Equivariant multiplicities of Coxeter arrangements and invariant bases

Takuro Abe * Hiroaki Terao ${ }^{\dagger}$ Atsushi Wakamiko ${ }^{\ddagger}$ (ver.57)

November 2, 2010

Abstract

Let \mathcal{A} be an irreducible Coxeter arrangement and W be its Coxeter group. Then W naturally acts on \mathcal{A}. A multiplicity $\mathrm{m}: \mathcal{A} \rightarrow \mathbb{Z}$ is said to be equivariant when \mathbf{m} is constant on each W-orbit of \mathcal{A}. In this article, we prove that the multi-derivation module $D(\mathcal{A}, \mathbf{m})$ is a free module whenever \mathbf{m} is equivariant by explicitly constructing a basis, which generalizes the main theorem of T2002. The main tool is a primitive derivation and its covariant derivative. Moreover, we show that the W-invariant part $D(\mathcal{A}, \mathbf{m})^{W}$ for any multiplicity \mathbf{m} is a free module over the W-invariant subring.

1 Introduction

Let V be an ℓ-dimensional Euclidean space with an inner product $I: V \times V \rightarrow$ \mathbb{R}. Let S denote the symmetric algebra of the dual space V^{*} and F be its quotient field. Let Der_{S} be the S-module of \mathbb{R}-linear derivations from S to itself. Let Ω_{S}^{1} be the S-module of regular 1-forms. Similarly define Der_{F} and Ω_{F}^{1} over F. The dual inner product $I^{*}: V^{*} \times V^{*} \rightarrow \mathbb{R}$ naturally induces an F-bilinear form $I^{*}: \Omega_{F}^{1} \times \Omega_{F}^{1} \rightarrow F$. Then one has an F-linear bijection

$$
I^{*}: \Omega_{F}^{1} \rightarrow \operatorname{Der}_{F}
$$

[^0]defined by $\left[I^{*}(\omega)\right](f):=I^{*}(\omega, d f)$ for $f \in F$.
Let \mathcal{A} be an irreducible Coxeter arrangement with its Coxeter group W. For each $H \in \mathcal{A}$, choose $\alpha_{H} \in V^{*}$ with $H=\operatorname{ker}\left(\alpha_{H}\right)$. Let $Q=\prod_{H \in \mathcal{A}} \alpha_{H} \in S$. Recall the S-module of logarithmic forms
\[

$$
\begin{array}{ll}
\Omega^{1}(\mathcal{A}, \infty)=\left\{\omega \in \Omega_{F}^{1} \quad \mid\right. & Q^{N} \omega \text { and }\left(Q / \alpha_{H}\right)^{N} \omega \wedge d \alpha_{H} \text { are both regular } \\
& \text { for any } H \in \mathcal{A} \text { and } N \gg 0\}
\end{array}
$$
\]

and the S-module of logarithmic derivations

$$
D(\mathcal{A},-\infty)=I^{*}\left(\Omega^{1}(\mathcal{A}, \infty)\right)
$$

from AT2010. A map $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}$ is called a multiplicity. For an arbitrary multiplicity, let

$$
\begin{aligned}
D(\mathcal{A}, \mathbf{m}) & =\left\{\theta \in D(\mathcal{A},-\infty) \mid \theta\left(\alpha_{H}\right) \in \alpha_{H}^{\mathbf{m}(H)} S_{\left(\alpha_{H}\right)} \text { for all } H \in \mathcal{A}\right\}, \\
\Omega^{1}(\mathcal{A}, \mathbf{m}) & =\left(I^{*}\right)^{-1} D(\mathcal{A},-\mathbf{m}),
\end{aligned}
$$

