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Van der Waals interaction between an atom with spherical plasma shell

Nail R. Khusnutdinov∗

Department of Physics, Kazan Federal University, Kremlevskaya 18, Kazan, 420008, Russia

We consider the van der Waals energy of an atom near the infinitely thin sphere with finite
conductivity which model the fullerene. We put the sphere into spherical cavity inside the infinite
dielectric media, then calculate the energy of vacuum fluctuations in framework of the zeta-function
approach. The energy for a single atom is obtained from this expression by consideration of the rare
media. In the limit of the infinite radius of the sphere the Casimir-Polder expression for an atom
and plate is recovered. For finite radius of sphere the energy of an atom monotonously falls down
as d

−3 close to the sphere and d
−7 far from the sphere. For hydrogen atom on the surface of the

fullerene C60 we obtain that the energy is 3.8eV . We obtain also that the polarizability of fullerene
is merely cube of its radius.

PACS numbers: 73.22.-f, 34.50.Dy, 12.20.Ds

I. INTRODUCTION

The general theory of the van der Waals force was developed by Lifshits in Ref. [1, 2] in framework of
the statistical physics. In the case of interaction between particle and plate it is commonly referred to as the
Casimir-Polder force [3]. For small distance the potential of interaction is proportional to inverse third degree
of distance from the plate. For great distance the retardation of the interaction had taken into account and the
potential falls down as fourth degree of distance. The last advantages in Casimir effect have been discussed in
great depth in books and reviews [4–6].
The van der Waals force is very important for interaction the graphene (graphite layers) with bodies [7–14]

and microparticles [15–18]. An understanding of the mechanisms of molecule-nanostructure interaction is of
importance for the problem of hydrogen storage in carbon nanostructures [19]. The microscopic mechanisms
underlying the absorption phenomenon remain unclear (see, for example review [20]).
In the present paper we use model of the fullerene in terms of the two dimensional free electron gas [21]. This

model was applied and developed for the molecule C60 in Refs. [22, 23], for flat plasma sheet in Ref. [24] and
for spherical plasma surface in Ref. [25]. In the framework of this model the conductive surface is considered
as infinitely thin shell with the specific wave number Ω = 4πne2/mc2, where n is surface density of electrons
in the surface and m is its mass. Due to the fact that the surface is infinitely thin, the information about the
properties of the surface is encoded in the boundary conditions on the conductive surface which are different
for TE and TM modes. As it was shown in Ref. [25] the energy of the vacuum electromagnetic fluctuations for
surface shaped as sphere has a maximum for radius of sphere approximately equals to the specific wavelength
of the model λΩ = 2π/Ω. It means that the Casimir force tries to expand sphere with radius larger then λΩ

and try to shrink the sphere with radius larger then λΩ. In the limit Ω → ∞ the Boyer result [26] is recovered.
In the present paper the same model of fullerene is adopted – the conductive singular sphere with radius R

in vacuum. To obtain the van der Waals energy for an atom near to this sphere we use the following approach
(see Refs. [1, 2, 13, 18]). We put the sphere inside the spherical cavity with radius L = R + d > R which is
inside the dielectric media with coefficients µ, ε. Then we find the zero-point energy of this system by using
the zeta-function regularization approach, and take the limit of the rared media with ε = 1 + 4πNα+O(N2),
where N → 0 is the volume density of the atoms and α is the polarizability of the unit atom. The energy per
unit atom with distance d from the sphere may be found by simple formula

Ea(s) = − lim
N→0

∂dE(s)

4πN(R+ d)2
,

where E(s) is the zeta-regularized energy with regularization parameter s.
The paper is organized as follows. In Sec. II we derive the boundary conditions for conductive sphere and

the boundary of the cavity. Section III is devoted to the solution the boundary conditions and obtaining the
conditions for energy spectrum. In Sec. IV the expression for the van der Waals energy is found which is
analyzed in the limit of infinite radius of the sphere and close and far from that sphere. Section V contains the
numerical calculations for hydrogen atom with fullerene C60. In the last section we discuss results obtained.
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II. MAXWELL’S EQUATIONS AND MATCHING CONDITIONS

