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Abstract

We determine all graphs whose matching polynomials have at most five distinct zeros.

As a consequence, we find new families of graphs which are determined by their matching

polynomial. In particular, we show that for any positive integer n 6= 2, the friendship graph

Fn (the graph consisting of n triangles intersecting in a single vertex) is determined by its

matching polynomial.

AMS Classification: 05C31; 05C70

Keywords: Matching polynomial; Matching unique graph; Comatching graphs; Friendship

graph

1 Introduction

All the graphs that we consider in this paper are finite, simple and undirected. Let G be a graph.

Throughout this paper the order of G is the number of vertices of G. A k-matching in G is a set

of k pairwise nonincident edges and the number of k-matchings in G is denoted by m(G, k). If G

is of order n, the matching polynomial µ(G, x) is defined by

µ(G, x) =
∑

k≥0

(−1)km(G, k)xn−2k,

where m(G, 0) is considered to be 1. The roots of matching polynomial of any graph are all real

numbers. (This was first proved independently in [14] and [17].) The matching polynomial is

related to the characteristic polynomial of G, which is defined to be the characteristic polynomial

of the adjacency matrix of G. In particular these two coincide if and only if G is a forest [13].

Also the matching polynomial of any connected graph is a factor of the characteristic polynomial
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of some tree (see [11, Theorem 6.1.1]). This is another way to see that the roots of matching

polynomial are real numbers because the adjacency matrix of any graph is a symmetric matrix

and so the roots of its characteristic polynomial are real numbers. The roots of µ(G, x) are called

the matching roots of G. Two nonisomorphic graphs with the same matching polynomials are said

to be comatching. A graph G is said to be matching unique if it has no comatching graph. We

also denote the multiset of the roots of the matching polynomial of G by R(G). We use exponent

symbol to show the multiplicities of the elements of R(G).

The determination of graphs with few distinct roots of characteristic polynomials of matrices

associated to graphs (i.e. graphs with few distinct eigenvalues) have been the subject of many

researches. Graphs with three adjacency eigenvalues have been studied by Bridges and Mena [3],

Klin and Muzychuk [16], and van Dam [5, 6]. Connected regular graphs with four distinct adjacency

eigenvalues have been studied by Doob [9, 10], van Dam [5], and van Dam and Spence [8]. Graphs

with three Laplacian eigenvalues have been treated by van Dam and Haemers [7]. Ayoobi, Omidi

and Tayfeh-Rezaie [1] investigated nonregular graphs whose signless Laplacian matrix has three

distinct eigenvalues. For a complete survey on this subject see Chapter 14 of Brouwer and Haemers

[4].

So far, few families of graphs have been shown to be matching unique; these include unique

cages (regular graphs with minimum number of vertices and given degree and girth), 2-regular

graphs, mKr,r, mL, where L is a unique Moore graph with given degree and odd girth, and the

regular complete multipartite graphs. It is also known that if a graph is matching unique, then its

complement is also matching unique (see [2]).

In this paper, we determine all graphs with at most five distinct matching roots. As a result, we

find new families of matching unique graphs. In particular, we show that for any positive integer

n 6= 2, the friendship graph Fn (the graph consisting of n triangles intersecting in a single vertex)

is matching unique.

2 Graphs with few matching roots

We denote the complete graph of order n by Kn and the complete bipartite graph with parts of

sizes r and s by Kr,s. The graph K1,s is called a star.

The roots of the matching polynomial of any graph, like those of characteristic polynomial,

have the “interlacing” property ([15], see also [11, Corollary 6.1.3]):

Lemma 1. Let G be a graph and u be a vertex of that. Then the roots of µ(G − u, x) interlace

those of µ(G, x), i.e. if θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηn−1 are the matching roots of G
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Figure 1: The graph S(3, 3, 5; 9, 2)

and G− u, respectively, then

θ1 ≥ η1 ≥ θ2 ≥ η2 ≥ · · · ≥ θn−1 ≥ ηn−1 ≥ θn.

Let mult(θ,G) denote the multiplicity of θ as a root of µ(G, x).

Lemma 2. (Godsil [12]) For a connected graph G, if mult(θ,G) ≥ 2, then there is a vertex u of

G such that mult(θ,G− u) ≥ mult(θ,G).

Remark 3. Any graph with an odd number of vertices has a zero matching root and if θ is a

matching root of a graph, then so is −θ.

