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Abstract

Using the theory of Weyl structures, we give a natural generalization of the notion of essential
conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a
parabolic structure is inessential whenever the automorphism group acts properly on the base space. As
a corollary of the generalized Ferrand-Obata Theorem proved by C. Frances, this proves a generalization
of the “Lichnérowicz Conjecture” for conformal Riemannian, strictly pseudo-convex CR, and quater-
nionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism
with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing
fields, which characterizes (locally) essential singularites via their holonomy.

1 Introduction

1.1 Motivation from conformal geometry

Let (M,c) be a smooth, n-dimensional semi-Riemannian conformal manifold. For any choice of semi-
Riemannian metric g from the equivalence class ¢ defining the conformal structure, we have the obvious
inclusion of the group of isometric diffeomorphisms of (M, ¢g) in the group of conformal diffeomorphisms of
(M, ¢), Isom(M, g) C Conf(M, c). At the infinitesimal level of vector fields, we have the corresponding inclu-
sion of Killing fields in the conformal vector fields, KVF(M, g) C CVF(M, ¢), which is obvious from the def-
initions: KVF(M, g) :={X € X(M)|Lxg = 0}; and CVF(M,¢) :={X € X(M)|Lxg = Ag, I\ € C(M)}.

A conformal diffeomorphism ¢ € Conf(M,c) is called essential if ¢ is not an isometry of any metric
g € ¢, and the conformal structure (M, c) is essential if Isom(M, g) is a proper subgroup of Conf(M, ¢) for
all representatives g € c¢. Similarly, a conformal vector field X € CVF(M,c) is called essential if there is
no representative g € ¢ for which X € KVF(M,g). It is a fact — although not necessarily obvious from
the preceding definitions — that there are compact and non-compact essential conformal structures in all
dimensions n > 2 and all signatures (p,q), which moreover admit essential conformal vector fields. The
standard compact example is given by the conformal “Mdbius sphere” (SP4,¢) of any signature (p, ¢) (also
called the Einstein universe — these are the conformally flat homogeneous models of conformal geometry,
which in Riemannian signature are just the standard n-spheres equipped with the conformal class of the
round metric), while the standard non-compact example is RPT? equipped with the conformal class of the flat
metric of signature (p, ¢). In fact, as a result of the following well-known theorem, giving a positive answering
to the so-called Lichnérowicz Conjecture, we know that in Riemannian signature these two examples are the
only essential structures:

Theorem A. (Ferrand-Obata) If (M, ¢) is an essential Riemannian conformal structure of dimension n > 2,
then it is conformally diffeomorphic to the n-dimensional sphere with the round metric, or to n-dimensional
Euclidean space.

For compact manifolds, this Theorem was proven by M. Obata and J. Lelong-Ferrand in the late 1960’s
and early 1970’s. A proof for the non-compact case, announced in 1972 by Alekseevski, was later discovered
to be incomplete, and a complete proof was first given in 1994 by Ferrand (cf. [6], [8] and references therein).
Recently, a corresponding result was proven at the infinitesimal level by C. Frances [9] (note that this theorem
does not simply follow from an application of the Ferrand-Obata Theorem, because the conformal vector fields
are not assumed to be complete):
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Theorem B. (Frances) Let (M, ¢) be a conformal Riemannian manifold of dimension n > 3, endowed with
a conformal vector field X which vanishes at zp € M. Then either: (1) There exists a neighborhood U of
xo on which X is complete, generates a relatively compact flow in Conf(U, ¢), and is inessential on U, i.e.
X € KVF(U, g) for some g € c|yy; or (2) There is a conformally flat neighborhood U of zp, and X is essential
on each neighborhood of xg.

One direction of research into how these results do (or do not) generalize to other settings is to consider
the analogous questions for pseudo-Riemannian metrics, where essential conformal structures turn out to be
much more prevalent (cf. [8] for a survey). The aim of the present text is to introduce generalizations of
the notion of essential structure, and the corresponding notion at the infinitesimal level, to the class of all
parabolic geometries. Furthermore, we establish a generalization of Theorem A to a class of geometries which
have been called “rank one parabolic geometries”: conformal Riemannian structures; strictly pseudo-convex
CR structures of hypersurface type; positive-definite quaternionic contact structures; and octonionic contact
structures. (In fact, once our general definitions have been introduced and some basic properties established,
we only have to prove the easy part of this generalized Theorem A, the difficult part having been taken care of
in [7].) Finally, we establish some local properties of essential infinitesimal automorphisms which generalize
some of the tools used in [9] to prove Theorem B for conformal vector fields on Riemannian manifolds.

1.2 Background and main definitions

Let us begin by recalling the definitions of parabolic geometries and their Weyl structures (the latter, intro-
duced by A. Cap and J. Slovék in [3], will be central to our notion of essential parabolic structures, etc.).
Parabolic geometries are certain types of Cartan geometries, which are very general: given a closed subgroup
P of a Lie group G, a Cartan geometry of type (G, P) (or modelled on the homogeneous space G/P) is given
by a principal P bundle 7 : G — M, equipped with a Cartan connection w. That is, w € Q'(G, g) satisfies:

* _ -1 .
Ry(w) =Ad(p™ ") ow, forallp € P; (1)
w(X) = X, for any X € p, X its fundamental vector field on G; (2)
w(u) : T,G — g is a linear isomorphism for all u € G. (3)

A Cartan geometry of type (G, P) is a parabolic geometry if G is a real or complex semi-simple Lie group,
and P C G is a parabolic subgroup as in representation theory. (For a more detailed discussion of the basic
properties of parabolic subgroups and parabolic geometries, the reader is referred to Section 2 of [3] and the
references therein. Here we only attempt to cite some of the key facts which are germane to the subsequent
text.) In particular, in the parabolic setting the Lie algebra g of G has an induced |k|-grading for some
natural number k, so g = g ® ... B gr with [g;,9,;] C gi1; and the subalgebra g = g1 & ... B g_1 is
generated by g_1. The Lie algebra of the parabolic subgroup P is the parabolic subalgebrap =go®...® gk,
which has Levi decomposition p = go @ p4 with go reductive and py = g1 @ ... ® g the nilradical of p. At
the group level, we have a reductive subgroup Gog C P whose Lie algebra is gg, and P = Gg X Py where
P, = exp(p4) is a normal, nilpotent subgroup of P globally diffeomorphic to p; via the exponential map.