Let us consider a conductive infinitely thin sphere with radius R in vacuum spherical cavity with radius
L = R + d inside the dielectric media with parameters µ, ε (see fig. 1). We have two spheres and we should
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FIG. 1: The infinitely thin conductive sphere with radius R is located inside the vacuum spherical cavity with radius L = R + d
into dielectric media with ε, µ 6= 1.

consider the boundary conditions on two spherical boundaries.
I. First of all we consider spherical boundary with radius L = R + d. Inside the sphere we have vacuum,

ε = µ = 1 and outside – the dielectric media with ε, µ 6= 1. For spherical symmetric case the electromagnetic field
has two independent polarizations usually called as TE and TM modes. The Maxwell equations with oscillatory
time dependence exp(−iωt) read

rotE− iω

c
B = 0, divB = 0, (1a)

rotH+
iω

c
D = 0, divD = 0, (1b)

where we use material equations D = ε(ω)E and B = µ(ω)H. To obtain TE -mode we express B from first
equation and substitute in the second one

BTE = − i

ω
rotETE, △ETE − ω2µεETE = 0. (2)

For TM mode we express E from second equation and substitute in the first one

ETM =
ic

ωµε
rotBTM, △BTM − ω2

c2
µεBTM = 0. (3)

Then we expand solutions over spherical functions and obtain the following expressions for TE and TM ,

BTE

lm = − ic

ω
rotETE

lm, ETE

lm = f(kr)LYlm, (4)

ETM

lm =
ic

ωµε
rotBTM

lm , BTM

lm = f(kr)LYlm, (5)

where ck = ω
√
µε. In spherical dribien (er, eθ, eϕ) we obtain in manifest form

ETE

lm =

(

0,
if

sin θ
∂ϕYlm,−if∂θYlm

)

,

BTE

lm =

(

cf

ωr
l(l + 1)Ylm,

c(rf)′

ωr
∂θYlm,

c(rf)′

ωr sin θ
∂ϕYlm

)

,

BTM

lm =

(

0,
if

sin θ
∂ϕYlm,−if∂θYlm

)

,

ETM

lm = − c

εµ

(

f

ωr
l(l + 1)Ylm,

(rf)′

ωr
∂θYlm,

(rf)′

ωr sin θ
∂ϕYlm

)

, (6)

and the function f obeys the radial equation

f ′′ +
2

r
f ′ +

(

ω2

c2
εµ− l(l + 1)

r2

)

f = 0, (7)
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with solutions in the form the spherical Bessel functions jl(z) =
√

π/2zJl+1/2(z), yl(z) =
√

π/2zYl+1/2(z),
where z = rω

√
εµ/c.

At the boundary, L, the matching conditions read

n · [B2 −B1]L = 0, n · [D2 −D1]L = 0, (8a)

n× [H2 −H1]L = 0, n× [E2 −E1]L = 0, (8b)

where n = r/r is an unit normal to the sphere and we have to take into account that k = ω/c inside the sphere
and k = ω

√
µε/c outside the sphere. The square brackets above denote the coincidence limit on the r = L.

II. Electromagnetic fields given infinitely thin conductive surface Σ in vacuum was considered by Fetter in
Ref. [21]. The application this model for vacuum fluctuations see in Refs. [22–25]. In this case the electrons of
conductivity on the sphere produce currency and the Maxwell equations read

rotE− iω

c
H = 0, divH = 0, (9a)

rotH+
iω

c
E = 4πJ, divE = 4πρ, (9b)

where ρ = δ(x− xΣ)σ, J = δ(x − xΣ)j/c. The equation of continuity and Newton equations give the following
expressions for density and currency

σ =
e2n

mω2
∇|| · E||, j = i

e2n

mω
E||, (10)

where the superscripts || indicates the vector components parallel to the surface Σ, e and m are a charge and
mass of electron, and n is a surface density of charge.
On the conductive sphere with radius r = R we have another kind of boundary conditions due to conductive

electrons on the sphere

n · [H2 −H1]R = 0, n · [E2 −E1]R =
Ω

k2
∇|| · E||, (11a)

n× [H2 −H1]R = − iΩ

k
n×E||, n× [E2 −E1]R = 0, (11b)

where k = ω/c and Ω = 4πne2/mc2 is a specific wave number of plasma on the sphere. Because the sphere
is infinitely thin we may consider the Maxwell equations (9) in vacuum with zero right hand side and all
information about sphere will be encoded in boundary conditions (11). Interesting treatment of this boundary
condition is in Ref. [27].

