time ti to the final state ρf at time tf and specifies the value
of the objective J [u] = J(ρf), which depends, through ρf , on the control u(t). The
absence of sub-optimal maxima for J [u] is established under common assumptions
of controllability and local surjectivity for the map ξ : u(t) → ρf from the space of
the dynamical controls into state space [26, 27]. Controllability means that the set
of dynamical controls is rich enough to produce any system state, perhaps on some
coarse-grained scale; thus for a given initial state ρi and for any final state ρf there
exists at least one dynamical control u which steers the initial state sufficiently close (as
determined by the required laboratory precision) to the final state. Local surjectivity
means that locally varying controls in the neighborhood of u allows for moving in
arbitrary directions in the state space around ρf on a practically sufficient coarse-
grained scale. These assumptions are sufficient (but, likely can be relaxed) to draw
the conclusion about absence of traps for all J (1) and J (2) objectives for a particular
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control application; violation of these assumptions (that can happen for example for
systems with many degrees of freedom and with limited control resources) can lead to
the appearance of traps in the corresponding control landscape [28].

The following two general classes of objective functions are considered. The first
class corresponds to seeking maximization of the average value 〈O〉 of a desired physical
observable O of the system and is characterized by objectives of the form J (1)(ρf) =
〈O〉. Such objectives describe a wide class of control phenomena, including creation
of specific atomic or molecular states, control of chemical reactions, etc. This class of
objective functions will be shown to have neither sub-optimal minima nor sub-optimal
maxima. The second class describes minimization of thermodynamic observables of
the form 〈O〉 − TS(ρf), where S(ρf) is the entropy of the final state and T is the
temperature. An example is the Helmholtz free energy 〈H〉 − TS(ρf), where H is the
Hamiltonian of the system. Minimization of such observables is equivalent to max-
imization of objectives of the form J (2)(ρf) = −[〈O〉 − TS(ρf)] (e.g., for minimizing

Helmholtz free energy, J
(2)
H (ρf) = −[〈H〉 − TS(ρf)]). If the entropy S(ρf) is concave,

which is normally the case in relevant physical, chemical and biological control appli-
cations [17, 18], then the objective function J (2) will also be concave, which implies the
absence of sub-optimal maxima for J (2) control objectives. The analysis exploits the
fact that the space of all states is convex for both classical and quantum open systems
and that concave functions defined over convex domains [15] have no suboptimal max-
ima [16]. For physical systems with non-concave entropy [19, 20] a special analysis is
needed beyond the scope of this work.

Control landscapes for objectives of type J (1) for closed quantum systems were an-
alyzed in the dynamic [21] and kinematic [22] pictures corresponding to the description
of the system evolution by the Schrödinger equation and by unitary transformations,
respectively. Under the assumptions that any unitary transformation can be produced
by some control and that the map from the space of controls to unitary operators has
full rank, the objective function Pi→f for maximizing population transfer was shown to
have no traps [22]. Critical points for similar objective functions in a different context
were studied in [23]. The absence of traps in the space of dynamical controls was also
proved [21] under the same assumptions. For open quantum systems, the dynamic pic-
ture corresponds to the description of the evolution by various dynamical formulations,
such as Markovian and non-Markovian master equations. The kinematic picture is de-
scribed by completely positive trace-preserving Kraus maps in the absence of initial
correlations between the system and the environment and by more general possibly
non-completely positive maps if the initial state of the system and the environment is
entangled [24]. The control landscape topology of J (1) objectives for finite-level open
quantum systems was recently treated in the kinematic picture [25, 26] with the evo-
lution described by Kraus maps, and trap-free behavior was established. The present
paper utilizes a distinctly different formulation unifying the analysis of the topology of
classical and quantum control landscapes thereby revealing their common features.

In many situations, the dynamical behavior of classical and quantum controlled or
uncontrolled systems can be different in essential ways. Importantly, the analysis in
this paper does not assume and does not imply the existence of common features in
such dynamical behavior. Rather, regardless of the dynamical distinctions, this paper
shows that upon seeking optimal controls the classical and quantum regimes share
mutual characteristics. The analysis specifically considers open systems which admit

3



a statistical description; the analysis relies on the convex structure of the set of all
states for open systems and can not be directly applied to closed systems for which the
allowed sets of states are non-convex. For example, consider a closed classical system
initially in a definite state with a probability distribution represented by a δ-function.
Then the allowed probability distributions will be δ-functions, and a convex sum of two
different δ-functions is not a δ-function. Therefore, the set of all allowed states for such
a closed quantum system, as well as for a classical system with any other initial state,
will be non-convex. For a closed quantum system the set of allowed states consists of
unitary transformations of the initial state and is also non-convex. Nevertheless, using
completely different methods one can show the absence of traps for closed quantum
systems in both kinematic [22] and dynamic pictures [21].