Lemma 4. Let G be connected graph. If the roots of µ(G, x) are ≥ −1, then G ≃ K2.

Proof. Let G be of order n. Since the roots of µ(K1,2, x) are {0,±
√
2}, by interlacing, G has

no K1,2 as an induced subgraph. Thus G must be the complete graph Kn. If n ≥ 3, then, by

interlacing, µ(Kn, x) has a root ≤ −
√
3 because µ(K3, x) = x3 − 3x. This implies G ≃ K2. �

We define a family of graphs which will be used frequently. Add a single vertex u to the graph

rK1,k ∪ tK1 and join u to the other vertices by p+ q edges so that the resulting graph is connected

and u is adjacent with q centers of the stars (for K1,1 either of the vertices may be considered as

center). We denote the resulting graph by S(r, k, t; p, q). (The graph S(3, 3, 5; 9, 2) is depicted in

Figure 1.) Clearly r + t ≤ p+ q ≤ r(k + 1) + t and 0 ≤ q ≤ r.

Lemma 5. µ(S(r, k, t; p, q), x) = xr(k−1)+t−1
(

x4 − (p+ q + k)x2 + t+ p(k − 1)
)

(x2 − k)r−1.

Proof. The graph S(r, k, t; p, q) has a vertex u such that S(r, k, t; p, q)− u = rK1,k ∪ tK1. Since

µ(K1,k, x) = xk−1(x2 − k), by interlacing, {(±
√
k)r−1, 0r(k−1)+t−1} ⊆ R(G). Let ±α and ±β be

the remaining elements of R(G). Since the squares of the roots of matching polynomial of a graph
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sum to its number of edges, we have α2+β2+(r− 1)k = rk+ p+ q. We note that the multiplicity

of zero is equal to the vertices missed by a fix maximum matching. Since the maximum matching

of S(r, k, t; p, q) has r + 1 edges, the multiplicity of zero is r(k − 1) + t − 1. Thus α and β are

nonzero. As the product of the squares of the nonzero roots of matching polynomial of a graph is

equal to its number of maximum matchings,

α2β2kr−1 = m(S(r, k, t; p, q), r + 1) = tkr + (p− t)(k − 1)kr−1.

Therefore,

α2 + β2 = p+ q + k, and α2β2 = t+ p(k − 1).

The result now follows. �

We distinguish some special cases which are important for our purpose. We denote the graph

S(r, 1, 0; p, q) by S(r; s) where s = p+ q. Its matching polynomial is

µ(S(r; s), x) = x(x2 − s− 1)(x2 − 1)r−1.

We also denote S(1, 1, t; t+1, 0) and S(1, 1, t; t+1, 1) by S(t) and S ′(t), respectively. In fact, S(t)
is the graph obtained by joining a new vertex to one of the pendant vertices of K1,t+1 and S ′(t) is

the resulting graph of joining two pendant vertices of K1,t+2. Their matching polynomials are

µ(S(t), x) = xt−1
(

x4 − (t+ 2)x2 + t
)

,

µ(S ′(t), x) = xt−1
(

x4 − (t+ 3)x2 + t
)

.

Moreover, we denote S(1, k, 0; s, 0) and S(1, k, 0; s, 1) by K(k; s) and K′(k; s), respectively. We

have

µ(K(k; s), x) = xk−2
(

x4 − (k + s)x2 + s(k − 1)
)

,

µ(K′(k; s), x) = xk−2
(

x4 − (k + s+ 1)x2 + s(k − 1)
)

.

Theorem 6. Let G be a connected graph and z(G) be the number of its distinct matching roots.

(i) If z(G) = 2, then G ≃ K2.

(ii) If z(G) = 3, then G is either a star or K3.

(iii) If z(G) = 4, then G is a non-star graph with 4 vertices.

(iv) If z(G) = 5, then G is one of the graphs K(k; s), K′(k; s), S(t), S ′(t), S(r; s), for some

integers k, r, s, t, or a connected non-star graph with 5 vertices.
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Proof. (i) If z(G) = 2, then R(G) = {(±α)r}, for some α 6= 0. Thus, from Lemma 2 it follows

that r = 1, and so G ≃ K2.

(ii) If z(G) = 3, then R(G) = {(±α)r, 0s}, for some α 6= 0. If r ≥ 2, then for some vertex

u, {0s−1, (±α)r} ⊆ R(G− u). Considering the coefficients of the matching polynomials of G and

G − u, it turns out that G and G − u have the same number of edges, a contradiction. So r = 1

and we have m(G, 2) = 0. Hence, G is either the star K1,s+1 or K3.