III. THE SOLUTION OF THE MATCHING CONDITIONS

Inside the cavity we consider a vacuum with µ = ε = 1 and outside there is a media with µ, ε 6= 1. We denote
the radial function in the following way

f =







fin = ainjl(kr), r < R
fout = aoutjl(kr) + boutyl(kr), R < r < L

fε = aεh
(1)
l (kr), r > L

(12)

where jl, yl and h
(1)
l are the spherical Bessel functions.

The matching conditions (8) and (11) in manifest form read

[rfout − rfin]R = 0,

[(rfout)
′
r − (rfin)

′
r − Ω(rfin)]R = 0,

[rfout − rfε]L = 0, (13)

[(rfout)
′
r −

1

µ
(rfε)

′
r]L = 0,

for TE mode, and

[(rfout)
′
r − (rfin)

′
r]R = 0,

[(rfout)− (rfin) +
Ω

k2
(rfin)

′
r]R = 0,
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[rfout −
1

µ
rfε]L = 0, (14)

[(rfout)
′
r −

1

µε
(rfε)

′
r]L = 0,

for TM mode. The solutions of these equations exist if and only if the following equations are satisfied

1√
µε

H(zε)Ψ
′
TE −

1

µ
H ′(zε)ΨTE = 0, (15a)

− 1√
µε

H(zε)Ψ
′
TM +

1

ε
H ′(zε)ΨTM = 0, (15b)

where zε = z
√
µε, z = kL = ωL/c, and prime is derivative with respect the argument, and

ΨTE(z) = J(z) +
Ω

k
J(x)[J(x)Y (z)− J(z)Y (x)], (16a)

ΨTM(z) = J(z) +
Ω

k
J ′(x)[J ′(x)Y (z)− J(z)Y ′(x)]. (16b)

Here J(x) = xjl(x), Y (x) = xyl(x), H(x) = xh
(1)
l (x) are the Riccati-Bessel functions, and x = kR. Therefore

the functions we need (see next section) to obtain the spectrum of the energy read (we set µ = 1)

ΣTE = H ′(zε)ΨTE −
1√
ε
H(zε)Ψ

′
TE, (17a)

ΣTM = H(zε)Ψ
′
TM − 1√

ε
H ′(zε)ΨTM. (17b)

For ε = 1 we recover the result obtained in the Ref. [25]

ΣTE = i

{

1− Ω

ik
J(x)H(x)

}

= ifTE(k), (18a)

ΣTM = −i

{

1− Ω

ik
J ′(x)H ′(x)

}

= −ifTM(k), (18b)

for real value of k, and for imaginary axis k → ik we obtain from above expressions the Jost functions in
imaginary axis:

ΣTE = i

{

1 +
Ω

k
sl(x)el(x)

}

= ifTE(ik), (19a)

ΣTM = −i

{

1− Ω

k
s′l(x)e

′
l(x)

}

= −ifTM(ik), (19b)

because H(ix) = (−i)l+1el(x), J(ix) = il+1sl(x) and Y (ix) = −ilsl(x) − (−i)lel(x), where

sl(x) =

√

πx

2
Il+1/2(x), el(x) =

√

2x

π
Kl+1/2(x) (20)

are the Riccatti-Bessel spherical functions of the second kind. To avoid problem with z = 0 we multiply ΣTM

for z2

ΣTE = −i

{

H ′(zε)ΨTE − 1√
ε
H(zε)Ψ

′
TE

}

, (21a)

ΣTM = −iz2
{

H(zε)Ψ
′
TM − 1√

ε
H ′(zε)ΨTM

}

. (21b)

