
ar
X

iv
:1

01
0.

49
69

v1
  [

qu
an

t-
ph

] 
 2

4 
O

ct
 2

01
0

Measurable bounds for Entanglement of Formation

Ming Li1, Shao-Ming Fei2,3

1 College of Mathematics and Computational Science, China University of

Petroleum, 257061 Dongying

2 Department of Mathematics, Capital Normal University, 100037 Beijing

3 Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig

Abstract

We study the entanglement of formation for arbitrary dimensional bi-

partite mixed unknown states. Experimentally measurable lower and

upper bounds for entanglement of formation are derived.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

Being one of the most striking phenomena in quantum physics, quantum entanglement

[1–3] has been extensively investigated in recent years. One of the main tasks in quantum

entanglement theory is to quantify the entanglement of quantum systems. Among all the

bipartite entanglement measures, entanglement of formation (EOF) is one of the most mean-

ingful and physically motivated measures [4, 5], which quantifies the minimal cost needed to

prepare a certain quantum state in terms of EPR pairs, and plays important roles in many

physical systems, such as quantum phase transition for various interacting quantum many-

body systems [6], macroscopic properties of solids [7], and capacity of quantum channels

[8].

LetHA, HB be them, n (m ≤ n) dimensional vector spaces respectively. A pure quantum

state |ψ〉 ∈ HA⊗HB is an mn-dimensional vector. Its entanglement of formation is defined

by E(|ψ〉) = S(ρA), where ρA = TrB(|ψ〉〈ψ|) is the reduced density matrix of |ψ〉〈ψ|. S(ρA)
is the entropy

S(ρA) = −
m
∑

i=1

µi logµi ≡ H(~µ), (1)

where log stands for the natural logarithm throughout the paper, µi are the eigenvalues of ρA

and ~µ is the Schmidt vector (µ1, µ2, · · · , µm). This definition of entanglement of formation

is extended to mixed states ρ by the convex roof,

E(ρ) = min
{pi,|ψi〉}

∑

i

piE(|ψi〉), (2)
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for all possible ensemble realizations ρ =
∑

i pi|ψi〉〈ψi|, where pi ≥ 0 and
∑

i pi = 1.

It is a great challenge to find an analytical formula of the entanglement of formation

for general bipartite quantum mixed states ρ. Considerable efforts have been made on

deriving entanglement of formation or its lower bound through analytical and numerical

approaches. So far the entanglement of formation has been calculated for some particular

states like bipartite qubit states [9], isotropic states [10] and Werner states [11] in arbitrary

dimensions, and symmetric gaussian states in infinite dimensions [12]. In [13] in order to

estimate the entanglement of formation for general states, a lower bound has been presented

by using the partial transposition of ρ with respect to the subsystem HA, ρ
TA, and the

realignment of ρ, R(ρ). It is shown that (without regard to the normalization coefficient

log 2)

E(ρ) ≥



















0, Ω = 1;

H2[γ(Ω)] + [1− γ(Ω)] log2(m− 1), 1 < Ω ≤ 4(m−1)
m

;

log
2
(m−1)
m−2

(Ω−m) + log2m,
4(m−1)
m

< Ω ≤ m;

(3)

where Ω = max{||ρTA||, ||R(ρ)||}, H2 is the standard binary entropy function, ||A|| denotes
the trace norm of the matrix A.

Comparing with the entanglement of formation, the entanglement measure concurrence

is relatively easier to be dealt with. In [14] a simpler analytical lower bound for concurrence

has been presented. And a series of new results related to the bounds of concurrence have

been further obtained [15]. In particular in [16–18], the authors derive measurable lower and

upper bounds for concurrence for general mixed quantum states,

2[Trρ2 − Trρ2A] = Tr(ρ⊗ ρVi) ≤ [C(ρ)]2 ≤ Tr(ρ⊗ ρKi) = 2[1− Trρ2A], (4)

where V1 = 4(P−−P+)⊗P−, V2 = 4P−⊗ (P−−P+) and K1 = 4P−⊗ I, K2 = 4I⊗P−, P− is

the projector on the antisymmetric subspace of the two copies of either subsystem, P+ the

symmetric counterpart of P−.

