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Abstract

Let A be an irreducible Coxeter arrangement and W be its Coxeter
group. Then W naturally acts on A. A multiplicity m : A — Z is said
to be equivariant when m is constant on each W-orbit of A. In this
article, we prove that the multi-derivation module D(A, m) is a free
module whenever m is equivariant by explicitly constructing a basis,
which generalizes the main theorem of [T2002]. The main tool is a
primitive derivation and its covariant derivative. Moreover, we show
that the W-invariant part D(A, m)" for any multiplicity m is a free
module over the W-invariant subring.

1 Introduction

Let V' be an ¢-dimensional Euclidean space with an inner product I : V xV —
R. Let S denote the symmetric algebra of the dual space V* and F' be its
quotient field. Let Derg be the S-module of R-linear derivations from S to
itself. Let Q} be the S-module of regular 1-forms. Similarly define Derz and
QL over F. The dual inner product I* : V* x V* — R naturally induces an
F-bilinear form I* : QL x QL — F. Then one has an F-linear bijection

I* : Q. — Derp
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defined by [I*(w)] (f) := I*(w,df) for f € F.

Let A be an irreducible Coxeter arrangement with its Coxeter group W.
For each H € A, choose ay € V* with H = ker(ag). Let Q = [[c4am € S.
Recall the S-module of logarithmic forms

QA 00) ={weQh | QVw and (Q/ay)Yw A day are both regular
for any H € A and N > 0}

and the S-module of logarithmic derivations
D(A,—0) = I"(QY(A, 00))

from [AT2010]. A map m : A — Z is called a multiplicity. For an arbitrary
multiplicity, let

D(A,m) = {0 D(A —o0)]|0(ay) e an™ S, for all H € A},
QI<A7 m) = ([*)71D(“47 _m>7

where S(,,,) is the localization of S at the prime ideal (ay). These two
modules were introduced in [Sal980] (when m is constantly equal to one), in
[Z1989] (when im(m) C Z-o), and in [A2008, [AT2010} [AT2009] (when m is
arbitrary). A derivation 0 # 6 € Derp is said to be homogeneous of degree
d, or degf = d, if f(a) € F is homogeneous of degree d whenever 6(a) # 0
(v € V*). A multiarrangement (A4, m) is called to be free with exponents
exp(A,m) = (dy,...,d,) if D(A,m) = ®‘_,S - 0; with a homogeneous basis
0; such that deg(0;) =d; (i =1,...,¢). A multiplicity m : A — Z is said to
be equivariant when m(H) = m(wH) for any H € A and any w € W i.e.,
m is constant on each orbit. In this article we prove

Theorem 1.1
For any irreducible Coxeter arrangement A and any equivariant multiplicity
m, the multiarrangement (A, m) is free.

For a fixed arrangement A, we say that a multiplicity m is free if (A, m)
is free. Although we have a limited knowledge about the set of all free
multiplicities for a fixed irreducible Coxeter arrangement A, it is known
that there exist infinitely many non-free multiplicities unless A is either one-
or two-dimensional [ATY2009]. Theorem [[I] claims that any equivariant
multiplicity is free for any irreducible Coxeter arrangement.

When the W-action on A is transitive, an equivariant multiplicity is con-
stant and a basis was constructed in [SoT1998, [T2002, [AY2007, [AT2010]. So
we may assume, in order to prove Theorem [Tl that the W-action on A is
not transitive. In other words, we may only study the cases when A is of the
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type either By, Fy, Gy or I5(2n) (n > 4). In these cases, A has exactly two
W-orbits: A = A; U Ay. The orbit decompositions are explicitly given by:
Bg = A{UD@, F4 = D4UD4, G2 = AQUAQ or [2(2n) = [2<H)U[2(n) (n > 4)
Note that A is not irreducible.

