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We consider open quantum systems with dynamics described by a stationary master equations
that has a perturbative expansion in the system-environment interaction. We show that, contrary
to intuition, late-time solutions of order-2n accuracy require an order-(2n + 2) master equation. We
give two examples of such inaccuracies in the solutions to an order-2n master equation, order-2n
inaccuracies in the steady state of the system and order-2n positivity violations, and we show how
these arise in a specific example for which exact solutions are available. This result has a wide-
ranging impact on the validity of coupling (or friction) sensitive results derived from second-order
convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

INTRODUCTION

An open quantum system is a quantum system that
interacts with some environment whose degrees of free-
dom have been coarse grained over (i.e., traced out), and
its dynamics are described by a master equation govern-
ing the reduced density matrix ρ. Exact master equa-
tions for the stochastic dynamics of open quantum sys-
tems are, in general, beyond the reach of the simple the-
orist. However, perturbative master equations (in the
system-environment interaction) can be derived in a va-
riety of different ways [1–3] and find application in many
branches of physics and chemistry [4–7]. In the time-local
representation (also called the convolutionless or Marko-
vian representation), the dynamics of the reduced density
matrix of the system can be expressed with a quantum
Liouville equation

d

dt
ρ(t) = L(t)ρ(t) , (1)

where, despite the apparent time-local form, non-
Markovian behavior may be encapsulated in the time
dependence of the Liouvillian L(t). As a perturbative
approximation, L(t) is expanded powers in the system-
environment interaction c and truncated to some order.

We will consider a stationary perturbative master
equation, where the Liouvillian L(t) is time independent.
We will assume that the perturbative expansion of L is in
even powers of the coupling, because as we explain in the
next section this can naturally arise from a microscopic
derivation of the open-system dynamics. The expansion
of L will then take the form

L =

∞∑
n=0

L[2n] , (2)

L[0] ρ = [−ıH,ρ] , (3)

where L[2n] = O(c2n) and to zeroth-order the system is
driven in a unitary manner by its Hamiltonian H.

The most well-known perturbative master equation is
the second-order master equation, as it can be equiva-
lent to the Redfield and Born-Markov master equations.

This is partly due to the fact that in the Markovian limit,
the second-order master equation is exact. But equiva-
lence with the previous approximate master equations
does not carry to fourth-order and there perturbation
theory is strictly superior. One might easily assume that
solving the second-order master equation defined by the
Liouvillian L[0] + L[2] would yield a solution that would
match the exact solution to the exact master equation
up to second order, having error terms of order O(c4);
however we will show that in general they will differ by
second-order terms, so that one can only say they are in
perturbative agreement at zeroth order.

One very significant implication of these facts is for
the positivity. Not being exact, nor generally of Lind-
blad form [8, 9], exact complete positivity is not guar-
anteed for solutions to a perturbative master equation.
Solutions can and should be completely positive to the
relevant perturbative order, and as we show in this work
that order is not what one might naively expect. Solu-
tions to the second-order master equation can in general
violate positivity by an amount that is O(c2). We show
that to find solutions good to second-order, canonical
perturbation theory generally demands the fourth-order
Liouvillian.

MASTER EQUATIONS FROM A MICROSCOPIC
MODEL

In a system derived from a microscopic model, the
coarse-grained environment can act as a source of noise,
dissipation, and decoherence; thus its influence provides
a model of dissipative quantum mechanics more gen-
eral than Markovian (white-noise) models which can be
constructed more phenomenologically. Such microscopic
models can still lead to a stationary Liouvillian of the
type we specified in Eq. (2).