The above-stated properties of the parabolic pair (G, P) and their Lie algebras, are used to identify the
following important geometric structures associated to a parabolic geometry (G — M,w) of type (G, P).
The orbit space Gy := G/Py of the P;-action on G defines a Gy-principal bundle 7wy : Go — M, while
by definition we also have a P,-principal bundle 7 : G — Gy. The filtration of g by Ad(P)-invariant
submodules g' = g; @ ... ® gx descends to a filtration of g/p = g_ which is invariant under the quotient
representation Ad : P — Gl(g/p), and thus determines a filtration of the tangent bundle on the base space,
TM =Tk M > ...>T "M, via the isomorphism

™ %w g XM(P) g/pa

(which holds in general for Cartan geometries) and setting T°M =2, G XKd(P) g'/p. Furthermore, the Cartan
connection w descends to Gy to identify it as a reduction to Gy of the structure group of the associated graded
tangent bundle gr(TM) = gr_,(TM)® ... ®gr_,(TM), where gr;,(TM) =T'M/T*"' M.



The data (M, {T*M},Go) — consisting of a smooth manifold M, a filtration {T*M} of its tangent bundle
which satisfies k(7" M) = dim(g’/p), and a reduction Gy of the structure group of gr(T'M) to G —, is called
an infinitesimal flag structure of type (g, P). The flag structure is regular if the Lie derivative of vector fields
on M respects the filtration, i.e. [[(T"M),T(TM)] C T(T**7 M), and if the alternating bilinear form thus
induced on gr(T'M) gives it a point-wise Lie algebra structure isomorphic to g—. When the flag structure is
induced by a parabolic geometry of type (G, P), this regularity assumption can be related to an equivalent
regularity condition that the curvature of the Cartan connection w have strictly positive homogeneity (cf.
discussion in Sections 2.6 and 2.7 of [3], as well as references cited there). A fundamental theorem of parabolic
geometry states that, for any regular infinitesimal flag structure of type (g, P), there exists a regular parabolic
geometry of type (G, P) which induces it. This parabolic geometry is uniquely determined up to isomorphism
by a normalisation condition on the curvature of the Cartan connection in all but an exceptional family of
parabolic types (G, P). We will make use of this fundamental fact to identify the geometric structure of
an infinitesimal flag structure with the regular, normal parabolic geometry inducing it, noting that this is a
somewhat loose use of terminology since in the case of the exceptional types a choice of “first prolongation”
must also be fixed for the latter to be uniquely determined.

In [3], Cap and Slovik define a Weyl structure for any parabolic geometry (G — M, w) of type (G, P), to
be a Gp-equivariant section o : Gy — G of the P,-principal bundle 71 : G — Gy. By Proposition 3.2 of [3],
global Weyl structures always exist for parabolic geometries in the real (smooth) category, and they exist
locally in the holomorphic category. Considering the pull-back of the Cartan connection, o*w, the |k|-grading
of g gives a decomposition into Gy-invariant components, c*w = c*w_g + ...+ 0*wg, and by the observation
that o commutes with fundamental vector fields and the defining properties of the Cartan connection (cf.
3.3 of [3]), it follows that o*w; is horizontal for all ¢ # 0, and that o*wy defines a principal G connection on
Go — M. In particular, we see that the pair (Go — M, o*w<) defines a Cartan geometry of type (P*, Gp),
where P* & exp(g_) X Gy is the subgroup of G containing G with Lie algebra p* = g_ & go, and the Cartan
connection is given by

O'*(US :U*w7k+---+o'*w0 EQl(g07p*) (4)

One reason Weyl structures are very useful for studying a parabolic geometry, is that they are in fact
determined by very simple induced geometric objects, namely by the R¥-principal connections they induce
on certain ray bundles associated to Gy. Fix an element E) in the center of the reductive Lie algebra gg such
that ad(E)) acts by scalar multiplication on each grading component g; of g (for example the grading ele-
ment E, which always exists and satisfies ad(E)|g, = i-). Then there is a unique representation A : Go — R*
satisfying \'(A) = B(E\, A) for all A € go, B the Killing form, and hence an associated RT-principal bundle
L — M. For any Weyl structure o, the 1-form ) o o*wy € 2!(Gp) induces a R*-principal connection o*
on L£* = Gy/Ker(\). After introducing these objects and studying their properties in Section 3 of [3], Cap
and Slovak prove the fundamental result that the correspondence o — ¢ defines a bijective correspondence
between the set of Weyl structures and the set of principal connections on £* (cf. Theorem 3.12 of [3]).

In particular, this fact makes it possible to defined certain distinguished classes of Weyl structures: A Weyl
structure o is closed if the induced RT-principal connection ¢ has vanishing curvature; it is ezact is o is a
trivial connection induced by a global trivialisation of the scale bundle £* — M. Cap and Slovék prove that
closed and exact Weyl structures always exist (in the smooth category), and the spaces of closed and exact
Weyl structures are affine spaces over the closed, respectively over the exact, 1-forms on M. Equivalently,
an exact Weyl structure o is characterized by the existence of a holonomy reduction of the Gp-principal
connection o*wy to the subgroup Ker(A\) C Gy (cf. Sections 3.13-3.14 of [3]). We will denote this reduction
by 7 : Go = Go, and the corresponding reduction of G to the structure group Ker(\) by

g:=co0r:Gy—G.

Thus an exact Weyl structure determines a Cartan geometry (Go — M,5*w<) of type (P*,Ker()\)) for
P* = exp(g_) x Ker(\) the subgroup of G containing Ker(A) with Lie algebra p* := g_ & Ker(\).

Now we are ready to define essential parabolic structures and essential infinitesimal automorphisms.
For now, let us take the following definitions for automorphisms, respectively infinitesimal automorphisms,



of a Cartan geometry. For a Cartan geometry (G — M, w) of arbitrary type (G, P), an automorphism
® € Aut(G,w) is a P-principal bundle morphism of G such that ®*w = w. An infinitesimal automorphism
X € inf(G,w) is given by X € X(G), such that (R,).X = X, and the Lie derivative satisfies Lxw = 0. Note
that since ® : G — G is a P-bundle morphism, it naturally induces both a Gp-bundle morphism ®q : Gy — Go
and a diffeomorphism ¢ : M — M which are determined, respectively, by the relations ®gony = 74 0 ®
and g om = mo ®. If the morphism ®y preserves the sub-bundle r(Gy) C Gy determined by some exact
Weyl structure, then we also get a Ker()\)-bundle morphism ®q : Go — Go by restriction. Similar statements
hold for an infinitesimal automorphism X € X(G), and we carry over the notation in an obvious way, i.e.
Xg € %(go), X e :{(M) and XQ S %(?0)

Definition 1.1. Let (G — M, w) be a parabolic geometry of type (G, P), and o : Gg — G a Weyl structure.
The automorphism group of ¢ is the subgroup

Aut(o) := {® € Aut(G,w) | Do € Aut(Go, 0" w<)}.
If o is exact, we define the subgroup of exact automorphisms of o to be:

Aut(7) := {® € Aut(G,w) | Po(Go) C Goand @y € Aut(Go, 7 w<)} (5)
= {(I) S Aut(a) | @0(?0) C GQ} (6)

An automorphism ® € Aut(G,w) is essential if it is not an exact automorphism of any exact Weyl structure
o:Gy = G. We call (G,w) an essential parabolic structure if Aut(z) is a proper subgroup of Aut(G,w) for
every exact Weyl structure . We call a regular infinitesimal flag structure M = (M, {T*M?},Gy) of type
(g, P) an essential structure if the regular, normal parabolic geometry inducing it is essential.