When A is irreducible, the primitive derivations play the central role
to define the Hodge filtration introduced by K. Saito. (See [Sa2003] for
example.) For R := SV let D be an element of the lowest degree in Derpg,
which is called a primitive derivation corresponding to A. Then D is unique
up to a nonzero constant multiple. A theory of primitive derivations in the
case of non-irreducible Coxeter arrangements was introduced in [AT2009).
Thus we may consider a primitive derivation D; corresponding with the orbit
A; (1 <i<2). Weonly use D; because of symmetricity. Note that Dy is not
unique up to a nonzero multiple when A; = A{ (non-irreducible). Denote
the reflection groups of A; by W; (i = 1,2). The Coxeter arrangements
By, Fy, Gy and I5(2n) (n > 4) are classified into two cases, that is, (1) the
primitive derivation D; can be chosen to be W-invariant for B, and F}
(the first case) while (2) D, is Wh-antiinvariant for Gy and I5(2n) (n > 4)
(the second case) as we will see in Section 4. Since the second cases are
two-dimensional, Theorem [LT] holds true. Thus the first case is the only
remaining case to prove Theorem [L.T]

Let

V :Derp x Derp — Derp
(0,9) — Vo

be the Levi-Civita connection with respect to the inner product I on V.
We need the following theorem for our proof of Theorem [T}

Theorem 1.2
([AT2010,[AT2009]) Let D(A, —o0)" be the W-invariant part of D(A, —o0).
Then

D(A, —o0)V =5 D(A, —o0)"

is a T-linear automorphism where T := {f € R | Df = 0}. When A =
A1 U A, is the orbit decomposition,

le . D(Al, —OO)VV1 ;) D(Al, —OO)VV1
is a Ti-linear automorphism where

R _SWI, 12—{f€R1|D1f—0}



Let E be the Euler derivation characterized by the equality E(«a) = «
for every av € V*. Suppose that A = A; U A is the orbit decomposition and
that the primitive derivation D, is W-invariant. Define

EPD .= VIV PE

for p, ¢ € Z. Here, thanks to Theorem [[Z, we may interpret Vi = (V)™
and V'3 = (V)™ when m is negative. Denote the equivariant multiplicity
m by (mq,mg) when m(H) = my (H € Ay) and m(H) = my (H € Ay).
Let x1,...,2, be a basis for V* and P;,..., P, be a set of basic invariants
with respect to W: R = R[Py,..., P|. Let Pl(i), . .,Pz(i) be a set of basic
invariants with respect to W;: R; = ]R[Pl(i), e Pg(i)] (1 =1,2). We use the
notation

0y, := 0/0x;, Op, = 0JOP;, Dy = 0JOP (1<j<01<i<2).

The following theorem gives an explicit construction of a basis:

Theorem 1.3
Let A be an irreducible Coxeter arrangement. Suppose that A = A; U A, is

the orbit decomposition and that the primitive derivation D, is W -invariant.
Then

(1) the S-module D(A, (2p — 1,2q — 1)) is free with W -invariant basis

Vapl E(p,q)’ e vasz(p,q)7

(2) the S-module D(A, (2p — 1,2q)) is free with basis

(,9) (p,9)
vapl(l)qu,_..,Vape(l)qu’

(3) the S-module D(A, (2p,2q — 1)) is free with basis

vaP@) E(nq)7 e Vap@) E(p,q)7
1 ¥4

(4) the S-module D(A, (2p,2q)) is free with basis

Vs £ P9 Vs E P9
» e , .

xT

The existence of the primitive decomposition of D(A, (2p—1,2¢—1))"
is proved by the following theorem:



Theorem 1.4
Under the same assumption of Theorem define

ez(p,q) - vaPiE(pﬂ) — Vapi Vl—)qv%—lpE (1<i<)
for p,q € Z. Then the set
(0P | > 01 < i < 0}

is a T-basis for D(A, (2p —1,2¢ — 1))". Put
0
goi — DT 9%,
i=1

Then we have a T-module decomposition (called the primitive decomposi-
tion)
D(A, (2p—1,2¢ — 1)) = @ grthath,

k>0

We will also prove

Theorem 1.5
For any irreducible Coxeter arrangement A and any multiplicity m, the R-
module D(A, m)"V is free.