Given a stationary system Hamiltonian and station-
ary bath correlations, Gaussian noise distributionals (e.g.
noise generated via linear coupling to an environment of
harmonic oscillators) may allow the master equation to
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have a stationary late-time limit [10]

L(∞) = lim
t→∞

L(t) , (4)

so that the late-time and weak-coupling limits commute;
otherwise perturbation theory cannot be used for long
durations of time. Gaussian noise processes are catego-
rized by their second-order noise correlation, and whether
or not the master equation will have a stationary limit
is dependent upon how localized this noise correlation is.
Well-localized noise correlations (e.g. Gaussian or expo-
nential) can lead to a very well-behaved master equation,
whereas long-ranged noise correlations (e.g. Cauchy) can
produce a more pathological master equation which can-
not be accurately analyzed in a perturbative fashion. Ex-
act examples of this phenomena are given in Ref. [11] in
the context of quantum Brownian motion with Ohmic
and sub-Ohmic couplings. Moreover, the exact solutions
ρ(t) can be very well-behaved even if L(t) is not. Marko-
vian representations (and, more generally, effective equa-
tions of motion) are not always suitable, particularly for
highly non-Markovian dynamics.

ACCURACY OF SOLUTIONS

It is clear that if Eqs. (1) and (2) are well defined then
for sufficiently short times an order-2n master equation
(in which the sum in Eq. (2) only includes terms up to
order 2n) can produce a solution that is also accurate to
order 2n. What we find is that for a stationary master
equation, or a master equation that is suitably conver-
gent at late times as discussed in the previous section, a
solution to the order-2n master equation is only accurate
to order 2n − 2 at later times. The reason is an ulti-
mately mundane but slightly subtle result of degenerate
perturbation theory.

Assuming we have the perturbative expansion of a sta-
tionary master equation (i.e., an expansion of L), we then
seek perturbative solutions obtained by applying canon-
ical perturbation theory of the eigenvalue problem

Lo = f o , (5)

given that we already know the zeroth-order solutions

L[0] |ωi〉〈ωj | = −ı ωij |ωi〉〈ωj | , (6)

where H |ω〉 = ω |ω〉 and ωij = ωi − ωj denote the (free)
energy basis of the system. In the appropriate regime of
validity, exact solutions to the perturbative master equa-
tion should agree with the perturbative solutions to the
exact master equation up to the appropriate order.

Before determining what the appropriate level of accu-
racy is, we will first demonstrate that there is issue with
the naive expectation of order-2n accuracy. This argu-
ment is a generalization of one found in Ref. [12], where

the discrepancy was noticed for the second-order equi-
librium state. Let o(2n) be any eigenoperator of the Li-
ouvillian which is zeroth-order stationary (diagonal) and
supposedly accurate to order 2n.

L{o(2n)} = f(2n) o(2n) +O(c2n+2) , (7)

where f(2n) is its associated eigenvalue and is accurate to
order 2n and vanishing at zeroth-order. Then one may
add any order-2n operator δo[2n] that is zeroth-order-
stationary (diagonal) and still have

L{o(2n) + δo[2n]} = f(2n) {o(2n) + δo[2n]}+O(c2n+2) ,(8)

which demonstrates that there is an order 2n ambiguity
in the diagonal entries if one only compares terms up to
order 2n.

Now we will proceed to our main proof where we show
how this issue arises, that this is the full extent of the
problem, and precisely how it can be remedied. Note
that perturbation theory with master equations is always
degenerate perturbation theory as ωii = ωjj = 0 triv-
ially. For simplicity let us assume no other degeneracy in
the spectrum of the free Liouvillian (though the possibil-
ity of extra degeneracy or near degeneracy arising from
resonance can be suitably dealt with). This degenerate
subspace corresponds to the space of operators that are
diagonal in the energy basis of the free system.

