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In this paper, we investigate the classicality and quantumness of a quantum ensemble. We define
a quantity called classicality to characterize how classical a quantum ensemble is. An ensemble
of commuting states that can be manipulated classically has a unit classicality, while a general
ensemble has a classicality less than 1. We also study how quantum an ensemble is by defining
a related quantity called quantumness. We find that the classicality of an ensemble is closely
related to how perfectly the ensemble can be cloned, and that the quantumness of an ensemble
is essentially responsible for the security of quantum key distribution(QKD) protocols using that
ensemble. Furthermore, we show that the quantumness of an ensemble used in a QKD protocol is
exactly the attainable lower bound of the error rate in the sifted key.

PACS numbers: 03.65.-w, 03.67.-a

Quantum theory has revealed many counterintuitive
features of quantum systems in comparison with classi-
cal systems. Classical systems can be copied, deleted and
distinguished with unit probability, while it is impossible
to perfectly copy or delete an unknown quantum state [1–
3] and non-orthogonal quantum states cannot be reliably
distinguished [4]. The no-cloning theorem assures the se-
curity of quantum key distribution protocols [5] and pro-
hibits superluminal communication[6]. Non-commuting
observables described by quantum mechanics cannot be
determined simultaneously, and a quantum measurement
usually disturbs the quantum systems measured, in strik-
ing contrast to the fact that measurements can leave clas-
sical systems unperturbed in principle.

Some quantum ensembles can be manipulated like clas-
sical ones, whereas others can not. For example, an un-
known state from an ensemble Eort which is composed
of orthogonal pure states could be cloned perfectly and
determined without being disturbed; on the other hand a
state from an ensemble Enon composed of non-orthogonal
states cannot be cloned perfectly and determined ex-
actly [7]. Perfect clonability and distinguishability are
essential characteristics of the classical ensembles. In-
tuitively, the ensemble Eort is more classical than Enon,
so the following questions naturally arise: what ensem-
bles could be handled like classical ones and what could
not? Is there a quantity to quantitatively measure how
classical an ensemble is? There have already been some
studies on the quantumness of quantum ensembles [8, 9].
In this paper, we study the classicality and quantumness
of an ensemble from a different perspective. We start
from considering how precisely an unknown state from
the ensemble can be cloned and how stable it is under an
appropriate measurement,i.e, how close the state after
the measurement is to the original state. By classicality
of an ensemble, we mean that how well it can be manip-
ulated as a classical one.

Considering the classical cloning process is able to
transform a classical state and a blank state into two

copies of the original state, we can apply the process to
clone orthogonal states of a quantum system. For an ar-
bitrary unknown input state ρ, a quantum cloning pro-
cess can be defined as the unitary transformation that
assures |j〉|0〉 → |j〉|j〉, where {|j〉} is a basis we choose
for the Hilbert space of the input system and |0〉 is a
blank state of an ancillary system. This cloning strat-
egy was first introduced in [1], and we call it a classical
cloning strategy as it is the quantum counterpart of the
classical cloning process.

Obviously, this classical cloning strategy is neither per-
fect nor optimum for cloning an unknown quantum state.
The copies produced are generally different from the orig-
inal state, so it is useful to quantify the distance between
a copy and the original state. How to measure the dis-
tance is investigated intensively and many proposals have
been put forward [4, 10]. One distance measure is the
relative entropy [9, 10], which has been used to quantify
entanglement and correlations [11, 12]. However, the rel-
ative entropy is not a genuine metric as it is not symmet-
ric. Two other widely used distance measures, the trace
distance and the fidelity [4] are well defined because both
of them are symmetric and have many other properties of
good distance measures. In this paper, we use fidelity as
the distance measure. The fidelity of ρ and σ is defined
as [13]

F (ρ, σ) = (tr
√

ρ1/2σρ1/2)2. (1)

(The square root of the above quantity is also frequently
defined as the fidelity [4], but we adopt Eq. (1) as the
fidelity definition throughout this paper.) It is obvious
that 0 ≤ F (ρ, σ) ≤ 1 and F (ρ, σ) = 1 if and only if ρ = σ.