The organization of this article is as follows. In Section [2 we prove
Thereom when ¢ > 0. In Section 3 we prove Theorem [[L4] to have the
primitive decomposition, which is a key to complete the proof of Theorem
at the end of Section 3. In Section 4 we verify that the primitive derivation
D; can be chosen to be W-invariant when A is a Coxeter arrangement of
either the type By or F;. We also review the cases of G and I5(2n) (n > 4)
and find that the primitive derivation D; is Ws-antiinvariant. In Section 5,

combining Theorem [[3 with earlier results in [T2002, [AT2010l, [W2010], we
finally prove Theorems [LLT] and [L.5l

2 Proof of Theorem when ¢ > 0

In this section we prove Theorem when ¢ > 0.

Recall R = SW =R[P, ..., P is the invariant ring with basic invariants
Py,..., Py such that 2 = deg P, < deg P, < --- < deg P, < deg P, = h,
where h is the Coxeter number of W. Put D = Jp, € Der R which is a
primitive derivation. Recall T' = ker(D : R — R) = R[Py,..., P;_1]. Then



the covariant derivative Vp is T-linear. For P := [Py, ..., P, the Jacobian

matrix J(P) is defined as the matrix whose (i, j)-entry is % Define A :=
Li
[I*(dx;, dzj))i<ij<e and G = [I*(dP;, dP))|i<ij<e = J(P)TAJ(P).

Definition 2.1
([Y2002, W2010]) Let m : A — Z and ¢ € D(A,—o0)V. We say that ( is
m-universal when ( is homogeneous and the S-linear map
U : Derg — D(A,2m)
0— Vo(
is bijective.
Example 2.2

The Euler derivation E is 0-universal because Vg(§) = VsFE = § and
D(A,0) = Derg.

Recall the T-automorphisms
Vh: D(A, —c0)V =5 D(A, —c0)V (k € Z)

from Theorem[[.2l Recall the following two results concerning the m-universality:

Theorem 2.3
[W2010, Theorem 2.8] If ¢ is m-universal, then V,'¢ is (m + 1)-universal.

Proposition 2.4
[W2010, Proposition 2.7] Suppose that  is m-universal. Letk: A — {+1,0,—1}.
Then an S-homomorphism

O, : D(A, k) = D(A, k+ 2m)
defined by
P () := Vo ¢
gives an S-module isomorphism.

We require that assumption of Theorem is satisfied in the rest of
this section: Suppose that A = A; U A, is the orbit decomposition and
that Dy, a primitive derivation with respect to A; in the sense of [AT2009,
Definition 2.4|, is W-invariant. Let W;, R;, Pj(z), T;, D; (i = 1,2) are
defined as in Section [II Even when A; is not irreducible, we may consider a
Ti-isomorphism

V5, : D(Ay, —00)" 5 D(A;, —00)" (k € Z)
from Theorem



Proposition 2.5
Suppose q > 0. The derivation E®9 =V 'V PE is (p, q)-universal.

Proof. When A, is irreducible, [AY2007] and [AT2010] imply that V} " E is
(p—q,0)-universal. When A, is not irreducible, V{, P E'is (p — ¢, 0)-universal
because of [AT2009]. Thus E®? = V"V PE is (p, ¢)-universal by Theorem
2.5l 0]

Since E®9 is (p, q)-universal, Proposition 4] yields the following:

Proposition 2.6
Let ¢ >0 and m: A — {+1,0,—1}. Then an S-homomorphism

(I)pyq : D<A7 m) — D<A7 (2]97 QQ) + m)

defined by
D, ,(0) := VyE@D

gives an S-module isomorphism.