2 Classical control landscapes

The time evolution of an open classical system is described by the corresponding
phase space distribution function (probability measure). Thus, classical probability
theory (see [1], Sec. 6) forms a basis to analyze open classical control landscapes.
The classical probability space is defined by the triple (Ω,F , P ), where Ω is a non-
empty set of the system’s phase space variables, F is a σ-algebra of subsets of Ω, and
P : F → [0, 1] is a probability measure. A sigma-algebra F over Ω is a nonempty col-
lection of subsets of Ω that is closed under complementation and the countable union
of its elements. A probability measure over Ω satisfies the following three Kolmogorov
axioms [29]:

A1. P (E) ≥ 0 for any E ∈ F .
A2. P (Ω) = 1.
A3. For any countable sequence of pairwise disjoint subsets E1, E2, . . . ∈ F we have

P (E1 ∪ E2 ∪ . . .) = P (E1) + P (E2) + . . .

As an example, for a particle moving in three-dimensional space, the phase space is
Ω = R

3 ×R
3, and a point ω = (p, q) ∈ Ω in this space is specified by the momentum p

and the position q of the particle. For a more complex system Ω would encompass all
relevant phase space variables.

Any state of a classical open system can be represented by a probability measure
P over its phase space Ω, or equivalently, by the distribution function ρ(ω) which is
a non-negative function such that the corresponding probability measure is P (dω) =
ρ(ω)dω. The set PΩ of all probability distributions over Ω is convex. That is, for
any two probability distributions ρ0 and ρ1 and for any λ ∈ [0, 1], the convex sum
ρλ := λρ1 + (1− λ)ρ0 is also a probability distribution in PΩ.

The physical properties of a classical open system are prescribed by random func-
tions, i.e., by real measurable functions defined on the phase space Ω. Any such function
(observable) O : Ω → R depends on the system’s phase space variables ω. Physically
measurable quantities for an open system are the average values of the corresponding
random functions. If the classical open system at the initial time ti is in the state
characterized by the probability distribution function ρi(ω), then the average value of
the property O is

〈O〉ti =

∫

Ω

O(ω)ρi(ω) dω =: 〈ρi, O〉
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Under the action of a control u the system evolves into a state at time tf with the new
probability distribution function ρf(ω) (ρf(ω) depends on u and ρi). The average value

of the property at tf is referred to as the classical type one landscape J
(1)
c

J (1)
c (ρf) =

∫

Ω

O(ω)ρf(ω) dω = 〈ρf , O〉 , (1)

and the objective is to find a suitable optimal control u∗ that maximizes J
(1)
c (ρf).

The more general type two non-linear objective landscapes of the form J
(2)
c (ρf) =

−[〈O〉−TS(ρf)] will be also treated by the analysis below with the goal of maximizing
the objective.

3 Quantum control landscapes

The quantum mechanical landscape description here will specifically parallel that of
the classical treatment above to clearly demonstrate their common landscape topology.
The state of an n-level quantum system is represented by positive, unit trace n × n

density matrices. Denoting Mn = C
n×n as the set of all n×n complex matrices, then

the set of all density matrices for an n-level quantum system is defined as Dn := {ρ̂ ∈
Mn | ρ̂ ≥ 0,Trρ̂ = 1}, where Tr denotes trace. The set of all density matrices Dn is a
convex set, since for any λ ∈ [0, 1] and for any two density matrices ρ̂0 and ρ̂1, their
convex combination ρ̂λ = (1− λ)ρ̂0 + λρ̂1 is also a density matrix in Dn.

The physical observables of a quantum system are represented by Hermitian oper-
ators Ô ∈ Mn in the system’s Hilbert space H. If at the initial time ti the system is
in the state ρ̂i, then the average value of Ô will be

〈Ô〉ti = Tr[ρ̂iÔ] = 〈ρ̂i, Ô〉

where 〈X̂, Ŷ 〉 := Tr[X̂†Ŷ ], for any X̂, Ŷ ∈ Mn, denotes the inner product in Mn (note
that ρ̂i is Hermitian).