Similarly, we define the subalgebra of infinitesimal automorphisms of o to be
inf(o) := {X € inf(G,w) | X¢ € inf(Go, 0 w<)}
and if o is exact, the exact infinitesimal automorphisms of o are:
inf(7) := {X € inf(G,w) | Xo := (Xo)g, € X(Go) and X € inf(Go, 7 w<)} (7)
= {X € inf(0) | (Xo) 5, € X(Go)} (8)

An infinitesimal automorphism of the parabolic geometry X € inf(G,w) is called essential if it is not an
exact infinitesimal automorphism for any exact Weyl structure. For M a regular infinitesimal flag structure
as above, we say a vector field X € X(M) is an essential infinitesimal automorphism of M if it lifts to an
essential infinitesimal automorphism of the regular, normal parabolic geometry inducing M.

Remark 1.2. As Charles Frances has pointed out to us, this definition turns out to be equivalent to the one
given in Section 2.2 of [8] which does not make explicit use of Weyl structures.

Remark 1.3. The equivalence of (5) and (6) (respectively of (7) and (8)) follows immediately from the
definitions, noting that the morphisms ®¢ of Gy and ®¢ of Gy are related, whenever ®¢(Go) C Go, by
ro®y=dgor.

1.3 Organisation of the text and summary of main results

Given Definition 1.1, we must first show that this is indeed a generalization of the notion of essential con-
formal structures. This is done in Section 2.1 via a Lemma giving equivalent characterisations of when an
automorphism ® € Aut(G,w) lies in Aut(o) (resp. in Aut(s)), given a fixed (exact) Weyl structure o. This
is then used in Section 2.2 to establish the general global result, that a parabolic structure is essential only
if the action of the automorphism group Aut(G,w) on M is non-proper.

With this, we may apply the main theorem of [7] to prove a Lichnérowicz Theorem for rank one parabolic
geometries, confirming the conjecture formulated in Section 2.2 of [8] for these geometries. At the level of



infinitesimal flag structures, the rank one parabolic geometries are: conformal Riemannian structures; strictly
pseudo-convex, partially-integrable CR. structures of codimension one; positive-definite quaternionic contact
structures; and octonionic contact structures. The homogeneous models of these parabolic geometries are,
respectively: G/P =~ S™ with G = SO(n + 1,1); G/P ~ S*"*! with G = SU(n + 1,1); G/P ~ $**3 with
G = Sp(n+1,1); and G/P ~ S with G = F; ?°. (These homogeneous models may be viewed as the “con-
formal infinities” of the rank one Riemannian symmetric spaces, a view emphasized in [1] where quaternionic
and octonionic contact structures were defined.) The Lichnérowicz Theorem for rank one parabolic geome-
tries then states that the only essential parabolic structures of these types are the compact homogeneous
models G/ P, and the non-compact spaces G/P\{eP}.

Section 3 develops local properties of essential infinitesimal automorphisms. This amounts to studying
infinitesimal automorphisms near a singularity xg, since using the same methods needed to establish the
Lichnérowicz Theorem shows that any infinitesimal automorphism of a parabolic geometry is inessential in
some neighborhood of any point x such that X (z) # 0. Section 3.1 establishes a result characterizing in-
finitesimal automorphisms of arbitrary Cartan geometries (G — M,w) via an identity involving the curvature
of w. This generalises an identity established in [2] for parabolic geometries, which is necessary because we
require the identity for the Cartan geometry (Go,o*w<) (respectively, for (Go,o*w<)) induced by a Weyl
structure o. In Section 3.2, we apply this to prove a generalization of results of [9], which give a “dictionary”
relating essentiality of an infinitesimal automorphism near a singularity zo to properties of its holonomy ht, a
one-parameter subgroup of P which is determined up to conjugacy (cf. Definition 3.2). Already in conformal
geometry, this result is of some interest because it can be used to determine whether a conformal vector
field is locally essential from looking at the adjoint tractor it determines. We expect that our generalization
of this result to arbitrary parabolic geometries, will yield a generalization of Theorem B, characterizing the
local properties of essential conformal vector fields on Riemannian manifolds, to the other rank one parabolic
geometries.

Acknowledgements: I am grateful to Charles Frances for discussions about the methods used in [7] and
[9], and to Felipe Leitner for useful comments on an earlier version of the text.

2 Proof of global results

Here and in the sequel, we let M = (M,{T*M},Gy) denote a regular infinitesimal flag structure of some
parabolic type (g, P), which we will generally take to be of non-exceptional type, so that the regular, normal
parabolic geometry of type (G, P) inducing it, is unique up to isomorphism. If we need to distinguish this
parabolic geometry from others of the same type, we will use the notation (G,w") to signify the canonical
(normal Cartan) geometry.

In this setting, we can define an automorphism of the structure in terms of M: An automorphism of
the regular infinitesimal flag structure, ¢ € Aut(M), is a diffeomorphism ¢ € Diff (M) which satisfies: (i)
¢« (TyM) C T} )M for all 2 € M and all —k < i < —1; and (ii) the induced bundle map gr(¢) (which as a
consequence of (i) is a lift of ¢ defined on the bundle F(gr(T'M)) of frames of the associated graded tangent
bundle) preserves Gy as a subbundle of F(gr(TM)) (and hence gr(y) restricts to a Gp-bundle morphism @
of Gp). We can identify Aut(M) with Aut(G,w") since by uniqueness of (G, w™) up to isomoprhism, ¢ (and
) lift to a unique P-bundle morphism ® of G preserving w™® under pullback. We will do this in the sequel,
e.g. thinking of an automorphism ¢ € Aut(M) as including as well the automorphism ® € Aut(G, w"™®) and
the induced Go-bundle morphism ®¢ = gr(¢)g, of Go.