For the quantum cloning process with the classical
strategy, an arbitrary input state can be written in the
basis {|j〉} as ρ =

∑

ij ρij |i〉〈j|, and the output bipar-

tite state is given by
∑

ij ρij |ii〉〈jj|. Therefore, the re-
duced density matrix of either subsystem is obtained as
ρ′ =

∑

j ρjj |j〉〈j| =
∑

j〈j|ρ|j〉|j〉〈j|, and the fidelity be-
tween the input state and one output state is given by
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F (ρ, ρ′).
For an ensemble denoted by E = {qi, ρi}, we investigate

its classicality by studying how well an unknown state
from the ensemble can be cloned by the classical cloning
strategy with respect to a basis {|j〉}. First, we define
the average cloning fidelity for the ensemble E as

Fave(E , {|j〉}) =
∑

i

qiF (ρi, ρ
′
i), (2)

where ρ′i =
∑

j〈j|ρi|j〉|j〉〈j|. For an ensemble composed
of orthogonal pure states, an average cloning fidelity of
1 could be reached if the orthogonal states are chosen as
the basis {|j〉}. For a general quantum ensemble, it can
be seen that Fave(E) ≤ 1 as F (ρi, ρ

′
i) ≤ 1 and

∑

i qi = 1.
The average cloning fidelity Fave represents the perfor-
mance of a classical copying strategy on a quantum en-
semble; meanwhile, Fave can also represent stability of
the states in an ensemble under a projective measure-
ment, since ρ′i =

∑

j〈j|ρi|j〉|j〉〈j| is the density matrix

after a projective measurement on ρi along a basis {|j〉}.
In some sense, the average cloning fidelity represents how
classical the ensemble is. Therefore, we can define the
classicality J of the quantum ensemble E = {qi, ρi} as

J(E) = max
{|j〉}

{Fave(E , |j〉)} = max
{|j〉}

{
∑

i

qiF (ρi, ρ
′
i)}, (3)

where {|j〉} is an orthonormal basis of the subspace
spanned by the states in the ensemble. For an infinite
quantum ensemble E = {f(α), ρ(α)}, the classicality is
similarly defined as

J(E) = max
{|j〉}

{

ˆ

f(α)F (ρ(α)i, ρ(α)
′
i)dα}, (4)

where ρ(α)′ =
∑

j〈j|ρ(α)|j〉|j〉〈j| and f(α) is the prob-

ability distribution function satisfying
´

f(α)dα = 1. It
can be seen that the classicality J defined above is an
intrinsic property of the ensemble, independent of the
cloning basis. It is evident that E can be manipulated as
a pure classical ensemble only when J(E) = 1.

A single state ρ can be considered as an ensemble con-
sisting of just one state, and it can be shown that the
classicality J of a single-state ensemble ρ is equal to
one. Since the cloning basis states could be chosen as the
eigenstates of ρ, then ρ = ρ′, and thus J = F (ρ, ρ′) = 1.
Therefore, the classicality of a single-state ensemble is
equal to one. In the following theorem, we give the range
of J .

Theorem 1. 1/d ≤ J(E) ≤ 1, where d is the dimension

of the Hilbert space. J(E) = 1 if and only if all quantum

states in the ensemble commute with each other.

Proof. We only give the proof for finite ensembles as
that for infinite ensembles is similar. For a finite en-
semble E = {qi, ρi}, from the definition we have J(E) =
max{|j〉}{

∑

i qiF (ρi, ρ
′
i)} ≤

∑

i qi = 1 due to the prop-
erty F (ρi, ρ

′
i) ≤ 1. Suppose {|j∗〉} is the basis that maxi-

mizes Fave for the ensemble E , i.e., J(E) =
∑

i qiF (ρi, ρ
′
i),

where ρ′i =
∑

j∗〈j
∗|ρi|j

∗〉|j∗〉〈j∗|. The fidelity satis-

fies the inequality F (ρ, ρ′) ≥ trρρ′ [13], then J(E) ≥
∑

i qitrρiρ
′
i =

∑

i qitrρ
′2
i . If the dimension of the Hilbert

space spanned by the states in the ensemble is d, we

have trρ′2i =
∑d

j=1
ρ2jj ≥ (

∑d
j=1

ρjj)
2/d = 1/d. Then

J(E) ≥
∑

i qi/d = 1/d, and we get 1/d ≤ J(E) ≤ 1.
Now we prove that J(E) = 1 if and only if all quan-
tum states in the ensemble are mutually commutative.
If J(E) = 1, then for each i, F (ρi, ρ