Contrary to the concurrence, less has been achieved related to the lower and upper bounds

of entanglement of formation. In this paper, we derive analytical lower and upper bounds

for entanglement of formation which care measurable experimentally. These bounds supply

nice estimation for entanglement of formation for some quantum states.

To derive lower and upper bounds for entanglement of formation, we first consider a pure

|ψ〉 with Schmidt decomposition |ψ〉 =
∑m

i=1

√
µi|ii〉, where µi ≥ 0,

∑m

i µi = 1. It is easily

verified that

1− Trρ2A = Trρ2 − Trρ2A = 1−
∑

i

µ2
i ≡ λ. (5)

Set

X(λ) = max{H(~µ)|1−
∑

i

µ2
i ≡ λ}, Y (λ) = min{H(~µ)|1−

∑

i

µ2
i ≡ λ}. (6)
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Let ε(x) be the largest convex function that is bounded above by Y (x) and η(x) the smallest

concave function that is bounded below by X(x).

Theorem: For any m⊗n(m ≤ n) quantum state ρ, the entanglement of formation E(ρ)

satisfies

max{ε(Trρ2 − Trρ2A), ε(Trρ
2 − Trρ2B)} ≤ E(ρ) ≤ min{η(1− Trρ2A), η(1− Trρ2B)}. (7)

Proof: Without lose of generality, we assume that ε(Trρ2−Trρ2A) ≥ ε(Trρ2−Trρ2B) and

η(1 − Trρ2A) ≤ η(1 − Trρ2B). Note that for any pure state |ψ〉, the concurrence is given by

C(|ψ〉) =
√

2(1− Tr(ρA)2). Due to convexity of concurrence, for any pure decomposition

ρ =
∑

α pαρα, we have

∑

α

pαC
2(ρα) =

∑

α

2 pα[1− Tr(ρAα )
2] ≥ C2(ρ).

Taking into account of the bounds (4) of C2(ρ), we obtain

∑

α

pα[Tr(ρα)
2 − Tr(ρAα )

2] ≥ Trρ2 − Trρ2A (8)

and
∑

α

pα[1− Tr(ρAα )
2] ≤ 1− Trρ2A. (9)

Assume ρ =
∑

α pαρα be the optimal decomposition of E(ρ). We have

E(ρ) =
∑

α

pαE(|ψα〉) =
∑

α

pαH(~µα) ≥
∑

α

pαε(λα) ≥ ε(
∑

α

pαλα) ≥ ε(Λ), (10)

where Λ = Trρ2 −Trρ2A. We have used the definition of ε to obtain the first inequality. The

second inequality is due to the convex property of ε(x) and the last one is derived from (8).

On the other hand,

E(ρ) =
∑

α

pαE(|ψα〉) =
∑

α

pαH(~µα) ≤
∑

α

pαη(λα) ≤ η(
∑

α

pαλα) ≤ η(Λ
′

), (11)

where Λ
′

= 1−Trρ2A. We have used the definition of η to get the first inequality. The second

inequality is derived from the concave property of η(x) and the last one is obtained from

(9). �

We calculate now both the maximal admissible H(~µ) and the minimal admissible H(~µ)

for a given λ, i.e. X(λ) and Y (λ), by using the Lagrange multipliers approach [10]. The

necessary conditions for the maximum and minimum are given by:

− log µk − 1− 2xµk + y = 0, (12)
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1−
∑

i

µ2
i − Λ = 0, 1−

∑

i

µi = 0; (13)

where x, y denote the Lagrange multipliers. We get from (12) that

log µk = −2xµk + y − 1. (14)

From (14) we know that there are at most two solutions for each µk, which will be denoted

as α and β in the following.

Let n1 be the number of entries where µi = α and n2 the number of entries where µi = β.