A wide range of control problems for open quantum systems can be formulated
as maximization of the average value of a suitable target operator Ô. The control
u(t) (e.g., a tailored laser field [2] or incoherent non-equilibrium environment [30, 31])
induces evolution of the initial density matrix into some final state ρ̂f = ρ̂f(u; ρ̂i).
The final state may depend linearly on ρ̂i if initially the system and the environment
are uncorrelated and non-linearly if the initial preparation is correlated [32]. The
control landscape analysis below does not use specific properties of the dynamics and
is equally suitable for both linear and non-linear classical and quantum evolutions.
In the quantum case, the goal is to find an optimal control u∗(t) which maximizes
the expected value 〈Ô〉tf = Tr[ρ̂fÔ] at the final time tf . The corresponding quantum

mechanical type one objective landscape function J
(1)
q is

J (1)
q (ρ̂f) = Tr[ρ̂fÔ] = 〈ρ̂f , Ô〉 . (2)

Non-linear type two objective landscapes have the form J
(2)
q (ρ̂f) = −[〈Ô〉 − TS(ρ̂f)] =

−[Tr[ρ̂fÔ] − TS(ρ̂f)] where S(ρ̂f) is the quantum mechanical entropy. The landscape
analysis below is performed for situations when entropy is a concave function of ρ̂f .
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The explicit form of the entropy is not important, and one can use either the von
Neumann entropy S(ρ̂) = −Tr[ρ̂ log ρ̂], Tsallis, or any other concave form [17, 18] with
the same conclusion for the topology of the control landscape. For non-concave entropy
forms [19, 20] a special analysis is needed beyond the scope of this work.

4 Unified control landscape topology

The classical and quantum open system type one objective landscapes, respectively

J
(1)
c (ρf) = 〈ρf , O〉 and J

(1)
q (ρ̂f) = 〈ρ̂f , Ô〉, share a common linear dependence upon

their associated states, respectively, ρf and ρ̂f . The type two objective landscapes J
(2)
c

and J
(2)
q also have a common structure as concave functions of their respective states.

In addition, the sets of all states are convex for both open classical and quantum
systems, respectively, PΩ and Dn.

Linear functions over a convex domain do not have suboptimal minima or maxima,
and all of their minima and maxima are global; moreover, each level set of such a
function is a connected set (see Appendix). This result leads to the general conclusion

about the topology of J
(1)
c and J

(1)
q : (a) the control landscape does not have suboptimal

minima or maxima and therefore is trap free and (b) each level set of the control
landscape is connected including at the global minima and maxima. Similarly, the

landscapes J
(2)
c and J

(2)
q are concave functions of ρf and ρ̂f , respectively, and are

defined on their associated convex domains PΩ and Dn. Concave non-linear functions
defined over a convex domain do not have suboptimal maxima, and only global maxima

are allowed [16] (see Appendix). Thus, type two control landscapes J
(2)
c and J

(2)
q for

open classical and quantum systems do not have suboptimal maxima on PΩ and Dn,
respectively, and therefore they are also trap-free.

These results establish the important basic topological properties of the J (1) and
J (2) control landscapes for completely controllable open classical and quantum systems.
The essential feature entering the analysis above is the convex structure of all allowed
states, which is specific for open systems. If the system is controllable but significant
constraints are placed on the controls, then they can restrict the set of all available
states to a non-convex set possibly producing false traps on the nominally trap free
landscape. Such false traps can be avoided by removing the constraints. If the system
is uncontrollable, then the corresponding control landscape can have real traps even
when the controls are unconstrained.

The analysis of [25, 26] was able to reveal the presence of saddles in the control land-
scapes for open quantum systems. Furthermore, for closed quantum systems both the
kinematic and dynamic analyses also identified the presence of non-trapping saddles.
In general, different formulations of the controlled evolution (e.g., for the quantum case
either in terms of the final state, as a Kraus map, or in terms of dynamical controls)
can reveal distinct aspects of the control landscapes.

5 Conclusions

This work establishes, in a unified fashion, the absence of any sub-optimal trapping
extrema for controlled open classical and quantum systems under suitable conditions
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and implies the existence of a seamless transition upon seeking control running from
the nano-scale quantum regime out to classical systems at the micro-scale and beyond.
The broad scope of this conclusion is in keeping with its foundation resting on (i) basic
physical characteristics of quantum and classical observables and (ii) simple principles
from convexity analysis. It is surprising that this important conclusion steams from
drawing together these well established, yet hitherto, unconnected components. The
lack of sub-optimal landscape extrema implies that any search algorithm which can
distinguish up from down directions on the landscape should be able to identify the
absolute best value for any J (1) or J (2) objective in a controlled system. This statement
does not necessarily imply that the search will be efficient, but it will not be impeded
by sub-optimal extrema and therefore the search will eventually find a globally opti-
mal solution. Conversly, if for some open system such an algorithm gets stuck at a
sub-optimal extremum, then that finding implies that the system is operating with
significant constraints on the dynamical controls.