′
i) = 1 and thus

ρi = ρ′i =
∑

j〈j
∗|ρi|j

∗〉|j∗〉〈j∗|. So all the states are di-

agonal in the same basis {|j∗〉}, and they commute with
each other. On the other hand, if all the states in the
ensemble commute with each other, all of them can be
diagonalized simultaneously. So there exists a basis in
which all the states are diagonal and we can use this ba-
sis in the classical cloning strategy, then ρ′i = ρi and each
F (ρi, ρ

′
i) = 1, so we get J(E) = 1.

The classicality J of an ensemble {qi, ρi} quantifies
how well states from the ensemble can be cloned by a
classical strategy, thus gives a measure of how classical
the ensemble is. From another perspective, the classical-
ity J of an ensemble {qi, ρi} also tells us to what extent
the states from the ensemble commute. The classicality
of an ensemble of mutually commuting states is equal to
1, this is in accordance with the fact that commuting
states could be broadcasted [14].

Theorem 2. For the ensembles EA = {qi, ρiA}, EB =
{qj, ρjB}, and EAB = {qiqj , ρiA ⊗ ρjB}, there is an in-

equality

J(EAB) ≥ J(EA)J(EB); (5)

for the infinite ensembles EA = {f(α), ρA(α)}, EB =
{f(β), ρB(β)}, and EAB = {f(α)f(β), ρA(α) ⊗ ρB(β)},
the inequality (5) is also valid.

Proof. Assume that {|k〉} and {|m〉} are the
bases of the systems A and B which maximize
∑

i qiF (ρiA, ρ
′
iA) and

∑

j qjF (ρjB , ρ
′
jB) respec-

tively. Then J(EA) =
∑

i qiF (ρiA, ρ
′
iA), J(EB) =

∑

j qjF (ρjB , ρ
′
jB), where ρ′iA =

∑

k〈k|ρiA|k〉|k〉〈k| and

ρ′jB =
∑

m〈m|ρjB |m〉|m〉〈m|. The basis {|k〉⊗ |m〉} may
not be optimal for EAB, and from the definition we can
get

J(EAB) = max
{|l〉AB}

{Fave(EAB, {|l〉
AB})}

≥ Fave(EAB, |k〉 ⊗ |m〉)

=
∑

ij

qiqjF (ρiA ⊗ ρjB , ρ
′
iA ⊗ ρ′jB)

=
∑

ij

qiqjF (ρiA, ρ
′
iA)F (ρjB , ρ

′
jB)

= J(EA)J(EB).

(6)

The proof for the infinite ensembles is similar.
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Above we have proved J(EAB) ≥ J(EA)J(EB) in the-
orem 2, but so far we have not found any example for
which J(EAB) > J(EA)J(EB), so we conjecture that
J(EAB) = J(EA)J(EB) holds true for all ensembles EA,
EB, EAB defined in Theorem 2.

Now, we show that J is invariant under unitary oper-
ations. For a finite ensemble E = {qi, ρi}, after a unitary
operation U , the classicality of the new ensemble is given
as

J(UEU †) = max
{|j〉}

{Fave(UEU †, |j〉)}

= max
{U|j〉}

{Fave(UEU †, U |j〉)}

= max
{U|j〉}

{
∑

i

qiF (UρiU
†,
∑

j

〈j|ρi|j〉U |j〉〈j|U †)}

= max
{|j〉}

{
∑

i

qiF (ρi, ρ
′
i)}

= J(E).