Proof of Theorem (¢ > 0). We may apply Proposition because
(1) 9p,,...,0p, form a basis for D(A, (-1, —1)),

(2) 0,0, ..., 0p form a basis for D(A, (=1,0)),
1 4
(3) Op), - -, Op» form a basis for D(A, (0,—1)), and
1 4
(4) Oy - - ., O, form a basis for D(A, (0,0)). O

3 Primitive decompositions

In this section we first prove Theorem [[4] to define the primitive decompo-
sition of D(A, (2p — 1,2¢ — 1))V Next we prove Theorem

Proposition 3.1
Let ¢ be m-universal. Then
(1) the set {Vapj V¢ |1 <j < k>0} is linearly independent over T
(2) Define G*) to be the free T-module with basis {VaPJ_ V1< <0}
for k > 0. Then the Poincaré series Poin(€D;.~ G 1) satisfies:

¢ ¢
Poin(@g(k),t) = (H ﬁ) (thidj)a

k>0 i=1

where p = deg ¢ and d; = deg P; (1 < j < /).



(3)
D(A,2m—1)" = PHg®.

k>0

Proof. Let k € Zso. By Theorem 23, ¢(® := V(¢ is (m + k)-universal,
where the “k” in the (m+ k) stands for the constant multiplicity k& by abuse
of notation. Thus by Proposition 2.4] we have the following two bases:

vaplg(k)7 ceey vang(k)7
for the S-module D(A,2m + 2k — 1) and
k k
val*(dpl)c( )7 ) VBI*(dPZ)g( )7

for the S-module D(A,2m + 2k 4 1). Note that the two bases are also R-
bases for D(A, 2m + 2k — 1) and D(A, 2m + 2k + 1) respectively. Since
the T-automorphism

Vp: D(A, —c0)V =5 D(A, —c0)V
in Theorem induces a T-linear bijection
Vp: DA, 2m + 2k + 1) =5 D(A,2m + 2k — 1)V

as in [AT2009, Theorem 4.4], we may find an ¢ x (-matrix B%*) with entries
in R such that

Vo ([Vor, ¢, V3, ¢ @) = Vi [V € - Vi ]
= [Von,CW, . Vo, (9] B®.
The degree of (i, j)-th entry of B®) is m;+m; —h < h—2 < h. In particular,

the degree of Bz‘(,lz)ﬂ—i is 0 and Bi(f;) =0ifi4+ 75 < £+ 1. Hence each entry

of B® lies in T" and det B¥) € R. Since D is a derivation of the minimum
degree in Derg, one gets [D,0p] = 0. Thus VpVy, = Va, Vp. Operate
Vl’)l on the both sides of the equality above, and get

[vapld’f), L vapeg“ﬂ G = [vaplg@“), L vapedk“)] B®.

This implies that det B*) € R* because VaPIC(k), . .,Vaplg(k) are linearly
independent over S. Inductively we have

(Vo CHHD,. L V0, (FHD] = W5, ¢, 0, (W] G(B®)
= [VaPIC, e VaPKC] G(BOYlqg(BM)=t...q(BW)!

— [vaplg, e VBPZC] Gry1,



where G; = G(BO)7'G(BW)~1...G(BEY)~! ( > 0). Note that G ap-
pears i times in the definition of G;. For M = (m;;) € M,y(F), define
DI[M] = (D(mij)) € My(F). Then D’[G;] = O when j > i and det D*[G;] # 0
because det D[G] # 0 and D?[G] = O (e.g., see [Sa1993| [AT2009]).

(1) Suppose that {Vapj_c(’“) |1 <j</{k>0}is linearly dependent over
T. Then there exist {-dimensional column vectors gy, g1,...,8, € T'(q > 0)
with g, # 0 such that

q

0=> [Vaplc(i)’ . .,vapldi)} g = [vaplc, e vapzc] <Zq: Gigi> :
1=0

1=0

Since Vo, ¢, ..., VBPZC are linearly independent over R, one has

0 :3253(;igp
=0

Applying the operator D on the both sides ¢ times, we get DI[G,]g, = O.
Thus g, = 0 which is a contradiction. This proves (1).
(2) Compute

oo - 5 i) e

k>0 k>0

-1 ¢
= (H I _:[tdi> (Z tkd[)(z tp—dj)

(3) We have
D(A,2m - 1) > g™

k>0

by (1). So it suffices to prove

Poin(D(A, 2m — 1), ) = Poin(EH g™, 1).

k>0

Since D(A,2m — 1)V is a free R-module with a basis

Vor,Cs- s Van,C,



we obtain
Poin(D(A,2m — 1)V t) = <ﬁ #> (ﬁ: i) = Poin(EB G® 1)

’ ’ el —th i=1 k>0 o
which completes the proof. ]

We require that the assumption of Theorem is satisfied in the rest of
this section.