Perturbation theory tells us that the second-order cor-
rections to all eigenvalues and eigenoperators of L outside
the degenerate subspace (off-diagonal operators) can be
computed using only the second-order master equation:

f
[2]
ij = 〈ωi|L[2]{|ωi〉〈ωj |} |ωj〉 , (9)

〈ωi′ |o[2]
ij |ωj′〉 =

〈ωi′ |L[2]{|ωi〉〈ωj |} |ωj′〉
−ı(ωij − ωi′j′)

. (10)

As usual in degenerate perturbation theory, to compute
the corrections to eigenoperators from the degenerate
subspace, which all satisfy L[0] o

[0] = 0, we must first find
diagonalize L on the subspace to find the basis which is
compatible with the branching under perturbation. The
associated characteristic equation is

W~o = f ~o , (11)

~oi ≡ 〈ωi|o |ωi〉 , (12)

where W defines the Pauli master equation

〈ωi|W |ωj〉 = 〈ωi|L{|ωj〉〈ωj |} |ωi〉 . (13)

Therefore Eq. (11) must be solved for with W[2] exactly,
and then the further effects of W[4], W[6], etc., can be in-
corporated via canonical perturbation theory. [Note that
this is slightly more complicated than the usual canoni-
cal perturbation in the Schrödinger equation where one
knows the Hamiltonian perturbation exactly.] The eigen-
values obtained in diagonalizing W[2] give the second-

order corrections f [2] to the eigenvalues of L and the cor-
rect zeroth-order eigenoperators o[0] for the degenerate
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subspace. Degenerate perturbation theory tells us that

in order to calculate each ~o
[2]
i for the degenerate subspace

one actually requires W[4] from the fourth-order master
equation; it will contribute the second-order correction

∑
j 6=i

(
~o

[0]
j

)?
W[4]

(
~o

[0]
i

)
f

[2]
i − f

[2]
j

~o
[0]
j , (14)

where ~o?i is the left eigen-vector of W such that ~o?i W =
~o?i fi and ~o?j ~oi = δij . Such corrections would be fourth
order in a non-degenerate problem, but because the free
Liouvillian is always degenerate, they become second or-
der as the relevant lowest-order nonvanishing eigenvalue
splitting is always second order here. Without this infor-
mation from the fourth-order master equation, one can-
not generate the complete second-order solution.

Finally note that this requirement must extend even to
exact solutions of the perturbative master equation. A
perturbative solution to the second-order master equa-
tion will be equivalent to solving the full master equa-
tion perturbatively and then artificially setting L[4] and
all higher-order contributions to the Liouvillian to van-
ish. From this we know that these two solutions must
differ by a term that is O(c2). Since the exact solutions
to the perturbative and full master equations each differ
from the corresponding perturbative solutions by terms
of O(c4), we can conclude from our analysis that even the
exact solution to the second-order master equation differs
from the exact solution to full master equation by a term
of O(c2). In next section we use the example of quantum
Brownian motion, where an exact solution is available, to
show that the second-order corrections arising from the
fourth-order Liouvillian are indeed present.

More generally, while the short-time accuracy of an
order-2n master equation can also be order 2n, the long-
time accuracy can only be order 2n−2. To obtain order-

2n solutions one requires not only the order-2n master
equation but in addition the order-(2n+ 2) Pauli master
equation. In particular, the second-order master equa-
tion after taking the rotating-wave approximation [6] will
contain just enough terms to generate solutions which
are accurate to zeroth-order [13]. The full second-order
master equation improves upon this but not enough to
generate the full second-order solutions.

Among the information missing due to the second-
order errors of the solution to the second-order mas-
ter equation are important contributions to the asymp-
totic state of the system. When coupled to a ther-
mal reservoir the system must asymptote to ρ ∝ e−βH

for vanishing system-environment coupling. One often
desires to find the additional environmentally induced
system-system correlations (and possibly entanglement)
provided by perturbative corrections, but these will not
be given correctly by directly finding the steady state of
the second-order master equation. However, at least for
zero-temperature noise, it is still possible to easily con-
struct via other methods the order-2n corrections using
only order-2n master equation coefficients [10, 14].

Another important characteristic that is mangled by
the second-order master equation is positivity, as was
mentioned in the introduction. The second-order inac-
curacies that arise from using the second-order master
equation imply that the diagonal elements of the density
matrix in the (free) energy basis are off by second-order
terms. This can lead to second-order violations of posi-
tivity.