(iii) If z(G) = 4, then R(G) = {(±α)r, (±β)s}, for some nonzero α, β. By Lemma 2, it is

impossible to have both r and s greater than 1. So we may let s = 1. If r ≥ 2, then, there is

some vertex u such that R(G − u) = {0, (±α)r}. Since r ≥ 2, G − u cannot be connected by

part (ii). Hence, G − u is disconnected, and by part (i), α = 1 and G − u ≃ rK2 ∪ K1. Thus

G ≃ S(r, 1, 1; p, q), for some p, q. But this graph has more than five nonzero distinct matching

roots by Lemma 5, a contradiction. Thus r = 1 and so G has four vertices. It turns out that G

can be any connected non-star graph on four vertices as such a graph has a matching of size 2.

(iv) If z(G) = 5, then R(G) = {(±α)r, (±β)s, 0t}, for some nonzero α, β. Again either of r or

s is necessarily equal to 1. Let s be so.

If t = r = 1, then G is a graph on 5 vertices with m(G, 2) > 0. So G can be any connected

non-star graph on 5 vertices.

If t = 1 and r ≥ 2, then R(G − u) is either {(±α)r, 02} or {(±α)r, ±η}, for some η 6= 0.

If R(G − u) = {(±α)r, 02}, then G − u ≃ rK2 ∪ 2K1 or G − u ≃ 2K1,2. This implies that

G ≃ S(r, 1, 2; p, q) or G ≃ S(2, 2, 0; p, q), for some p, q. By Lemma 5, these two graphs have more

than five distinct matching roots, a contradiction. Therefore, R(G− u) = {(±α)r, ±η}. If η 6= α,

then α = 1 and G− u must be a graph of the form G1 ∪ (r − 1)K2 where G1 is a non-star graph

of order 4 with ±1 ∈ R(G1). But there is no graph of order 4 with ±1 as root of its matching

polynomial (see Appendix). Thus η = α. It follows that α = 1 and G− u ≃ (r + 1)K2. Thus, for

some s, G ≃ S(r + 1; s). By Lemma 5, s = β2 − 1. Therefore G ≃ S(r + 1;β2 − 1).

If t ≥ 2 and r = 1, then there is a vertex u such that R(G− u) = {±η, 0t+1}, for some η 6= 0.

Therefore, G− u is either K1,t+2 or K2 ∪ (t+1)K1. If G−u ≃ K1,t+2, then either G ≃ K(t+2; s)

or G ≃ K′(t+2; s), for some s. If G−u ≃ K2∪(t+1)K1, then either G ≃ S(t+1) or G ≃ S ′(t+1).

If t ≥ 2 and r ≥ 2, then, for some vertex u, R(G−u) = {(±α)r, 0t+1}. It turns out that α =
√
k,

for some integer k, and G− u = rK1,k ∪ t′K1, where t′ = t+ 1− r(k − 1). So G ≃ S(r, k, t′; p, q),
for some p, q. Note that the polynomial x4 − (p+ q + k)x2 + t+ p(k − 1), with the conditions on

k, p, q, t arisen by the definition of S(r, k, t; p, q), has no ±
√
k root and it has zero root if and only

if k = 1 and t = 0. So G ≃ S(r, k, t′; p, q) has five nonzero distinct matching roots if and only if

k = 1 and t′ = 0. But if k = 1, then t′ ≥ 3 and this graph has more than five distinct matching

roots, a contradiction. �
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3 Characterization by matching polynomial

In this section we characterize the graphs S(r; s), K(k; s), K′(k; s), S(t), and S ′(t) by their matching

polynomials.

We remark that if r ≤ r′ ≤ s ≤ 2r, then the graphs S(r′; s) and S(r; s) ∪ (r′ − r)K2 have the

same matching polynomials. So in general, for a given s, the graphs S(r; s) are not matching unique

unless for the smallest value of r such that S(r; s) can be defined (these include the friendship graph

Fn ≃ S(n; 2n)). This is shown below.

Theorem 7. For any positive integer s, the graph S(⌈ s
2⌉; s) is matching unique except for s ∈

{3, 4, 5}. In particular, for any positive integer n 6= 2, the friendship graph Fn is matching unique.