(7)

It is obvious that the above equation is also valid for infi-
nite ensembles. Therefore, an ensemble E0 can be trans-
formed to another ensemble E1 by a unitary operation
only if they have the same classicality, i.e., J(E0) = J(E1).

From our intuition, we have another interesting conjec-
ture: for an arbitrary ensemble {pi, ρi} and a standard
state |0〉〈0|, there is an inequality J({pi, ρi ⊗ |0〉〈0|}) ≥
J({pi, ρi ⊗ ρi}), with equality if and only if all ρi are
commuting. Using this conjecture and the property that
classicality J is unitarily invariant, we can obtain the
non-cloning and no-deleting theorems straightforwardly.

Next, we turn to study an opposite property of an en-
semble. Let us define the quantumness Q of an ensemble
as

Q(E) = 1− J(E) = min
{|j〉}

{
∑

i

qi(1− F (ρi, ρ
′
i))}. (8)

The function Q has similar properties to those of J , and
0 ≤ Q ≤ (d− 1)/d. It can be seen that the quantumness
of a single-state ensemble is equal to zero. The quan-
tumness of an ensemble tells us how much the ensemble
is distinct from a pure classical ensemble, and we shall
see that the quantumness of an ensemble used for quan-
tum key distribution (QKD) is precisely the attainable
lower bound of the error rate.

In the quantum key distribution theory, the error rate
is the rate of errors caused by eavesdroppers [15, 16].
Legitimate users can use it to judge whether there exist
eavesdroppers. Now we study the relation between the
quantumness of the ensemble used in a QKD protocol and
the error rate under the intercept-resend eavesdropping
strategies [16].

Theorem 3. The quantumness of the ensemble used in

a general QKD protocol is the attainable lower bound of

the error rate under the intercept-resend eavesdropping

strategy.

Proof. In a general QKD protocol, Alice sends a state |ψi〉
(raw key) to Bob with a probability qi, and the ensemble
used is {qi, |ψi〉}. When Bob’s measurement basis is dif-
ferent from Alice’s sending basis, the state Bob received
is discarded, and when their bases are the same, the re-
ceived state is reserved and it is called a sifted key. The
error rate is the average probability that Bob’s measure-
ment gives a result different from the state Alice sends af-
ter the raw keys are sifted. In the intercept-resend strat-
egy, the eavesdropper Eve intercepts a state from Alice,
say |ψi〉, then performs a projective measurement along
the basis {|j〉} and gets an output |j〉 with the probabil-
ity |〈j|ψi〉|

2, and finally resends the output state to Bob.
When Bob’s measurement basis is in accordance with
Alice’s sending basis, the probability that Bob gets the
original state |ψi〉 is P =

∑

j |〈j|ψi〉|
4 = F (|ψi〉〈ψi|, ρ

′
i),

where ρ′i =
∑

j |〈j|ψi〉|
2|j〉〈j|. Thus the error rate in this

strategy is R =
∑

i qi(1−F (|ψi〉〈ψi|, ρ
′
i)). The quantum-

ness of the ensemble {qi, |ψi〉} is Q = min{|j〉}{
∑

i qi(1−
F (|ψi〉〈ψi|, ρ

′
i))} ≤ R, therefore, the quantumness Q is

the attainable lower bound of the error rate of a general
QKD protocol.

It is obvious that the ensembles whose quantumness is
zero or very small are not suitable for QKD protocols,
since the eavesdroppers can get the information of the
keys without being detected, so we can say that the quan-
tumness of an ensemble is responsible for the security of
QKD protocol. Besides the famous BB84 QKD proto-
col [5], there is an important six-state protocol [17, 18].
The error rates for BB84 and six-state protocols are 1/4
and 1/3 respectively [15]. By simple calculation, we can
get that the quantumness of the two ensembles used in
these two QKD protocols are 1/4 and 1/3 which are equal
to their error rates.