Proof of Theorem [IT.4l Suppose ¢ > 0 to begin with. Then, by Proposition
B4 E®9 is (p, q)-universal. Apply Proposition Bl for ¢ = E®? and m =
(p,q), and we have Theorem [[.4}

D(A, (2p —1,2¢ — 1))V = @D ghath

k>0

when ¢ > 0. Send the both handsides by Vp, and we get

D(A, (2p—3,2q — 3))W — EB GpE—Latk—1)

k>0

because Vp (D(A, (2p — 1,2¢ — 1))") = D(A, (2p—3,2¢—3))" as in [AT2009,
Theorem 4.4] and VD(QZ(M)) = 6’§p_1’q_1). Apply Vp repeatedly to complete
the proof for all g € Z. Ol

Note that we do not assume p > 0 in the following proposition:

Proposition 3.2
For p,q € Z, the S-module D(A, (2p — 1,2q — 1)) has a W-invariant basis.

Proof. Recall that
Vapl E(p,q)’ Vap2 E(p,q)’ o Vape E(p,q)7

which are W-invariant, form an S-basis for D(A, (2p—1,2¢—1)) when ¢ > 0
by Theorem (1). It is then easy to see that they are also an R-basis

for D(A, (2p — 1,2q — 1)) for ¢ > 0. By [A2008] [AT2010], there exists a

W-equivariant nondegenerate S-bilinear pairing

characterized by

(I"(w), 0) = (w, 6)
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where w € QY (A, (=2p+1,—2¢+1)) and § € D(A, (—2p+1,—-2g+1)). Let
01, ...,0, denote the dual basis for D(A, (—2p + 1, —2¢q + 1)) satisfying

(Vor, E®9.,6,) =5,

for 1 <4,j < {. Then 6y, ...,0, are W-invariant because the pairing ( , ) is
W-equivariant. O

Although the following lemma is standard and easy, we give a proof for
completeness.

Lemma 3.3
Let M be an S-submodule of Derp. The following two conditions are equiv-
alent:

(1) M has a W-invariant basis © over S.

(2) The W-invariant part M" is a free R-module with a basis © and
there exists a natural S-linear isomorphism

MY @RS ~ M.

Proof. It suffices to prove that (1) implies (2) because the other implication
is obvious. Suppose that © = {0, },ca is a W-invariant basis for M over S.
Since it is linearly independent over S, so is over R. Let § € M. Express

0= z": Ji0;
-1

with f; € Sand 6, € © (i =1,...,n). Let w € W act on the both handsides.
Then we get

n

0= w(f)b.

i=1
This implies f; = w(f;) for every w € W. Hence f; € R for each i. Therefore
O is a basis for MW over R. This is (2). O

Proposition 3.4
For any p,q € Z, E®9 is (p, q)-universal.

Proof. By Theorem [[L4 we have the decomposition:

D(A,(2p—1,2¢g — 1)V = @g(p+k7q+k)

k>0
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for p,q € Z. As we saw in Proposition B.] (2), we have

(3.1) Poin(D(A, (2p —1,2¢ — 1))V t) = poin(@ Grthatk) 4)

k9e0

l 1 l
— (H — tdi) (Z;tmdj)’

i=1

where m := deg E®%. Recall that the S-module D(A, (2p —1,2¢ — 1)) has
a W-invariant basis 61, ...,0, by Proposition B2l By Lemma B3] we know
that 6y, ..., 0, form a basis for the R-module D(A, (2p—1,2¢—1))". Thanks
to (BJ)) we may assume that degf; = m — d; = deg Vapj E®9)  Therefore
there exists M € M,(R) such that