Proof. For s = 1, 2, the graphs S(⌈ s
2⌉; s) are isomorphic to K1,2 and K3, respectively, which are

obviously matching unique. So let s ≥ 3. Let G be a graph with µ(G, x) = µ(S(⌈ s
2⌉; s), x). From

Theorem 6, it is seen that G consists of a connected component H and, probably, some copies of

K2 and K1, such that {±1,±
√
s+ 1} ⊆ R(H). By Theorem 6, no graph H ′ with z(H ′) = 4 has

±1 as roots of its matching polynomial. Hence z(H) = 5, and

R(H) = {0,±1,±
√
s+ 1}, for some s ≥ 3. (1)

Thus, H is one of the graphs of Theorem 6 (iv).

We first assume that H has 5 vertices. From the Appendix table we see that only graphs of

order 5 satisfying (1) are the graphs 5.5, 5.6, 5.10, 5.11, 5.16, and 5.17 of that table. The graph

5.16 is isomorphic to S(2; 3), and 5.11 is isomorphic to S(2; 4). Therefore, it turns out that the

graph S(2; 4) is comatching with 5.10, S(2; 3) is comatching with 5.17, and S(3; 5) is comatching

with the union of a K2 with either 5.5 or 5.6.

Clearly, for any t, neither R(S(t)) nor R(S ′(t)) contains ±1.

In order to have ±1 ∈ R(K(k; s′)), k and s′ must satisfy k + s′ = s′(k − 1) + 1. The only

feasible solution of this equation is k = 3, s′ = 2. So S(2; 3) and K(3; 2) have the same matching

polynomial. Similarly, ±1 ∈ R(K′(k; s′)) if and only if k+ s′ +1 = s′(k− 1)+ 1. The only feasible

solutions of this equation are k = s′ = 3 and k = 4, s′ = 2. As mult(0, H) = 1, H cannot be

K′(4; 2). It follows that S(3; 5) and K′(3; 3) ∪K2 are comatching. �

Theorem 8. For any integer t ≥ 0, the graph S(t) is matching unique unless t ∈ {2, 3, 4}; and
S ′(t) is matching unique unless t ∈ {2, 3}.

Proof. For t = 0, 1, we have S(0) ≃ K1,2 and S(1) isomorphic to the path on 4 vertices which

are matching unique. Let t ≥ 2 and G be a graph with µ(G, x) = µ(S(t), x). Since ±1 6∈ R(S(t)),
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in view of Theorem 6, G consists of a connected component H and probably some isolated vertices

such that R(H) and R(S(t)) have the same nonzero elements. Whence z(H) = 4 or 5 and so H is

one of the graphs described in Theorem 6 (iii),(iv). Further, we have

m(H, 1) = m(H, 2) + 2, and t = m(H, 2) ≥ 2. (2)

First, let H be of order 4. From the Appendix table, we see that the only graph of order 4

satisfying (2) is the graph 4.4, i.e. K2,2, which corresponds to t = 2. So it follows that S(2) and

K2,2 ∪K1 are comatching.

Now let H have 5 vertices. Among the connected graphs of order 5, from the Appendix table

we see that the graphs 5.9 (corresponding to t = 4), 5.15 (corresponding to t = 3), and 5.20 satisfy

(2). (The graph 5.20 is actually isomorphic to S(2).) So we have that S(4) and 5.9 with two extra

isolated vertices are comatching and so are S(3) and 5.15 with an extra isolated vertex.

No graph S(r; s) satisfy (2), and so H cannot be such a graph.

Now we examine the possibility of H being a K(k; s) or K′(k; s). The only graphs K(k; s) satisfy

(2) have the parameters s = 1 and k any positive integer with t = m(K(k; 1), 2) = k − 1. But for

these parameters we have K(k; 1) ≃ S(k − 1). Among the graphs K′(k; s), only K′(3; 2) satisfies

(2), that is the graph 5.9 which is already considered.

This completes the proof for S(t). The proof for S ′(t) is similar. �

Theorem 9. For any integer k ≥ s ≥ 1, the graph K(k; s) is matching unique unless s = k− 2 or

(k, s) ∈ {(7, 2), (6, 2), (5, 2), (5, 1), (4, 2), (4, 1), (3, 3), (3, 2), (3, 1)};

and K′(k; s) is matching unique unless s = k − 2 or

(k, s) ∈ {(6, 3), (5, 3), (4, 4), (4, 3), (4, 2), (4, 1), (3, 1)}.