If one of the n1 and n2 is zero, we have that λ = 1 − 1
n1+n2

. Otherwise both α and β are

nonzero. The problem is now turned to be, for fixed n1, n2, n1 + n2 ≤ m, one maximizes or

minimizes the function

Fn1n2
(λ) = n1h(α) + n2h(β), (15)

where h(x) = −x log x, under the constraints (13). By direct computation we obtain

α±
n1n2

=
n1 ±

√

n2
1 − n1(n1 + n2)[1− n2(1− λ)]

n1(n1 + n2)
, β±

n1n2
=

1− n1α
±

n2

. (16)

To ensure the nonnegativity property of α±
n1n2

and β±
n1n2

, we require that max{1 − 1
n1

, 1 −
1
n2

} ≤ Λ ≤ 1 − 1
n1+n2

. Since α−
n2n1

= β+
n1n2

, β−
n2n1

= α+
n1n2

, the function in Eq. (15) takes

the same value for α+
n1n2

and α−
n2n1

. Therefore we can restrict ourselves to the solutions

αn1n2
= α+

n1n2
. Eq. (15) then turns out to be

F
n1n2

(λ) = n1h(α
+
n1n2

) + n2h(β
+
n1n2

). (17)

When m = 3, to find the expressions of upper and lower bounds in (7) is to obtain the

max- and minimization over the three functions F12(Λ), F21(Λ) and F11(Λ). From (17) for

m = 3 we have

X(Λ) =







F11, 0 < Λ ≤ 1
2
;

F12,
1
2
< Λ ≤ 2

3

Y (Λ) =







F11, 0 < Λ ≤ 1
2
;

F21,
1
2
< Λ ≤ 2

3
.

(18)

From (18) we have that η[Λ] is the broken line connecting the following points:

[0, 0], [1
2
, log 2], [2

3
, log 3].

In order to determine ε[Λ] we solve the following equations: Let l(Λ) = k(Λ−0.5)+0.868

be the line crossing through the point [0.5, F12(0.5)]. We solve (i) l(Λ) = F11 and (ii)
dl(Λ)
dΛ

= k = dF11(Λ)
dΛ

for k and Λ, and find the values to be 1.65 and 0.091. Thus we derive

that ε[Λ] is the curve consisted of F11 for 0 < Λ ≤ 0.091 and a broken line connecting points

[0.091, F11(0.091)], [0.5, F12(0.5)] and [0.667, log[3]], i.e.

η[Λ] =







2 log 2× Λ, 0 < Λ ≤ 0.5;

6 log 3
2
× (Λ− 1

2
) + log 2, 0.5 < Λ ≤ 0.667

(19)
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FIG. 1: Upper and lower bounds of E(ρ) (solid lines) for m = 3, and F11, F12, F21(dashed line).

and

ε[Λ] =



















F11, 0 < Λ ≤ 0.091;

1.65(Λ− 0.5) + 0.868, 0.091 < Λ ≤ 0.5;

1.39(Λ− 0.667) + 1.099, 0.5 < Λ ≤ 0.667,

(20)

see Fig.1.

When m = 4, we need to find the max- and minimization over the six functions

F11, F12, F21, F22, F31, and F13, which are plotted in Fig.2. We have

X(Λ) =



















F11, 0 < Λ ≤ 1
2
;

F12,
1
2
< Λ ≤ 2

3
;

F13,
2
3
< Λ ≤ 3

4

Y (Λ) =



















F11, 0 < Λ ≤ 1
2
;

F21,
1
2
< Λ ≤ 2

3
;

F31,
2
3
< Λ ≤ 3

4
.

(21)

Further more, one obtains that η[Λ] is the broken line connecting the following points:

[0, 0], [1
2
, log 2], [2

3
, log 3], [3

4
, log 4] and ε[Λ] is the curve consisted of F11 for 0 < Λ ≤ 0.062 and

a broken line connecting points [0.062, 0.142], [0.667, 1.242] and [0.75, 1.386](These points can

be derived by using the same processes as that have been done in case m = 3), i.e.