2.1 General results on essential automorphisms

Lemma 2.1. Let ® € Aut(G,w) be an automorphism of a parabolic geometry, let o be a Weyl structure, and
let a scale bundle L* — M be fived. The following are equivalent:



(i) ® € Aut(o);

(ii) ® preserves the scale bundle connection o* € QY(L*): ®50* =0
(i11) ®fo*w = o*w;

(iv) (Poo)w=(00Py)*w.

A
’

If o is evact, then ® € Aut() if and only if the associated global scale s, € T'(L)) is ®-invariant, i.c.
Seop==®Pyo0s5,.

Proof. To begin with, since we may identify £* = Gy/Ker(\) and denote the resulting projection map
7y : Go — L, then we have a naturally induced R*-bundle morphism ®, of £ which is defined by the
relation @) omy = my0®y. Now we see that (i) = (ii), since ®{o*w< = o*w< implies that P{o*wy = c*wpy. In

particular, ®§ (N oo*wp) = N o®fo*wy = N oo*wy. Hence, the RT-bundle morphism ®, and the R*-principal

A A

connection o, induced on £* by ®¢ and X o o*wy, respectively, satisfy: @ja’\ =o".

Next, consider the Weyl structure,
P*'c:=d logody:Gy —G.
This is a Weyl structure: It is a section of 71 : G — Gy by the calculation,
mio0® 0 =m, 00 toood
= (®g) tomy 000 Py =1Idg,.
Also, by the Gy- and P-equivariance of the bundle maps ®y and ®, respectively, we see that ®*o is Gg-
equivariant whenever ¢ is.
We now show that (ii) = (iii): Consider the R*-principal connection (®*o)* € Q!(£*). This is induced by:
N o (®*0)*wo =N o (@1 oo odg)*wy)

=)o (®fo* (d ) *wy)

=X o (Do wy) = D5\ 00 wp).
So (®*0)* = &30, which equals o by assumption (ii). Thus, by Theorem 3.12 of [3] (cf. discussion in Sec-
tion 1.2), the Weyl structures ®*o and o are equal. In particular, o*w = (®*0)*w. But a calculation similar

to the ones above, plugging in the definition of ®*o and using the fact that (®~!)*w = w, one calculates
(®*0)*w = P{o*w, so we have (iii).

Clearly, (iii) = (i), so (i), (ii), and (iii) are equivalent. Finally, the equivalence of (iii) and (iv) is seen by
comparing the identity (® o 0)*w = o*w (since ® € Aut(G,w)) and (0 0 Pp)*w = Pfo*w.

To see the final statement of the Lemma, let o be an exact Weyl structure and let us denote by s, € I'(£*)
the global scale which induces the trivial connection o* € Q'(£*). That is, for any point p = s, (z).r € L,
for x € M,r € R", we have the decomposition

T,LY = (Ry)+((80)+ (T M)) ® RC (p),

for ¢; the fundamental vector field on £* of the vector 1 € R; the value of 0* on a tangent vector v € T,L* is
given by the coefficient of (;(p) determined by this decomposition. Then the holonomy reduction of (£}, o)
to the trivial structure group is given by s, (M) C £*, and the reduction of (Go, o*wp) to Ker()) is given by

Go =y '(so(M)) C Go.

Now if ® € Aut(7), then by definition ®¢(Go) C Go. So for u € Gy with mo(u) = z € M, we have
ma(u) = so(x) and (since Po(u) € Gp as well) my o Pg(u) = s, o mo(Po(u)). Thus, by the definitions of
@, : LY = LY and p: M — M from &, we have

D) 05,(x) =Py omy(u) =mx 0 Py(u) = s, 0me(Pp(u))) = s5 0 (),



which shows one implication claimed. For the other implication, note that from the invariance ®yo0s, = s,0¢,
the invariance @ja’\ = o> of the Rt-connection follows directly from the definition of ¢* in terms of s,.
(Hence ® € Aut(o) by the equivalence of (i) and (ii).) And in the same way as we just computed, it also
follows that ®o preserves the sub-bundle Gy, so ® € Aut(7). q.e.d.

Remark 2.1. It follows, from the final statement in Lemma 2.1, that Definition 1.1 recovers the classical
definition of essential conformal structures and essential conformal vector fields when the regular infinitesimal
flag structure is given by a conformal semi-Riemannian structure (M, c¢) of signature (p, ¢). In that case, Gy
is just the conformal group R x O(p, q), Go is the bundle of frames which are semi-orthonormal with respect
to some metric g € ¢, and the choice of scale representation,

A:RT x O(p,q) = R
Ai(s, A) = 571

identifies £* 2 Go/Ker()\) with the ray bundle Q — M of metrics in the conformal class, with the standard
R*-action given by s.g, := s2g, for any g € ¢ and 2 € M corresponding to g, € Q. Global sections of £*
thus correspond to choices of a metric in the conformal class.

Remark 2.2. In fact, it follows from the proof of Lemma 2.1 that an automorphism ® € Aut(G,w) is an
exact automorphism of an exact Weyl structure o whenever ®, preserves the sub-bundle Gy, i.e. the require-
ment in Definition 1.1 that ® € Aut(o) is superfluous to guarantee that ® € Aut(7). In the conformal case
this is familiar, as the sub-bundle Go C Gy is simply the bundle of orthonormal frames with respect to a
choice of metric g in the conformal equivalence class, and a conformal diffeomorphism which preserves this
sub-bundle must also preserve g.

On the other hand, the requirement that ®(Go) C Gy is necessary to guarantee that an automorphism ® of an
exact Weyl structure o is in fact an eract automorphism. An instructive example is the conformal structure
induced by the Euclidean metric on R™: The diffeomorphism given by dilation by a positive constant r is
always an automorphism of the exact Weyl structure corresponding to the Euclidean metric. However, for
r # 1, this diffeomorphism is not an isometry, hence not an exact automorphism. We are grateful to Felipe
Leitner for bringing this to our attention, which led to a modification of Definition 1.1.

2.2 Lichnérowicz Theorem for rank one parabolic geometries

In this section, we prove the following (cf. Section 1.3 for the definition of rank one parabolic geometries,
which includes conformal Riemannian structures):

Theorem 2.2. Let (G — M,w) be a reqular rank one parabolic geometry, with M connected. If this parabolic
structure is essential, then M is geometrically isomorphic to either the compact homogeneous model G/P or
the noncompact space G/P\{eP}.