In imaginary axis k → ik we obtain

ΣTE =
1√
ε
el(zε)Φ

′
TE − e′l(zε)ΦTE, (22a)

ΣTM = z2
{

el(zε)Φ
′
TM − 1√

ε
e′l(zε)ΦTM

}

, (22b)
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ΦTE = sl(z) +
Q

x
sl(x)[sl(z)el(x) − sl(x)el(z)], (22c)

ΦTM = sl(z)−
Q

x
s′l(x)[sl(z)e

′
l(x) − s′l(x)el(z)], (22d)

where Q = ΩR, z = kL, zε = z
√
ε, x = kR and ε = ε(iω). For ε = 1 we obtain

ΣTE = fTE(ik), ΣTM = z2fTM(ik) (23)

in accordance with Ref. [25].

IV. THE ENERGY

In framework approach suggested in Ref. [28] we have the following expressions for TE and TM contributions
in regularized zero-point energy (ω = kc)

ETE(s) = −~c cosπs

π
µ2s

∞
∑

l=1

ν

∫ ∞

0

dkk1−2s∂k lnΣTE, (24)

ETM(s) = −~c cosπs

π
µ2s

∞
∑

l=1

ν

∫ ∞

0

dkk1−2s∂k lnΣTM, (25)

where integrand functions are give by Eqs. (22). The summations in these expressions starts from l = 1 because
for l = 0 electromagnetic modes (6) are zero.
To find the expression for energy per unit atom we need for the derivative of energy with respect d (E(s) =

ETE(s) + ETM(s)) which read in manifest form

∂dE(s) = −~c cosπs

π
µ2s

∞
∑

l=1

ν

∫ ∞

0

dkk1−2s∂k

{

k(1− ε)√
ε

[

G−1
TE

+ G−1
TM

]

}

,

where

GTE =
1√
ε

Φ′
TE

ΦTE

− e′l(zε)

el(zε)
=

ΣTE

el(zε)ΦTE

,

GTM = −
Φ′

TM

Φ
TTM

− 1√
ε

e′
l
(zε)

el(zε)

Φ′

TM

ΦTM

e′
l
(zε)

el(zε)
+

ν2− 1

4

z2
√
ε

= − ΣTM

z2
[

e′l(zε)Φ
′
TM,z + el(zε)ΦTM

ν2− 1

4

z2
√
ε

] .

We consider now the rared media with ε(iω) = 1+ 4πNα(iω) +O(N2), where α is polarizability of the atom
and density media N → 0. In this case the Casimir energy E(s) is expressed in terms the energy per unite atom
Ea(s) by relation

E(s) = N

∫ ∞

d

Ea(s)4π(R+ r)2dr +O(N2). (26)

From this expression we obtain that

Ea(s) = − lim
N→0

∂dE(s)

4πN(R+ d)2
, (27)

and in manifest form

Ea(s) = −~cµ2s cosπs

π(R + d)2

∞
∑

l=1

ν

∫ ∞

0

dkk1−2s∂k

{

kα(iω)

GTE

+
kα(iω)

GTM

}

, (28)

where

GTE =
ΣTE

el(z)ΦTE

=
fTE(ik)

el(z)ΦTE

,

GTM = − ΣTM

z2
[

e′l(z)Φ
′
TM,z + el(z)ΦTM

ν2− 1

4

z2

] = − fTM(ik)

e′l(z)Φ
′
TM,z + el(z)ΦTM

ν2− 1

4

z2

.
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By using definitions of functions ΦTE and ΦTM we have the following relations

ΦTE = sl(z)fTE(ik)−
Ω

k
s2l (x)el(z),

ΦTM = sl(z)fTM(ik) +
Ω

k
s′

2
l (x)el(z),

and express above formulas in slightly different form,

G−1
TE

= el(z)sl(z)−
Q

x

s2l (x)e
2
l (z)

fTE(ik)
,

G−1
TM

= −e′l(z)s
′
l(z)− el(z)sl(z)

ν2 − 1
4

z2
− Q

x

1

fTM(ik)

[

s′
2
l (x)e

′2
l (z) + s′

2
l (x)e

2
l (z)