η[Λ] =



















2 log 2× Λ, 0 < Λ ≤ 0.5;

6 log 3
2
× (Λ− 1

2
) + log 2, 0.5 < Λ ≤ 0.667;

12 log 4
3
× (Λ− 2

3
) + log 3, 0.667 < Λ ≤ 0.75

(22)

and

ε[Λ] =



















F11, 0 < Λ ≤ 0.062;

1.820(Λ− 0.667) + 1.242, 0.062 < Λ ≤ 0.667;

1.726(Λ− 0.667) + 1.242, 0.667 < Λ ≤ 0.75.

(23)
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FIG. 2: Upper and lower bounds of E(ρ) (solid lines) for m = 4, and F11, F12, F21,

F22, F13, F31(dashed line).

Generally, we have the following observation, for any m,

X(Λ) =



























F11, 0 < Λ ≤ 1
2
;

F12,
1
2
< Λ ≤ 2

3
;

· · ·
F1(m−1),

m−2
m−1

< Λ ≤ m−1
m

;

Y (Λ) =



























F11, 0 < Λ ≤ 1
2
;

F21,
1
2
< Λ ≤ 2

3
;

· · ·
F(m−1)1,

m−2
m−1

< Λ ≤ m−1
m

;

(24)

and η[Λ] is the broken line connecting the following points: [ i
i+1
, log (i+ 1)], 0 ≤ i ≤ m− 1,

i.e.

η[Λ] = k(k + 1) log
k + 1

k
(Λ− k − 1

k
) + log k, (25)

for (k − 1) < Λ ≤ k and k = 1, 2, · · · , m− 1. The representation of ε[Λ] can be also figured

out numerically.

The measurable upper and lower bounds can be used to estimate the entanglement of

formation for an unknown quantum mixed state experimentally. Consider the following

mixed quantum state

ρ =
x

9
I + (1− x)|ψ〉〈ψ|. (26)

where |ψ〉 = (a, 0, 0, 0, 1√
3
, 0, 0, 0, 1√

3
)t/

√

Tr{|ψ〉〈ψ|}. For x = 0.1, one has

Λ = Tr{ρ2} − Tr{ρ2A} = Tr{ρ2} − Tr{ρ2B} =
1.45 + 9.21a2 − 0.38a4

(2 + 3a2)2
(27)

Λ
′

= 1− Tr{ρ2A} = 1− Tr{ρ2B} =
1.14(0.19 + a2)(9.67 + a2)

(2 + 3a2)2
. (28)
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Substituting Λ and Λ
′

above into (19) and (20) respectively, we have the upper and lower

bounds (7) for E(ρ), see Fig. 3.

For x = 0.001, one has

Λ = Tr{ρ2} − Tr{ρ2A} = Tr{ρ2} − Tr{ρ2B} =
1.99 + 11.97a2 − 0.004a4

(2 + 3a2)2
(29)

Λ
′

= 1− Tr{ρ2A} = 1− Tr{ρ2B} =
0.01(0.17 + a2)(999.67 + a2)

(2 + 3a2)2
. (30)

The corresponding bounds of E(ρ) is shown in Fig. 4. We see that the lower and upper

bounds are closer. And the value for E(ρ) can be estimated more precisely.
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FIG. 3: Upper and lower bounds of E(ρ) with x = 0.1.
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FIG. 4: Upper and lower bounds of E(ρ) with x = 0.001.
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We have studied the entanglement of formation for mixed quantum states. We have

derived upper and lower bounds for entanglement of formation that are experimentally

measurable. These bounds together can be used to estimate the entanglement of forma-

tion for arbitrary finite dimensional unknown states according to a few measurements on

a twofold copy ρ ⊗ ρ of the mixed states. These results supplement further the estimation

for entanglement of formation, like the case of concurrence for which many lower and upper

bounds have been already obtained.
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