The key result needed to prove this theorem is the following, proved by C. Frances (Theorem 3 of [7]),
which generalizes theorems of Ferrand [6] and Schoen [11] in the cases of conformal Riemannian and strictly
pseudo-convex CR structures:

Theorem 2.3. (Frances, [7]) Let (G — M,w) be a regular rank one parabolic geometry, with M connected.
If Aut(G,w) acts improperly on M, then M is geometrically isomorphic to either the compact homogeneous
model G/P or the noncompact space G/P\{eP}.

(In both statements, “geometrically isomorphic” means there is a diffeomorphism of M onto the space in
question, which is covered by a morphism of Cartan bundles which pulls back the Maurer-Cartan connection
to w.) Theorem 2.2 now follows as a result of Theorem 2.3 and the following proposition:

Proposition 2.4. If (G — M,w) is an essential parabolic structure, then Aut(G,w) acts improperly on M.

Proof. Fix a bundle of scales £* — M for (G,w). Assume that Aut(G,w) acts properly on M and let us show
that the parabolic structure is not essential. By Lemma 2.1, it suffices to construct a global scale s : M — £



which is Aut(G,w)-invariant, i.e. such that ® o s = s 0 ¢ holds for all ® € Aut(G,w) and @y : L} — L,
@ : M — M the induced diffeomorphisms.

We construct this Aut(G, w)-invariant scale s using classical properties of proper group actions. The so called
“Tube Theorem” (cf. e.g. Theorem 2.4.1 in [5]) guarantees the following, for a C°°-action of a Lie group H
on a manifold M which is proper at x € M: There exists a H-invariant neighborhood U of x on which the
H-action is equivalent to the left H-action on the quotient space H X g B — for K C H a compact subgroup
and B a K-invariant neighborhood of 0 in a K-module V' — given by hj.[he, b] = [h1hs,b] for h; € H,b € B
and [h, b] the equivalence class of the (h,b) € H x B under the left K-action k.(h,b) := (h.k™!, k.b). Starting
from a choice of global scale sq : M — £*, and letting H = Aut(G,w), e € H the identity automorphism and
® € H arbitrary, set:

sur(le,b]) = /@ () o[ ) (9)
su([2,5]) = D1 (s ([e. ). (10)

One verifies that this gives a well-defined local section sy : U — E"\U, which involves checking that for
(e,b) ~ (®,V') (i.e. for @ € K and b = ¢(b')) the values sy ([e,b]) given by (9) and sy ([®,d']) given by (10),
agree. This follows by unwinding the definitions, and using a bi-invariant Haar measure d¥ on the compact
group K. And since [®,b] = ®.[e, b] corresponds to the point ¢(z’) for ' ~ [e, b], the defining equation (10)
automatically gives us the invariance property, sy o p = ®) o sy. Now we can cover M with a finite number
of H-invariant open sets like U above, and construct a global scale s with this invariance property by taking
a finite average. q.e.d.

3 Proof of local results

A key reference for the study of infinitesimal automorphisms of parabolic geometries is [2]. In that text, A.
Cap generalised to arbitrary parabolic geometries a bijective correspondence between conformal vector fields
and adjoint tractors (sections of the associated bundle to the canonical Cartan bundle, G — M, induced
by the adjoint representation on g) satisfying an identity involving the Cartan curvature, which was first
discovered by A. R. Gover in [10]. Moreover, the text of Cap relates this general bijective correspondence
to the first splitting operator of a so-called curved BGG-sequence for the parabolic geometry, cf. Theorem
3.4 of [2]. While for a general Cartan geometry we cannot hope to have this kind of bijective correspondence
between a class of vector fields on the base manifold and adjoint tractors or other objects defined in terms
of the total space of the Cartan bundle, yet we see in Section 3.1 that the curvature identity of [2] extends
without difficulty to general infinitesimal automorphisms of Cartan geometries, in the sense defined in Section
1.2. This allows us to apply this fundamental identity to the Cartan geometries (Go, 0*w<) occurring in
the definition of essential infinitesimal automorphisms, which we do in Section 3.2 to establish a general
“dictionary” between essentiality of an infinitesimal automorphism near a singularity, and its holonomy.

3.1 Preliminary results on infinitesimal automorphisms

We begin with some general notions, mainly following the development of [2] but in the setting of a general
Cartan geometry (G — M, w) of type (G, P) (for now not assumed to be of parabolic type). For any
representation p : P — GI(V), we have the associated vector bundle V(M) := G x, V. The smooth sections
of such a bundle are identified with P-equivariant, V-valued smooth functions on G in the standard manner,
and we will simply treat them as such:

D(V(M)) = {f € C%(G, V)| fup) = plp™")(f(u)} = C=(G,V)".

For the most part, the important associated bundles we are dealing with are tractor bundles, which for our pur-
poses simply means that the representation (p, V') is the restriction to P of a G-representation g : G — GI(V).
And the primary tractor bundle is the adjoint bundle induced by the restriction of the adjoint representation
Ad : G — Gi(g) to P, which we will denote by A = A(M) if there is no danger of confusion about which



Lie algebra g is meant, and otherwise by g(M). Note that the Lie bracket [,]4 of g, by Ad(P)-invariance,
determines an algebraic bracket on fibers of A as well as on sections, which we denote with curly brackets

{}:AxA— A
The Cartan connection determines an identification of right-invariant vector fields
X(G)" = {X € X(9) | X(u.p) = (Rp)«(X(u))},
with sections of the adjoint bundle. Namely, consider the maps

x(9) = ¢=(G,9); X = sx(u = w(X(u));
C>(G,9) = X(9), s 0 X (u e wy ' (s(w);

the property of (3) of a Cartan connection insures that both maps are well-defined, they are inverse, and the
property (1) of w, which can be rewritten as

wup(By)+(X(w))) = Ad(p™") (wu(X(u))),

implies immediately that these maps restrict to an isomorphism X(G) =2, T'(A).

