Reply to "Comment on 'Semiquantum-key distribution using less than four quantum states' "

Xiangfu Zou ${ }^{1,2 *}$ and Daowen Qiu ${ }^{1}$ 田
${ }^{1}$ Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
${ }^{2}$ School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China
(Dated: October 21, 2010)

Abstract

Recently Boyer and Mor arXiv:1010.2221 (2010) pointed out the first conclusion of Lemma 1 in our original paper Phys. Rev. A 79, 052312 (2009) is not correct, and therefore, the proof of Theorem 5 based on Lemma 1 is wrong. Furthermore, they gave a direct proof for Theorem 5 and affirmed the conclusions in our original paper. In this reply, we admit the first conclusion of Lemma 1 is not correct, but we need to point out the second conclusion of Lemma 1 is correct. Accordingly, all the proofs for Lemma 2, Lemma 3, and Theorems 3-6 are only based on the the second conclusion of Lemma 1 and therefore are correct.

PACS numbers: 03.67.Dd, 03.67.Hk

The idea of semiquantum key distribution (SQKD) in which one of the parties (Bob) uses only classical operations was recently introduced [1]. Also, an SQKD protocol (BKM2007) using all four BB84 22] states was suggested [1]. Based on this, we presented some SQKD protocols which Alice sends less than four quantum states and proves them all being completely robust [3]. In particular, we proposed two SQKD protocols in which Alice sends only one quantum state $|+\rangle$. Very recently, Boyer and Mor [4] pointed out the first conclusion of Lemma 1 in our original paper [3] is not correct, and therefore, the proof of Theorem 5 based on Lemma 1 is wrong. Furthermore, they gave a direct proof for Theorem 5 and affirmed the conclusions in Ref. 3].

In this reply, we first thank professors Boyer and Mor [4] for their attention to our work and admit the first conclusion of Lemma 1 in Ref. [3] is not correct. Particularly, we want to thank them for they not only pointed out the error in our paper but also gave a proof for Theorem 5 and confirmed the result of Theorem 5 in our original paper.

In this reply, we would also like to point out the second conclusion of Lemma 1 is correct. Accordingly, all the proofs for Lemma 2, Lemma 3, and Theorems 3-6 are only based on the the second conclusion of Lemma 1 and therefore are correct. To delete the first conclusion of Lemma 1 in Ref. [3], we only need to define the final combining state $\rho_{i}^{\prime A B}$ of Alice's i th particle and Bob's i th particle and modify Lemma 1 as follows.

Lemma 1. Let $\rho^{\prime A B}$ denote Alice and Bob's final *Electronic address: xf.zou@hotmail.com (Xiangfu Zou); ${ }^{\dagger}$ Electronic address: issqdw@mail.sysu.edu.cn (Daowen Qiu).
combining state and let $\rho_{i}^{\prime A B}$ be the final combining state of Alice's i th particle and Bob's i th particle. If the attack $\left(U_{E}, U_{F}\right)$ induces no error on CTRL and TEST bits, then $\rho^{\prime A B}$ satisfies the following conditions:
(1) If $b_{i}=0$, then $\rho_{i}^{\prime A B}=\left(\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)_{A} \otimes(|0\rangle\langle 0|)_{B}$, i.e., Alice's i th final state is the sent state $\left|\phi_{i}\right\rangle$;
(2) If $b_{i}=1$, then $\rho_{i}^{\prime A B}=(x|00\rangle+y|11\rangle)(\bar{x}\langle 00|+$ $\bar{y}\langle 11|)$ when the sent state $\left|\phi_{i}\right\rangle=x|0\rangle+y|1\rangle$, i.e., the final combining state of Alice's i th particle and Bob's i th particle is the pure state $x|00\rangle+y|11\rangle$.

Proof. (1) The case of $b_{i}=0$.
The i th bit is a CTRL bit. Alice's final quantum state $\rho_{i}^{\prime A} \neq\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ can be detected by Alice as an error with some non-zero probability. Also, Bob's i th final state is $|0\rangle$ since it is not acted any operation. Thereby $\rho_{i}^{\prime A B}=$ $\left(\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)_{A} \otimes(|0\rangle\langle 0|)_{B}$.
(2) The case of $b_{i}=1$.

The probability of the i th bit being a TEST bit is about $\frac{1}{2}$. Also, if $\left|\phi_{i}\right\rangle=x|0\rangle+y|1\rangle, \rho_{i}^{\prime A B} \neq(x|00\rangle+$ $y|11\rangle)(\bar{x}\langle 00|+\bar{y}\langle 11|)$ can be detected by Alice and Bob as an error with some non-zero probability when the i th bit is a TEST bit. Therefore $\rho_{i}^{\prime A B}=(x|00\rangle+y|11\rangle)(\bar{x}\langle 00|+$ $\bar{y}\langle 11|)$.

The proof of Lemma 2 in Ref. [3] is only based on the second conclusion of Lemma 1 in Ref. [3]. That is, Lemma 2 in Ref. [3] also holds when Lemma 1 is reformed as the above form. Because the proofs of Lemma 3 and Theorems 3-6 are only based on Lemma 2 in Ref. [3], these results still hold.
[1] M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99, 140501 (2007).
[2] C. H. Bennett and G. Brassard, In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE Press, New York,
1984), pp. 175-179.
[3] X. Zou, D. Qiu, L. Li, L. Wu, and L. Li, Phys. Rev. A 79, 052312 (2009).
[4] M. Boyer and T. Mor, arXiv:1010.2221.