ν2 − 1
4

z2

]

,

separating the terms which do not depend on the Q = ΩR. For atom in vacuum (Q = 0) there is no Casimir
energy. For this reason for renormalization we subtract terms with Q = 0 and define the energy

EΩ = lim
s→0

{Ea(s)− lim
Ω→0

Ea(s)}. (29)

Then we set s = 0, integrate by part over k and obtain final formula (x = kR, z = kL)

EΩ = − ~cΩ

π(R+ d)2

∞
∑

l=1

ν

∫ ∞

0

dkα(iω)

{

s2l (x)e
2
l (z)

fTE(ik)
+

s′2l (x)e
′2
l (z) + s′2l (x)e

2
l (z)

ν2− 1

4

z2

fTM(ik)

}

, (30)

where Jost functions on the imaginary axes read

fTE(ik) = 1 +
Ω

k
sl(x)el(x), (31)

fTM(ik) = 1− Ω

k
s′l(x)e

′
l(x). (32)

For an atom one has

α(iω) =
g2a

ω2 + ω2
a

, (33)

where ga and ωa are experimental parameters.
From the expression (30) we observe that the energy is negative because the integrand is always positive for

arbitrary radius of sphere, plasmon wavevector Ω and arbitrary position of atom. The same observation was
noted in Ref. [29] for ideal case. Let us consider different limits.
1) In the Boyer limit Ω → ∞ we obtain

EB = − ~c

π(R+ d)2

∞
∑

l=1

ν

∫ ∞

0

dkkα(iω)

{

s2l (x)e
2
l (z)

sl(x)el(x)
− s′2l (x)e

′2
l (z) + s′2l (x)e

2
l (z)

ν2− 1

4

z2

s′l(x)e
′
l(x)

}

. (34)

2) We can not change the limit R → ∞ with sum and integration in above expressions (30) and (34) because
in this case the integrand will not depend on the l and the series will be divergent. Indeed, we have

2sl(x)el(z)|R→∞ = +e−kd, 2sl(x)el(x)|R→∞ = +1,

2s′l(x)e
′
l(z)|R→∞ = −e−kd, 2s′l(x)e

′
l(x)|R→∞ = −1,

2s′l(x)el(z)|R→∞ = +e−kd,

and the sum over l is divergent:

EΩ = − ~cΩ

2π(R+ d)2

∞
∑

l=1

ν

∫ ∞

0

dkα(iω)
e−2kd

1 + Ω
2k

→ ∞. (35)

To find the limit R → ∞ we change the variable k → νk in Eq. (30)

EΩ = − ~cΩ

π(R+ d)2

∞
∑

l=1

ν2
∫ ∞

0

dkα(iων)







s2l (νx)e
2
l (νz)

fTE(ikν)
+

s′2l (νx)e
′2
l (νz) + s′2l (νx)e

2
l (νz)

1− 1

4ν2

z2

fTM(ikν)







, (36)
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EB = − ~c

π(R+ d)2

∞
∑

l=1

ν3
∫ ∞

0

kdkα(iων)







s2l (νx)e
2
l (νz)

sl(νx)el(νx)
− s′2l (νx)e

′2
l (νz) + s′2l (νx)e

2
l (νz)

1− 1

4ν2

z2

s′l(νx)e
′
l(νx)







, (37)

and use the uniform expansion for Bessel functions (see Ref. [30]). We obtain

EΩ = − ~cΩ

π(R+ d)2

∞
∑

l=1

ν2
∫ ∞

0

dkα(iων)e−2ν[η(z)−η(x)]

{

xzt(x)t(z)

4w
+

1 + t2(z)

4pxzt(x)t(z)
+ . . .

}

, (38)

EB = − ~c

π(R+ d)2

∞
∑

l=1

ν3
∫ ∞

0

dkkα(iων)e−2ν[η(z)−η(x)]

{

zt(z)

2
+

1 + t2(z)

2zt(z)
+ . . .