More generally, denote the set of right-invariant (r, s)-tensors on G by
xX"(G)Y = {t € X (G) | Ryt = (TR,)* ot}

and identify the space of smooth sections I'((A*)®* @ (A)®") with the P-equivariant smooth functions

C(G,(g)%° @ (9)°")" = {s € C(G, (8)®° ® (0)°") | s(u.p) = [(Ad")®* @ (Ad)*"](p~") (s(w)) }.
Then we have the following;:
Lemma 3.1. The Cartan connection w induces isomorphisms

x"(G)F =, XG5 (9)°)F =, C(G, (87)%° @ (9)°)".
In particular, restricting to the horizontal, P-equivariant (g)®"-valued s-forms on G, we get
G 07

Proof. Given t € X™%(3), define sy € C*=(G, (g*)®* ® (g)®") by:

=, (M (A)®7).

se(u)(Xq,..., Xs) = [wf?r](t(wu_l(Xl), . ,w_l(XS))),

u

forallu € G, X1,...,Xs € g. And given s € C*(G, (g*)®* @ (g)®"), define ts € X™*(G) by:

ts(vy,...,0s) i = [wf?r]*l(s(u)(w(vl), oo w(vs))),

for all u € G and vy,...,vs € T,,G. In the above definitions, w®" : (T,G)®" — (g)®" is the unique linear map,
induced for any u € G via the universal property, from the obvious multilinear map 7,,G x ... x T,,G — (g)®".
Using universality again, the properties (3) and (1) of w imply, respectively, that w®" is a linear isomorphism,
and that for the map (T, R,)®" : (T,G)®" — (T.,G)®" induced in an analogous way for any p € P, we have
the equivariance property:
wip] o (TuRy)®"] = [Ad®")(p™) o [wi"] : (TuG)®" — (9)®"

Using these two facts, it is a straightforward matter to verify that the maps t +— s¢ and s — t, are inverse to
one another, and that they restrict to the isomorphism X™*(G)¥ =, C>(G, (g*)®* ® (g)®")¥ claimed. The
other claims stated are established in a completely analogous way. q.e.d.



For a tractor bundle V (M), the identification I'(A) =, X(G)” yields two kinds of differentiation of smooth
sections with respect to adjoint tractors:

Definition 3.1. The invariant differentiation or fundamental D-operator of V(M) is the map DV : T(V(M)) —
I'(A* ® V(M)) defined, for any s € I'(A) and any v € I'(V(M)), by:

DY v :=X,(v). (11)

The tractor connection of V(M) is the map VV : T'(V(M)) — T'(A* @ V(M)) defined, for any s € I'(A) and
any v € I'(V(M)), by:

VY0 :=DYv+ (dpos)ow. (12)

Recall that p : G — GI(V) is the G-representation which p is a restriction of, given by the definition of a
tractor bundle. In fact, the quantity defined by (12) only depends on the equivalence class [s] of s under
the quotient A/p(M) = G x Ad(P) g/p, and since the Cartan connection determines a natural isomorphism
A/p(M) =, TM, we identify the tractor connection with a covariant derivative on V(M):

VY T(V(M)) = T(T*M @ V(M)).

The curvature tensor of a Cartan connection is the g-valued two-form on G defined, for any v € G and
v,w € T,G, by the structure equation Q¥ (v,w) := dw(v,w) + [w(v),w(w)]. The curvature tensor is easily

seen to be horizontal and P-equivariant, i.e. Q¥ € Q2(G;g) and we may equivalently consider the curvature
function k% € C*(G; \2(g/p)* @ g)F = Q%(M; A) given by k* ~, Q. The following identity was proved for
parabolic geometries in [2] (cf. also Lemma 1.5.12 in [4] for the general case, which came to our attention
while completing the present text):

Lemma 3.2. Under the identifications of Lemma 3.1, let X ~,, sx for X € X(G)F and sx € T(A). Then
for Lxw € Q1(G; g)P we have, under the identification Ql(g;g)P >, QYM;A):

Lxw ~, VAsx + (sx) k", (13)

Proof. For a given point u € G and Y € T, G, let Y be a local extension of Y to a right-invariant vector field.
Then we have
(Lxw)(Y) = X(w(Y))(u) — w([X, Y](u)).

Using the definitions, we have:
R () (sx (u), sy (u) = dw(X(u), Y (u)) + |

= X(w(Y))(u) = Y(w(X))(u) = w([X, Y](u)) + [sx(u), sy (u)]
= (Lxw)(Y) = Y(sx)(

£
Jal
S
£
=
£

where the last line follows from comparing the formula for (Lxw)(Y) given at the outset, and from the
relation w o X = sx. But since Y = Y, and [sy(u), sx(u)] = (ad o sy) o sx(u), the last two terms of the
last line add to —(VZ! sx)(u) by (12). q.e.d.

3.2 Holonomy and essential infinitesimal automorphisms

Let us return now to the setting of a (regular, normal) parabolic geometry (G — M,w) of type (G, P) and
the corresponding regular infinitesimal flag structure M = (M,{T*M},Go) of type (g, P). As we did for
automorphisms of (G,w™®) at the opening of Section 2, we may determine an infinitesimal automorphism
X € inf(G,w) by conditions on the underlying vector field X € X(M), which just amount to imposing
the same conditions for the locally defined diffeomorphisms given by flowing along X, i.e. we must have
[X,[(T"M)] € T(T*M) for all —k < i < —1, and the condition that the local flows of X determine local
bundle maps of F(gr(T'M)) which preserve Gy as a subbundle. We write X € inf(M) and consider the lift
X € inf(G,w™) to be implicitly included. In the different examples of parabolic geometries, this translates
into more geometric language. For example, in the conformal case, the former condition is trivial, while the
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latter condition amounts to requiring the conformal Killing equation, Lxg = 2Ag for any g € ¢ and some
A= AX) € C®(M). In the case of CR structures, the conditions are that, [X,T'(H)] C T'(H), for H C TM
the codimension one contact distribution defining the CR structure, and that LxJ = 0 for J the almost
complex structure on H.

From Lemma 3.2 and Definition 1.1, we have a bijection between infinitesimal automorphisms X &
inf(G,w) and adjoint tractors sx € T'(A) satisfying VAsx +II(sx)x“ = 0. In the present setting, this gives
us a bijection between X € inf(M) and such sx, and moreover it is easy to verify that II(sx) = X € X(M).
Now, denote by X € X(Gp)° the invariant vector field induced, via projection by 7o, by X € X(G)F. For
any Weyl structure o : Go — G, the induced Cartan connection oc*w< and Lemma 3.1 give us an isomorphism
denoted X(Go)“° =, I'(A?), where we denote with A% = p*(M) the adjoint bundle of the Cartan geometry
(Go = M,0*w<). Let us write Xy ~, sx, for the adjoint tractor corresponding to X € X(Go)%o. If we
further denote by V7 : I'(A%) — I'(T*M ® A°) the corresponding adjoint tractor connection, then Lemma
3.2 tells us that X € inf(M) is inessential if and only if there exists some exact Weyl structure o : Go — G,
such that

V7 sx, + X K7 9< =0,

and such that (Xo)g, € X(Go) for the reduction Gy to Ker()\) determined by o.

At present, we are only interested in local properties of infinitesimal automorphisms, viz the question if
some neighborhood of a given point can be found on which X is inessential. The following proposition shows
that the points € M for which the answer could be “no”, must all be singularities of the vector field, i.e.
X (x) = 0 (where, incidentally the above identity simplifies to (V7sx,)(z) = 0).