01,...,0,]M = [VaplE(p’Q), o VaPZE(p#J)]
with det M € R. Since

max |deg6; — deg Vo, EPD| = d, —dy, < deg P,,

1<i,j<t

we get M € M,(T). Since VaPIE(p’q), ce VaPZE(p’q) are linearly independent
over T' by Proposition 3] (1), we have det M € R*. Thus

Vop, Ew VaplE(p’q)
form an S-basis for D(A, (2p — 1,2 — 1)). Since
V@Pl E(p,q)’ B VBP[E(p’q)i| J(P)T = [vaxl E(]Lq)’ SRR V@w E(p7q)] )

we may apply the multi-arrangement version of Saito’s criterion [Sal980]
Z1989| [A2008] to prove that VaxlE(p’q), . .,VaxlE(p’Q) form an S-basis for
D(A, (2p,2q)) for any p,q € Z. This shows that E®9 is (p, ¢)-universal for
any p,q € Z. (]

Proof of Theorem (¢ € Z). Theorem 23 and Proposition 3.4l complete
the proof by the same argument as that in Section 2 for ¢ > 0. O

4 The cases of By, F;, G> and I5(2n)

e The case of By
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The roots of the type B, are:

in terms of an orthonormal basis z1, ..., x, for V*. Altogether there are 2¢>
of them. Define

‘
Q1= Hl’z', Q2 = H (z; £ 25), Q= C1Qo.
i=1 1<i<j<e

Then the arrangement A; defined by Q) is of the type A; x --- x A; = A{.
The arrangement A, defined by @ is of the type D,. The arrangement A
defined by @ is of the type B, and A = A; U A is the orbit decomposition.
Note that A{ is not irreducible. Define

L
1
PR

which is a primitive derlvatlon in the sense of [AT2009]. Obviously D is
W-invariant. Let P; = ZZ L7 (j >1). Then Py, ..., P, form a set of basic
invariants under W Whlle Q1, Py, ..., P,_1 form a set of basic invariants under
Ws. Define a primitive derivation Dy with respect to Ay so that

Dy(Q1) = Dy(P) =0 (j=1,...,0—2), Do(Pry)=1.

Thus
(wD9)(Py—y) = DQ(w*IPg,l) =Dy(Pry) =1 (weW).

This implies that Dy is W-invariant.
e The case of F}
The roots of the type F} are:
tu;, (£ £as s £ay)/2, 2o, £2; (1<i<j<A4)

in terms of an orthonormal basis x1, xs, x3, 74 for V*. Altogether there are
48 of them. Define

4
Q1 = H (x; £x5), Q= HSUZH(SLE + a9 £ x5 £ 14), Q = Q10
i—1

1<i<j<4
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The arrangement A; defined by @; is of the type Dy (i = 1,2). Then the
arrangement A defined by @) is of the type I}, and A = A; U A, is the orbit
decomposition. Define

4 4

4
P1(1) - fov P2(1) - ZDC,A% Pg(l) = T1T2X3Ly4, P4(1) - fo + 52%2‘7621
i=1

i=1 i=1 i#j
Compute
4
P = -4 "af + 5PV P
i=1

Thus Pl(l), P2(1), P?fl), 4(1) are a set of basic invariants under ;. The reflec-
tion 7 with respect to x1 + x5 + x3 + x4 = 0 is given by

2r; — o
T(z;) = % (i=1,2,3,4).

A calculation shows that Pf) is 7-invariant. Let s; denote the reflection with
respect to z; = 0 (1 < ¢ < 4). Since the Coxeter group W, is generated by
7 and s; (1 < i < 4), we know that P4(1) is Wa-invariant thus W-invariant.
Define a primitive derivation D; with respect to A; so that

Di(PY) =0 (j=1,2,3), Dy(P{)=1.
Thus
(wDy)(PMY) = Dy(w ' Py = Dy(PMY)y =1 (w e W).