}

, (39)

where p = 1+ Q
2νx2t(x) , w = 1 + Qt(x)

2ν , t(x) = 1/
√
1 + x2, η(x) =

√
1 + x2 + ln x

1+
√
1+x2

and x = kR, z = kL =

k(R+ d). In the limit R → ∞ both expressions coincides and the main contribution comes from the first term
of expansion:

E = − lim
R→∞

~cg2

πc2(R + d)2

∞
∑

l=1

ν3
∫ ∞

0

dyy

y2ν2 + q2
e−2ν[η(u)−η(y)]

ut(u)
, (40)

where u = y(1 + d/R), qa = kaR and we changed variable k → y = kR.
The sum over l may be represented in the following form

∞
∑

l=1

ν3e−2νδ

y2ν2 + q2a
=

1

4qay

∫ ∞

0

27 + 17e−2(t+δ) + 5e−4(t+δ) − e−6(t+δ)

e3(t+δ)(e−2(t+δ) − 1)4
sin

2qat

y
dt. (41)

Taking into account this expression we change the limit R → ∞ and integrals and obtain

E = −3~cα(0)

8πd4
S, (42)

where

S =
1

3

∫ ∞

0

dte−t

{

1 + t

1 + t2

4v2

+
t

(1 + t2

4v2 )2

}

, (43)

and v = dka. Let us consider great distance from the plate dka ≫ 1. Taking the limit v → ∞ we obtain S = 1
and therefore we have the Casimir-Polder (∼ d−4) potential

E = −3~cα(0)

8πd4
. (44)

For small distances dka ≪ 1 we change the variable t → τ = t/2v and take the limit v → 0. We obtain in this
case S = πv/3 and potential has the form ∼ d−3

E = −~cα(0)ka
8d3

(45)

as should be the case. The numerical simulation of the S as function of v = dka is shown in Fig. 2.
3) Let us analyze the energy for great (d ≫ k−1

a , d ≫ R) and small (d ≪ k−1
a , d ≪ R) distances for finite Ω

and R. To find expression for energy for great distance d → ∞ from the shell we use the Eq. (30). We change
integrand variable k = y/d and take limit d → ∞, then we take integrals over y and make summation over l
and obtain the series over R/d:

EΩ ≈ −3~cα(0)

8πd4
SΩ, (46a)

SΩ =
π

3
(

R
d + 1

)2

∞
∑

l=1

(

R

d

)2l+1 Γ (l + 2)Γ
(

2l+ 5
2

)

4lΓ2
(

l + 1
2

)

Γ
(

l + 5
2

)

{

Q

Q+ 2l+ 1
+

(l + 1)(8l2 + 12l+ 3)

l(4l+ 3)

}

. (46b)

The sum may be expressed in terms of the hypergeometric functions. The main contribution comes from l = 1
and we arrive with expression

EΩ ≈ − ~cα(0)R3

8π(3 +Q)d7
(53Q+ 138). (47)
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FIG. 2: The plot of S as the function of the v = kda. It tends to unit for great v (E ∼ d−4) and it is linear over v (E ∼ d−3) for
small distances from plate. The relation of the energy and S is given by Eq. (42).

Comparing this expression with Casimir-Polder interaction of two atoms with polarizations α and αf

E = − 23

4π

~cα(0)αf (0)

d7
(48)

we observe that from this point of view conductive sphere has static polarizability

αf =
53Q+ 138

46Q+ 138
R3. (49)

To analyze the energy for small distances we use the following representation for series

∞
∑

l=1

ν2

y2ν2 + q2
e−2νδ

1 + a
ν

= − 1

4(q2 + a2y2)

∫ ∞

0

{

f (2)e−2ax +
y

2q
f (4) sin

2qx

y
+

ay

q
f (3) sin

2qx

y

}

, (50)

where f(x) = e−3(δ+x)/(1 − e−2(δ+x)). First and second terms give the d3 contribution and last term give
contribution ∼ d. Taking into account this expressions we obtain the same result as above

E = −~cα(0)ka
8d3

(51)

as should be the case, because close to the sphere we observe flat surface.