Proposition 3.3. Let M = (M,{T'M},Gy) be a reqular infinitesimal flag structure of type (g, P), let
X € inf(M), and let x € M. If X(x) # 0, then there exists a neighborhood U of x such that the restriction
of X to U is inessential.

Proof. Take a neighborhood U of x on which flow-box coordinates for the flow of X can be introduced, i.e.
U= {(x()v(/)X,t(xO)) | T € MO N Ua —e<t< E}a

where My is some locally defined hypersurface transversal to the integral curves ¢x ¢(zg) of X, which are
defined for the interval given. This can all be done since we may first restrict an open neighborhood of = on
which X is non-vanishing. Now the final argument in the proof of Proposition 2.4 can be transferred to this
situation, to define a scale s : U — wgl(U) which is invariant under the flows ¢ x ;. q.e.d.

From now on, let us fix a singularity 2 € M of an infinitesimal automorphism X € inf(M). We also
choose a point u € G in the fiber over z, and let ug = 74 (u) € Gy, likewise in the fiber over . The remaining
text is aimed at relating the local essentiality of X near x, to invariant properties of the holonomy of X at
x, which is a one-parameter subgroup ht C P:

Definition 3.2. (Cf. [9], Section 6) Given X,z and u as above, the holonomy hl, of X at x with respect to
u is defined, for ¢ sufficiently small, as follows: Let ®x .(u), the integral curve of X through u, be defined for
t € (—e,¢e). Since X projects to X, X(u’) is tangent to G, for all v’ € G,, and hence all ®x ;(u) lie in G,.
Then hf, € P is defined by:

Ox i (u) =: u.hl,. (14)

Since hi* = h! h$ whenever both are defined, h!, = exp(tX}, ,,) for some X}, ,, € p, and we define hf, via this
identity for all ¢t € R.

t=0""u"

Recall that, by definition, sx (u) = w(X(u)). Also, since hf, = exp(tX}..,), we have X}, , = %‘ ht. By
definition, the integral curve ®x .(u) satisfies % (0) = X(u). Hence, sx(u) = w(%‘tzo(u.h‘;)), and so by

property (2) of the Cartan connection w, we have

Xhu = sx(u). (15)
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In particular, this implies the following equivariance properties of X}, ,, and hf, with respect to a change of
the base point u € G, so it makes sense to speak of the holonomy h' of X at x as a conjugacy class of
one-parameter groups in P:

Xnwp=Adlp ) (Xpnu) VpeEP; (16)
hi,=p 'hupVpeP. (17)

U.
The first part of relating essentiality of X near x to its holonomy, is the following:

Proposition 3.4. Let X € inf(M) have a singularity x € M, and let u € G, be as above. If X is inessen-
tial in some neighborhood of x, then its holonomy h' is conjugate under P to a one-parameter subgroup of
Ker(\) C Gy for a choice of scale representation A : Gy — R (equivalently, sx (u.p) = Ad(p~!)(sx(u)) €
Ker(\') C go for somep € P).

Moreover, if X is an infinitesimal automorphism for any locally defined Weyl structure o (not necessar-
ily exact), then X has holonomy h! conjugate under P to a one-parameter subgroup of Go (equivalently,

sx(u.p) = Ad(p~1)(sx(u)) € go for some p € P).

Proof. Assume that o is any locally defined Weyl structure in a neighborhood of the point x which X is an
infinitesimal automorphism of, i.e. such that Xy € inf(Gy, 0*w<), so we have Lx,0*w< = 0. Then note that
the identity (13) from Lemma 3.2 simplifies, for u € G, and ug := 74+ (u) € (Go)s, to give us the following
two identities:

(VAsx)(u) = 0; (18)
(V72sx,)(ug) = 0. (19)
We first prove the second claim in the proposition, by computing the identity (18) in terms of o, to show

that (19) implies sx (o (ug)) € go. Since o(up),u € Gy, therefore sx(o(up)) is Ad(P)-conjugate to sx(u) and
the claim follows.

For the computation, note that in general, a Weyl structure o allows us to identifiy a section s € I'(A) with
soc € C®(Gy,g)% 2 aF ,C®(Go,g:)%. We will write [s]7 = (s7,,...,s7) € &, C>(Go,g:)°".

Now consider any Y € T, M, and let Y, be a local right-invariant vector field on Gy around uy € (Go)s,
projecting onto Y at x, and let Y be a local right-invariant vector field on G which extends the vector field
0.Y(. Then by the chain rule, we have Y (s)(o(ug)) = Yo([s]7)(ug) for uf near ug in Go. Now compute from
the definition, for s = sx as above:

(Vi's)(0(u0)) = Y (5)(0(uo)) + [w(Y (0(u0))), s(o(un))]g
= Yo([s]7)(uo) + [o*w(Yo(u0)), [s]” (uo)lg-

Now we translate the last line into vector notation, where the top, middle and bottom components correspond,
respectively to the projection onto p4,go and g_, respectively (denoted, as usual, with a subscript). Note
that from II(s) = X, and since X () = 0, we have s? (c(up)) = 0, and so we get the following reformulation
of the left-hand side of (18):

Yo(s3)(uo) {o*w(Yo), [5]7 } 4 (uo)
Yo(s§)(uo) | + | {wo(Yo),sg}(uo) + {w-(Yo), 5% o(uo) |- (20)
Yo(s7)(uo) {w-(Yo), 5§ }(uo) + {w—-(Yo), 57}~ (uo)

(
(
On the other hand, let us compute the identity (19). The section sx, € C*(Go, p*)“° is defined by
s (1) = 0" w<(Xo(up)) = w<(o(ug)) (04 (Xo(up)))-

Using the facts that o is a section of 7 : G — Gy, and that X projects onto X¢ via 7, it follows that
X(o(up)) — 0x(Xo(ug)) lies in the kernel of T,y 7. In particular, this means we have:

w<(o(up))(o+(Xo(up))) = w<(X(o(up))),

12



or equivalently, sx, = s7 + s§. Using this, a similar calculation to the one above gives:

. Yo(s§)(uo) {wo(Yo) 55} (uo)
(5w = (oo ) (B ). (21)

Comparing the go-components of (20) and (21), we see that if both terms vanish, we must have

{w-(Yo), 55 }o(uo) := prg, ([w-(Yo)(uo), 8% (uo)]) = 0.