The ensemble Ebloch = {1/4π, cos(θ/2)|0〉 +
sin(θ/2)eiϕ|1〉} consisting of pure states uniformly
distributed on the Bloch sphere is an infinite ensem-
ble, where θ ∈ [0, π) and ϕ ∈ [0, 2π). A general
basis for the two dimensional Hilbert space can be
given as: |e1〉 = cos(θ1/2)|0〉 + sin(θ1/2)e

iϕ1 |1〉 and
|e2〉 = sin(θ1/2)|0〉 − cos(θ1/2)e

iϕ1 |1〉. The average
cloning fidelity of this ensemble is Fave = 2/3 which is
independent of the basis used in the classical cloning
process, so its classicality is J(Ebloch) = 2/3. For a
fixed θ, we define a symmetric double-circle ensemble:
E(θ) = {1/4π, cos(θ/2)|0〉 ± sin(θ/2)eiϕ|1〉}, where
ϕ ∈ [0, 2π). The states in the ensemble E(θ) lie on two
symmetric latitudinal circles of the Bloch sphere with po-
lar angles ±θ. The average cloning fidelity of this ensem-
ble is Fave(θ, θ1, ϕ1) = 1−sin2 θ/2+sin2 θ1(3sin

2 θ−2)/4.
According to the definition of classicality, we have

J(θ) = max
{θ1,ϕ1}

{Fave(θ, θ1, ϕ1)}

=











1−
1

2
sin2 θ if 0 ≤ sin θ ≤

√

2/3

1

2
+

1

4
sin2 θ if

√

2/3 < sin θ ≤ 1

(9)
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Figure 1. (Color online)The θ dependence of the classicalities
and the cloning fidelilties for E(θ) and Ebloch: J(θ) (solid),
J(Ebloch) (dashdot), the MPPC (dashed), and the UC (dot-
ted).

It can be seen that when θ = arcsin(
√

2/3) or π −

arcsin(
√

2/3), J(θ) reaches its minimal value 2/3 which
is equal to the classicality of Ebloch. When θ = π/2,
the states of the ensemble are equiprobably on the x− y
equator, and the classicality of this ensemble is 3/4.

An unknown state cannot be perfectly cloned, but can
be approximately cloned. The approximate cloning theo-
ries have been established and developed very well [6, 19–
21]. In Fig. 1, the classicality J(θ) is depicted, together
with the classicality J(Ebloch), the fidelity of the opti-
mal mirror phase-covariant cloning (MPCC) [21] and the
fidelity of universal cloning (UC) [19]. From Fig. 1,

we can see that at the points θ = arcsin(
√

2/3) and

θ = π− arcsin(
√

2/3), both the MPCC fidelity F (θ) and
the J(θ) reach the minimal value 5/6 (the same as the
UC fidelity [19]) and 2/3 (the same as J(Ebloch)) respec-
tively. Roughly speaking, Fig. 1 shows that the more

classical an ensemble is, the more perfectly the states in
it can be cloned. The classicalities of the ensembles used
in the BB84 protocol and that in the six-state protocol
are the same as J(π/2) and J(Ebloch) respectively; it is
more interesting to note that the cloning strategies for
the BB84 ensemble and the six-state ensemble are equiv-
alent to the strategies for the phase-covariant cloning and
the universal cloning respectively [6]. However, it must
be pointed out that the optimal cloning fidelities of two
ensembles could be different, even if the classicality of
them are the same.

In conclusion, we have constructed a quantity J to
measure the classicality of a given ensemble. The quan-
tity J can tell how classical the ensemble is. When J = 1
the ensemble behaves like a purely classical ensemble;
and when J < 1 the ensemble cannot be considered as a
classical ensemble anymore. We have revealed that the
more classical an ensemble is, the better an unknown
state from the ensemble can be cloned. The quantity
of classicality provides us with a tool to evaluate how
well classical tasks such as cloning, deleting, and distin-
guishing could be accomplished for quantum ensembles.
We also define the quantumness of an ensemble and we
surprisingly find that the quantumness of an ensemble
used in quantum key distribution is exactly the attain-
able lower bound of error rate. Our work may be useful
for further investigation of classical and quantum features
of an ensemble and it provides a quantitative framework
for various tasks in quantum communication.
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