V. NUMERICALS

Therefore we have the following expressions which have to be analysed numerically (x = kR, z = k(R + d))

EΩ = − ~cΩ

π(R+ d)2

∞
∑

l=1

ν

∫ ∞

0

dkα(iω)

{

s2l (x)e
2
l (z)

fTE(ik)
+

s′2l (x)e
′2
l (z) + s′2l (x)e

2
l (z)

ν2− 1

4

z2

fTM(ik)

}

, (52)

with the following formulas for the Jost functions

fTE(ik) = 1 +
Ω

k
sl(x)el(x), (53)

fTM(ik) = 1− Ω

k
s′l(x)e

′
l(x), (54)

and polarizability of atom

α(iω) =
g2a

ω2 + ω2
a

. (55)
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In the Boyer limit Ω → ∞ we obtain

EB = − ~c

π(R+ d)2

∞
∑

l=1

ν

∫ ∞

0

dkkα(iω)

{

s2l (x)e
2
l (z)

sl(x)el(x)
− s′2l (x)e

′2
l (z) + s′2l (x)e

2
l (z)

ν2− 1

4

z2

s′l(x)e
′
l(x)

}

, (56)

We change the integrand variable k = y/R,

EΩ = − ~g2aQ

πc(R + d)2

∞
∑

l=1

ν

∫ ∞

0

dy

y2 + q2a

{

s2l (y)e
2
l (z)

fTE(iy)
+

s′2l (y)e
′2
l (z) + s′2l (y)e

2
l (z)

ν2− 1

4

z2

fTM(iy)

}

, (57)

EB = − ~g2a
πc(R + d)2

∞
∑

l=1

ν

∫ ∞

0

ydy

y2 + q2a

{

s2l (y)e
2
l (z)

sl(y)el(y)
− s′2l (y)e

′2
l (z) + s′2l (y)e

2
l (z)

ν2− 1

4

z2

s′l(y)e
′
l(y)

}

, (58)

where z = (1 + r)y, qa = ωaR/c, and

fTE(iy) = 1 +
Q

y
sl(y)el(y), (59)

fTM(iy) = 1− Q

y
s′l(y)e

′
l(y). (60)

Here r = d/R. We numerically calculate the dimensionless quantity

SΩ =
8q2aQr4

3(1 + r)2

∞
∑

l=1

ν

∫ ∞

0

dy

y2 + q2a

{

s2l (y)e
2
l (z)

fTE(iy)
+

s′2l (y)e
′2
l (z) + s′2l (y)e

2
l (z)

ν2− 1

4

z2

fTM(iy)

}

, (61)

SB =
8q2ar

4

3(1 + r)2

∞
∑

l=1

ν

∫ ∞

0

ydy

y2 + q2a

{

s2l (y)e
2
l (z)

sl(y)el(y)
− s′2l (y)e

′2
l (z) + s′2l (y)e

2
l (z)

ν2− 1

4

z2

s′l(y)e
′
l(y)

}

(62)

and the energy is connected with this variable

EΩ,B = −3~cα(0)

8πd4
SΩ,B. (63)

It is better to mesure all variables in the wave vector ka and therefore the function S depends on the three
parameters: Ω/ka, qa = Rka and dka. The numerical analysis of the function S for Ω/ka = 2.44 ·10−2 (molecule
C60) and Ω/ka = 1 is represented in Fig. 3.

a) b)

FIG. 3: The plot of S as the function of the dka ∈ (0, 2) and Rka ∈ (0.02, 2) for Ω/ka = 2.44 · 10−2 (the fig. a) and Ω/ka = 1 (the
fig. b).