This implies that D; is W-invariant. We conclude that Ds is also W -invariant
because an orthonormal coordinate change

_ e . :y1+y2 . _ YU x4:y3+y4
V2 V2 o V2 V2

switches A; and As.

T

e The cases of G, and [5(2n) (n > 4)

The arrangement A of the type G has exactly two orbits A; and As,
each of which is of the type As. Let n > 4. Then the arrangement A of the
type I5(2n) has exactly two orbits 4; and A, each of which is of the type
Ir(n). In both cases, by [W2010], one may choose

Dy = @Q2D, Dy =Q:1D.

Since Q9 is Whr-antiinvariant and D is W-invariant, D, is Ws-antiinvariant.
Similarly Dy is Wi-antiinvariant.
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5 Proofs of Theorems [I.1] and

Assume that A is an irreducible Coxeter arrangement in the rest of the article.

Proof of Theorem [I.1] If A has the single orbit, then the result in [T2002]
[AY2007, [AT2010] completes the proof. If not, then A has exactly two orbits.
If A is of the type either G5 or I5(2n) with n > 4, then D(A, m) is a free S-
module because A lies in a two-dimensional vector space. For the remaining
cases of the type B, and F}, Section 4 allows us to apply Theorem to
complete the proof. O

A multiplicity m : A — Z is said to be odd if its image lies in 1 + 27Z.

Proposition 5.1
If m is equivariant and odd, then D(A, m) has a W-invariant basis over S.

Proof. When A has the single orbit, m is constant. In this case Proposition

was proved in [T2002, [AY2007, [AT2010]. If A is of the type either Gy or
I5(2n) (n > 4), then Proposition was verified in [W2010]. For the remaining
cases of By, and F}, Proposition completes the proof. O

Recall the W-action on A:
WxA— A

by sending (w, H) towH (w € W, H € A). For any multiplicity m : A — Z,
define a new multiplicity m* by

m*(H) := I&%{(Q- lm(wH)/2| +1),

where |a| stands for the greatest integer not exceeding a. Then m* is obvi-
ously equivariant and odd.

Proposition 5.2
For any irreducible Coxeter arrangement A and any multiplicity m,

D(A,m)" = D(Am")".
Proof. Since m(H) < m*(H) for any H € A, we have
D(A,m)" O D(A,m")".

We will show the other inclusion. Let H € A and 6 € D(A, m)". Tt suffices
to verify the following two statements:
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A) 0(ay) € a™@H g, | for any w € W,
H (am)
(B) 6(avry) € a%"S(ay) implies 0(apy) € af**'S(a,,) for any m € Z.

For w € W let w=! act on the both sides of

m(wH)

O(wn) € QwH S(awH)

to get
O(an) € ™S 0.

This verifies (A).

Fix H € A. Let s be the orthogonal reflection through H. Then s(ay) =
—ay . Suppose that O(ay) = afp with p € S,,,). Let s act on the both
handsides and we have 0(—ay) = (—ag)*™s(p). This implies —p = s(p).
Since s(p) = p on H, one has p = 0 on H, which implies p € agS(a,,). This

verifies (B). O
Proof of Theorem Thanks to Proposition we may assume that
m is equivariant and odd. Apply Proposition 5.1l and Lemma B3l OJ

Corollary 5.3

D(A,m)" @z S ~ D(A,m").

Proof. Apply Proposition 5.1l and Lemma to get
D(A,m")Y @ S ~ D(A m").
Then Proposition completes the proof. O

The following corollary shows that the converse of Proposition [B.1lis true.

Corollary 5.4
The S-module D(A, m) has a W-invariant basis if and only if m is odd and
equivariant.

Proof. Assume that D(A, m) has a W-invariant basis over S. Then, by
Lemma B3] we get

D(A,m)Y ®z S ~ D(A,m).

Compare this with Corollary and we know that there exsits a common
S-basis for both D(A, m) and D(A, m*). By the multi-arrangement version
of Saito’s criterion [Sal980, [Z1989, [A2008], we have m = m*. O
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