Proof. For k = 1, 2, form the Appendix table it is easily seen the graphs K(k; s) are matching

unique. Let k ≥ 3 and G be a graph with µ(G, x) = µ(K(k; s), x). By the proof of Theorem 7,

±1 ∈ R(K(k; s)) if and only if k = 3, s = 2, and the graph K(3; 2) is comatching with S(2; 3). So

we may assume that ±1 6∈ R(K(k; s)) and so G consists of a connected component H and probably

some isolated vertices such that R(H) and R(K(k; s)) have the same nonzero elements. Whence

z(H) = 4 or 5 and so H is one of the graphs described in Theorem 6 (iii),(iv). Further, for some

integers k ≥ 2, H satisfies

m(H, 1) = k + s, m(H, 2) = s(k − 1), and 1 ≤ s ≤ k. (3)

We first examine the possibility of H being a K(k′; s′). So we must have

s′(k′ − 1) = s(k − 1), and k′ + s′ = k + s.

7



graph comatching

K(3; 1) 4.4 ∪K1

K(3; 2) 5.16

K(3; 3) 5.12

K(4; 1) 5.15 ∪K1

K(4; 2) 5.12 ∪K1, 5.13 ∪K1

K(5; 1) 5.9 ∪ 2K1

K(5; 2) 5.8 ∪ 2K1

K(6; 2) 5.4 ∪ 3K1

K(7; 2) 5.2 ∪ 4K1

graph comatching

K′(3; 1) 4.2 ∪K1

K′(4; 1) K4 ∪ 2K1

K′(4; 2) 5.6 ∪K1

K′(4; 3) 5.3 ∪K1

K′(4; 4) 5.2 ∪K1

K′(5; 3) 5.2 ∪ 2K1

K′(6; 3) K5 ∪ 3K1

Table 1: The graphs K(k; s) and K′(k; s) with a comatching containing a component of order 4 or 5.

The only non-trivial solution to this system is s′ = k − 1, k′ = s + 1. Taking into account the

condition k ≥ s and k > k′ ≥ s′, the feasible solution exists only when s = k − 2 which is

s′ = k′ = k − 1. It turns oust that the graphs K(k; k − 2) and K(k − 1; k − 1) ∪K1 have the same

matching polynomial.

Now, if we consider the connected graphs of order 4 or 5 satisfying (3) for some integers k, s,

we come up with the left list of Table 1.

The only r, s′ such that S(r; s′) satisfies (3), for some k, s, are r = 2, s′ = 3 which corresponds

with k = 3, s = 2; but the two graphs K(3; 2) and S(2; 3) are comatching.

Except for the case K(k; 1) ≃ S(k − 1), the graph H cannot be a S(t) as seen in the proof of

Theorem 8. Also, no S ′(t) satisfies (3) for any k, s.

This completes the proof for K(k; s). The proof for K′(k; s) is similar. �
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Appendix. Connected graphs up to five vertices and their matching polynomial

label graph matching polynomial

2.1 x
2 − 1

3.1 x
3 − 3x

3.2 x
3 − 2x

4.1 x
4 − 6x2 + 3

4.2 x
4 − 5x2 + 2

4.3 x
4 − 4x2 + 1

4.4 x
4 − 4x2 + 2

4.5 x
4 − 3x2

4.6 x
4 − 3x2 + 1

5.1 x
5 − 10x3 + 15x

5.2 x
5 − 9x3 + 12x

5.3 x
5 − 8x3 + 9x

5.4 x
5 − 8x3 + 10x

5.5 x
5 − 7x3 + 6x

5.6 x
5 − 7x3 + 6x

label graph matching polynomial

5.7 x
5 − 7x3 + 7x

5.8 x
5 − 7x3 + 8x

5.9 x
5 − 6x3 + 4x

5.10 x
5 − 6x3 + 5x

5.11 x
5 − 6x3 + 5x

5.12 x
5 − 6x3 + 6x

5.13 x
5 − 6x3 + 6x

5.14 x
5 − 5x3 + 2x

5.15 x
5 − 5x3 + 3x

5.16 x
5 − 5x3 + 4x

5.17 x
5 − 5x3 + 4x

5.18 x
5 − 5x3 + 5x

5.19 x
5 − 4x3

5.20 x
5 − 4x3 + 2x

5.21 x
5 − 4x3 + 3x

10


	1 Introduction
	2 Graphs with few matching roots
	3 Characterization by matching polynomial