Let us consider above formula for molecule C60. For this molecule from Ref. [22] we have R = 3.42Å =
0.342nm, Q = ΩR = 4.94 · 10−4 and Ω/ka = 2.44 · 10−2. Polarizability of hydrogen atom reads [13, 18, 31]
αa(0) = 4.50 a.u. (1 a.u. = 1.482 · 10−31m3) and ωa = 11.65eV = 17.698 · 1015Hz (ka = 0.059nm−1, λa =
106.4nm) where ω/c = k = 2π/λ. Therefore we have qa = kaR = 0.0202.
Numerically the energy for hydrogen atom has the following form

EΩ(eV ) = − 0.0156

d4(nm)
SΩ(qa, r), (64)
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0.5 1.0 1.5 2.0 2.5 3.0
d HnmL

0.002

0.004

0.006

0.008

S

a)

FIG. 4: The plot of S as the function of the distance d from the sphere. Thin curve is the energy for the case R → ∞ (Casimir-
Polder energy for plate), middle thickness curve is the case of the molecule C60, and the thick curve is the case of ideal sphere
(Ω → ∞). In the figure b we compare the energy for the plane with the energy in the sphere case.

where the energy is measured in the eV and the distance is measured in nanometres. The numerical simulations
the function S are shown in Fig. 4 and the energy EΩ in Fig. 5. The radius of the hydrogen atom is
rH = 0.053nm. For this minimal distance, d = rH , we have numerically E = 3.8eV . In the case of plate we
obtain 6.4eV . In the interval of distances from hydrogen atom rH up to 5rH the energy is approximated by the
following expression

EΩ(eV ) ≈ − 0.00013

d7/2(nm)
. (65)

For great distances we have from Eq. (47)

EΩ(eV ) ≈ − 0.0095

d7(nm)
. (66)

This expression approximates the exact one with error 10% starting with distance d = 50nm. The Eq. (49) gives
the static palarizability of the fullerene αp(0) = R3 = 4 · 10−29m3. This expression is close to that calculated
in Ref. [32] where the authors obtained αp(0) = 7 · 10−29m3.

0.10 0.15 0.20 0.25 0.30
d HnmL

-3

-2

-1

EWHeVL

a)

0.5 1.0 1.5 2.0
d HnmL

-0.008

-0.006

-0.004

-0.002

EWHeVL

b)

FIG. 5: The plot of the energy EΩ as the function of the distance d from the sphere for the hydrogen atom. In the figure a) we
show the energy starting from the distance d = 0.053(nm) (the radius of the hydrogen atom). The figure b) shows the energy in
large interval.

VI. CONCLUSION

In the foregoing, we have obtained the close expression for the Casimir-Polder (van der Waals) energy for a
system which contain an atom or microparticle and conductive infinitely thin sphere which model for a fullerene.
We used the zeta-regularization approach and for renormalization we used a simple physically reasonable con-
dition – the energy should be zero without sphere. The conductive sphere with radius R is characterized by the
only parameter Ω = 4πne2/mc2 with dimension wave number, where n is the surface density of electrons. The
limit Ω → ∞ corresponds to the ideal case considered by Boyer [26]. The microparticle is characterized by the
only parameter polarizability α.
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The expression obtained reproduces in the limit R → ∞ the Casimir-Polder result for the atom with plate
(see Eqs. (42)-(45)). For small distances we have d−3 dependence and far from the plate we obtain d−4 due
to retardation. For finite radius of the sphere we have different behavior of the energy. Close to the sphere,
d ≪ 1/ka and d ≪ R, we have the same d−3 dependence as in the Casimir-Polder case and far from the sphere
we obtained d−7 dependence given in Eq. (47). This expression is valid for d ≫ 1/ka and d ≫ R. For the
interval rH < d < 5rH , where rH is the radius of the hydrogen atom, the energy is approximated by d−7/2

dependence. We also note that the finite conductivity decreases of the energy in comparison with Boyer case
which may be observed in the Fig. 4.
Application to the molecule C60 with hydrogen atom is plotted in Fig. 5. For closest distance atom from the

fullerene, which is radius of hydrogen atom rH , the energy is 3.8eV which is two times smaller then for the case
atom with plate. Far from the fullerene (in fact greater then 50nm) the energy falls down as d−7 (see Eq. (66))
which is three order faster then for the Casimir-Polder case. This dependence corresponds to the Casimir-Polder
interaction atoms for great distance. Taking into account this analogy we obtain the polarizability of fullerene
(Q = ΩR = 4.94 · 10−4 ≪ 1)

αf =
53Q+ 138

46Q+ 138
R3 ≈ R3 = 4 · 10−29m3.
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