EXAMPLE: QBM

As an example of an exactly solvable open system, let
us consider the master equation of an oscillator bilin-
early coupled to an environment of oscillators initially in
a thermal state [15]:

d

dt
ρ = [−ıHR,ρ]− ıΓ [x, {p,ρ}]−MDpp [x, [x,ρ]]−Dxp [x, [p,ρ]] , (15)

where HR is the system Hamiltonian but with renormal-
ized frequency ΩR, Γ is the dissipation coefficient, Dpp

and Dxp are the regular and anomalous diffusion coef-
ficients. In Ref. [11] exact solutions are given. In the
stationary limit, the system relaxes into a Gaussian state
with phase-space covariance

σT =

[
1

MΩ2
R

(
1

2ΓDpp −Dxp

)
0

0 M
2ΓDpp

]
. (16)

One can see that for a second-order master equation
the contribution from the regular diffusion Dpp/Γ starts

at zeroth order while the contribution from anomalous
diffusion Dxp starts at second order. The full second-
order contribution from the regular diffusion requires the
fourth-order coefficients.

It so happens that the regular diffusion coefficient is
well behaved at second order and high-frequency sensitive
(in terms of the largest bath modes, e.g. the cutoff) at
fourth order. The anomalous diffusion coefficient is pro-
portionally high-frequency sensitive at second order and
so any exact solution should have a position uncertainty
which is insensitive to high frequencies. Therefore solu-
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tions to the second-order master equation can produce a
position uncertainty with (negative) high-frequency sen-
sitivity at second order. Such a solution could poten-
tially violate the Heisenberg uncertainty principle and
even classical probability if the cutoff is large enough.

DISCUSSION

We have shown that even when provided with a sta-
tionary master equation describing dynamics that are
amenable to perturbative solution, the solutions to an
order-2n perturbative master equation are, in general,
only accurate to order-(2n− 2), a step down from that
of the master equation itself. This has a wide-range of
implications upon the common use of second-order mas-
ter equations and related master equations derived from
second-order dynamics: the Redfield, Born-Markov, and
many Lindblad equations. Moreover, not even a nonlocal
representation, such as with the Nakajima-Zwanzig mas-
ter equation can avoid this effect, as a thorough analysis
of time-local and nonlocal dynamics shows their asymp-
totics to be perturbatively the same [10].

To be more specific, the second-order master equation
can provide all second-order timescales and off-diagonal
density matrix elements (in the free energy basis). How-
ever it can only provide the diagonal matrix elements
with zeroth-order accuracy, and the missing information
is the most relevant to positivity in the low-temperature
regime. Therefore the second-order master equation can
produce second-order positivity violations, whereas the
full second-order solutions are positive to second-order.
Likewise, the steady state of the second-order master
equation may only agree with the steady state of the
full master equation to zeroth order.

There are three mathematical limits in which the
second-order master equation will give solutions accu-
rate to second order: The first is early times, where t
is small compared to any of the second-order damping
time scales. The second is the Markovian limit, because
in this limit the second-order master equation is exact.
The third is the limit employed by Davies [16] where one

rewrites the master equation in terms of the rescaled time
parameter τ = c2t and then takes the limit c → 0 (for
τ 6= 0 this effectively amounts to taking a simultaneous
t → ∞ limit). In this limit all corrections to the eigen-
operators of the Liouvillian vanish, and the only effect of
the environment is to introduce damping rates through
corrections to the eigenvalues, which are correctly cap-
tured by the perturbative master equation. Thus, the
inaccuracies of second-order master equation we have ad-
dressed may be sufficiently suppressed even at late times
if a physical system is sufficiently close to being described
by one of these limits. Therefore our results should be
most heeded in the non-Markovian regime of low temper-
ature or long-ranged correlations and with non-vanishing
dissipation rates.
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