But we have g_ = {w_(Yo)(uo) | Y € T, M}, and from this it follows that s (ug) = 0, by using the properties
of |k|-graded semi-simple Lie algebras: We have the grading element E € go, which satisfies [E,Y;] = jY; for
all Y; € g;. Now using the Ad-invariance of the Killing form B, we have, for any Y € g_, and 0 < j < k:

B([Y, 57 (uo)], E) = B(Y, [s] (uo), E]) = —jB(Y, 57 (u0)),

o~

and since B induces an isomorphism g; = (g—;)*, this vanishes for all Y € g_ only if s (ug) =0 forall j > 0,
i.e. only if s(o(up)) € go, which is the second claim of the proposition.

The proof of the first claim of the proposition is completely analogous. If o is exact, then we have the
holonomy reduction Gy C Gy to structure group Ker(\) C Go, and denoting the resulting reduction by
7 : Go — G, the condition that X is an ezact infinitesimal automorphism of ¢ is, in addition to the above
requirements, that Xy (@) € TuGo C TuGo for all @ € Gy and that the resulting vector field Xy on G is an
infinitesimal automorphism of the Cartan connection ¢*w<. This gives

)(Wo) = 0,

0

(V7s

|9l

where V7 denotes the tractor connection on the adjoint tractor bundle associated to Gy by the adjoint
representation on g @ Ker()'). Then by the same considerations, if we write s§ (W) = s§ (7o) + 2(Uo) Ex,
for @y € (Go)s, then this condition implies that

k
0= [w-(Yo(@)), 2(T) Ex] = Y j2(to)w—; (Yo(uo)),

Jj=1

for all Y € T,, M, which can only happen if 2(%p) = 0. Hence we must have s(o(u)) € Ker(\) C go, which
is the first claim of the proposition. q.e.d.

We conclude by proving the following converse, which completes the correspondence between the holonomy
of an essential vector field at a singularity, and its essentiality:

Proposition 3.5. Let X € inf(M) have a singularity x € M, and let v € Gy, ug = 74+ (u) € (Go)z- If the
holonomy ht, of X is conjugate under P to a one-parameter subgroup of Ker(\) C Gq for a choice of scale
representation X : Go — Rt (equivalently, sx (u.p) = Ad(p~1)(sx(u)) € Ker(\) C go for some p € P), then
X is inessential on some neighborhood of x.

Moreover, if the holonomy h', is conjugate under P to a one-parameter subgroup of Go (equivalently, sx (u.p) =
Ad(p~1)(sx(u)) € go for some p € P), then X is an infinitesimal automorphism of some local Weyl structure
o around x.

Proof. We will need the following “exponential coordinates” on G and M around u and z respectively, which
are induced by the Cartan connection w: For any Y € g, denote by Y the vector field on G which is determined

by the identity, w(Y (u’)) =Y for all v’ € G. Defining
Wa :={Y € g|py ,(u)isdefinedfor0 <t < 1},

then there exist an open neighborhood V,, of 0 € g and an open neighborhood V,, of v € G such that the
exponential map exp® defined on W, is a diffeomorphism of V,, onto V,,, where by definition:

expy 1 Y = exp?(u,Y) = ¢y | (u).
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Restricting V,, if necessary to a smaller neighborhood of zero, we get a diffeomorphism
&xp” = moexp? : Vi =5 U,

where U, is a neighborhood of z in M and V,, := V,,Ng_. Furthermore, for V,; := exp,(V, ), the restriction
of the projection 7 gives a diffeomorphism of V,; onto U,.

These exponential coordinates can obviously be used to define a local Weyl structure over U,, since they
give a local section of m : G — M on U,. This gives us the local trivialisations 7=1(U,) = V- x P and
7y H(Uy) 2 w4 (V) x Go. Then we simply define o : 75 *(U,) — 7' (U,) by

o:m(u).g0 = u'.go; (22)

for any v’ € V7, go € Gp. This is by definition a Gy-equivariant local section of 74 : G — Gy, that is a Weyl
structure. We will now show, assuming h!, C Gy, that the local flows of X € X(G) commute with o, i.e. we
have &x ;00 =00 Px,; on 71'0_1(Ux), for ¢ sufficiently small so that both sides exist. By the equivalence of
(i) and (iv) in Lemma 2.1, this suffices to prove the second claim of the proposition.

To show the commutativity of the local flows of X with the Weyl structure o given by (22), we need the
following general equivariance relation for an infinitesimal automorphism in exponential coordinates (cf. the
proof of Proposition 6.2 of [9]):

Ox (exp®(u,Y)) = exp®”(u, Ad(hL)(Y)).hL. (23)

The identity (23) is based on the observation that we have [X, Y] = 0 for any infinitesimal automorphism, and
any Y € g (this follows immediately from the defining equation, Lxw = 0, of an infinitesimal automorphism).
Hence, the flows commute, ®x + o <I>§,7S = <I>§,1S o ®x + whenever both sides are defined, which together with
equivariance of w may be used to show that both sides of (23) are given as the endpoint of the same integral
curve through ®x ¢+(u) = u.hl,.

Now consider an arbitrary point 71 (u').go € 7 *(Us,), where v’ = exp®(u,Y) € V,” for Y € V;. Then
o(my(u).go) :== u'.go, and we have, by P-equivariance of ®x ; and (23):

(@x.1 0 0) (74 (u).g0) = Px.+(u.g0) = exp® (u, Ad(he,)(Y))-h,o-

But since hf, € Gy, we have Ad(h%)(Y) € g_ and for ¢ sufficiently small we may also assume Ad(h)(Y) € V,
by continuity, so exp®(u, Ad(h!)(Y)) € V7. We also have hlgy € Gy, so Gp-equivariance of my gives
T+ (Px . (u.g0)) = my(exp®(u, Ad(RE)(Y))).hl go, and hence combining the above gives:

(Px.1 00)(m1(u).g0) = Px.¢(t.90) = (0 07y 0 Px.1)(u', g0)-

Finally, since ®x, ; is defined on Gy via the relation (®x, ¢ o7ny) = (74 o x ), this shows that (Px ;00) =
(00 ®x,+) on w5 (Uy).

The claim when h!, is conjugate to a one-parameter subgroup of Ker()\) is quite easy to establish in the
same way. The above considerations also show that the local, equivariant section o of 7 : G — Gy over
U, which was constructed using the exponential map, can be restricted to a map @ : (Go)y, — Gy, where
the sub-bundle (Go)y, C (Go)v, is just given by w4 (V,~) x Ker()) in the local trivialization, giving a locally
exact Weyl structure. And since h is conjugate to a one-parameter subgroup of Ker(}), it can be arranged
(by moving to a different point in the fiber over z, if necessary) that the restriction of Xg to (Go)y, is always
tangent to this sub-bundle, so X is locally inessential. q.e.d.
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