Appendix

The mathematical foundation for the conclusion in the body of the paper about trap
free structure of the control landscapes for open classical and quantum systems rests
on the fact that any maximum (resp., minimum) for any concave (resp., convex) func-
tion defined over a convex set [15] is a global maximum (resp., minimum) [16]. For
convenience to the reader, below we give a proof of this simple but crucial result.

A function f : X → R, where X is a topological space, has a suboptimal maximum
(resp., minimum) at x0 if there exists an open neighborhood U(x0) ⊂ X of x0 such
that ∀x ∈ U(x0) : f(x) ≤ f(x0) (resp., f(x) ≥ f(x0)) and x0 is not a global maximum,
i.e., ∃x1 ∈ X such that f(x1) > f(x0) (resp., x0 is not a global minimum, i.e., ∃x1 ∈ X

such that f(x1) < f(x0)). A suboptimal maximum (minimum) is distinguished from
global maxima (minima) for the function f . A global maximum (resp., minimum) is
defined as a point x0 ∈ X such that f(x) ≤ f(x0) (resp., f(x) ≥ f(x0)) for all x ∈ X.

A subset X ⊂ V of a linear space V is a convex set if for any x0, x1 ∈ X and any
λ ∈ [0, 1] the point xλ := (1−λ)x0 +λx1 is in X. A function f : X → R, where X is a
convex set, is called concave (resp., convex), if ∀x0, x1 ∈ X and ∀λ ∈ [0, 1]: f((1−λ)x0+
λx1) ≥ (1−λ)f(x0)+λf(x1) (resp., f((1−λ)x0+λx1) ≤ (1−λ)f(x0)+λf(x1)). Note
that a linear function f : X → R satisfies f((1− λ)x0 + λx1) = (1− λ)f(x0) + λf(x1)
and therefore any linear function is convex and concave.

Let X be a convex set and f : X → R be a concave function. Then f does not have
suboptimal maxima on X as shown below by reduction ad absurdum. The absence of
suboptimal minima for a convex function can be shown in the same way.

Suppose there exists a point x0 ∈ X which is a suboptimal maximum for f . By
the definition of a suboptimal maximum, this means that (1) f(x) ≤ f(x0) in some
neighborhood U(x0) ⊂ X of x0 and (2) there exists x1 ∈ X such that f(x1) > f(x0)
(because x0 is not a global maximum). Since X is a convex set, for any λ ∈ [0, 1] the
point xλ := (1− λ)x0 + λx1 is in X. Since f is concave, we have

f(xλ) = f((1− λ)x0 + λx1) ≥ (1− λ)f(x0) + λf(x1)

> (1− λ)f(x0) + λf(x0) = f(x0)
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Here the first inequality follows from the definition of a concave function; the second
inequality holds since f(x1) > f(x0). Thus, for any 0 < λ ≤ 1,

f(xλ) > f(x0)

For arbitrarily small λ, the point xλ will be arbitrarily close to x0, and therefore this
inequality contradicts the assumption that x0 is a suboptimal maximum. Similarly one
can prove absence of suboptimal minima for a convex function. In particular, a linear
function f does has neither suboptimal minima nor maxima over a convex domain.

The convex structure of the domain X is important in this analysis. For example,
a concave function initially defined over a convex domain can have suboptimal maxima
after restriction to a non-convex subset.

For a function f : X → R, its level set corresponding to the value a ∈ R is defined
as the set Xa := {x ∈ X | f(x) = a} ≡ f−1(a). With this definition, each level set of a
linear function f : X → R with a convex domain X ⊂ V is connected. In fact, let x0
and x1 be any two points on the same level set, i.e. f(x0) = f(x1). By the definition
of a convex set, for any λ ∈ [0, 1] the point xλ = (1− λ)x0 +λx1 is in X. The function
f is linear and therefore f(xλ) = (1 − λ)f(x0) + λf(x1) = f(x0). Thus the segment
{xλ |λ ∈ [0, 1]} belongs to the same level set as x0 and x1 and connects the points x0
and x1.
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