where $S_{\left(\alpha_{H}\right)}$ is the localization of S at the prime ideal $\left(\alpha_{H}\right)$. These two modules were introduced in Sa1980 (when \mathbf{m} is constantly equal to one), in [Z1989] (when $\operatorname{im}(\mathbf{m}) \subset \mathbb{Z}_{>0}$), and in A2008, AT2010, AT2009] (when \mathbf{m} is arbitrary). A derivation $0 \neq \theta \in \operatorname{Der}_{F}$ is said to be homogeneous of degree d, or $\operatorname{deg} \theta=d$, if $\theta(\alpha) \in F$ is homogeneous of degree d whenever $\theta(\alpha) \neq 0$ $\left(\alpha \in V^{*}\right)$. A multiarrangement $(\mathcal{A}, \mathbf{m})$ is called to be free with exponents $\exp (\mathcal{A}, \mathbf{m})=\left(d_{1}, \ldots, d_{\ell}\right)$ if $D(\mathcal{A}, \mathbf{m})=\oplus_{i=1}^{\ell} S \cdot \theta_{i}$ with a homogeneous basis θ_{i} such that $\operatorname{deg}\left(\theta_{i}\right)=d_{i}(i=1, \ldots, \ell)$. A multiplicity $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}$ is said to be equivariant when $\mathbf{m}(H)=\mathbf{m}(w H)$ for any $H \in \mathcal{A}$ and any $w \in W$, i.e., m is constant on each orbit. In this article we prove

Theorem 1.1

For any irreducible Coxeter arrangement \mathcal{A} and any equivariant multiplicity \mathbf{m}, the multiarrangement $(\mathcal{A}, \mathbf{m})$ is free.

For a fixed arrangement \mathcal{A}, we say that a multiplicity \mathbf{m} is free if $(\mathcal{A}, \mathbf{m})$ is free. Although we have a limited knowledge about the set of all free multiplicities for a fixed irreducible Coxeter arrangement \mathcal{A}, it is known that there exist infinitely many non-free multiplicities unless \mathcal{A} is either oneor two-dimensional ATY2009. Theorem 1.1 claims that any equivariant multiplicity is free for any irreducible Coxeter arrangement.

When the W-action on \mathcal{A} is transitive, an equivariant multiplicity is constant and a basis was constructed in SoT1998, T2002, AY2007, AT2010. So we may assume, in order to prove Theorem 1.1, that the W-action on \mathcal{A} is not transitive. In other words, we may only study the cases when \mathcal{A} is of the
type either B_{ℓ}, F_{4}, G_{2} or $I_{2}(2 n)(n \geq 4)$. In these cases, \mathcal{A} has exactly two W-orbits: $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$. The orbit decompositions are explicitly given by: $B_{\ell}=A_{1}^{\ell} \cup D_{\ell}, F_{4}=D_{4} \cup D_{4}, G_{2}=A_{2} \cup A_{2}$ or $I_{2}(2 n)=I_{2}(n) \cup I_{2}(n)(n \geq 4)$. Note that A_{1}^{ℓ} is not irreducible.

When \mathcal{A} is irreducible, the primitive derivations play the central role to define the Hodge filtration introduced by K. Saito. (See [Sa2003] for example.) For $R:=S^{W}$, let D be an element of the lowest degree in Der_{R}, which is called a primitive derivation corresponding to \mathcal{A}. Then D is unique up to a nonzero constant multiple. A theory of primitive derivations in the case of non-irreducible Coxeter arrangements was introduced in AT2009. Thus we may consider a primitive derivation D_{i} corresponding with the orbit $\mathcal{A}_{i}(1 \leq i \leq 2)$. We only use D_{1} because of symmetricity. Note that D_{1} is not unique up to a nonzero multiple when $\mathcal{A}_{1}=A_{1}^{\ell}$ (non-irreducible). Denote the reflection groups of \mathcal{A}_{i} by $W_{i}(i=1,2)$. The Coxeter arrangements B_{ℓ}, F_{4}, G_{2} and $I_{2}(2 n)(n \geq 4)$ are classified into two cases, that is, (1) the primitive derivation D_{1} can be chosen to be W-invariant for B_{ℓ} and F_{4} (the first case) while (2) D_{1} is W_{2}-antiinvariant for G_{2} and $I_{2}(2 n)(n \geq 4)$ (the second case) as we will see in Section 4. Since the second cases are two-dimensional, Theorem 1.1 holds true. Thus the first case is the only remaining case to prove Theorem 1.1.

Let

$$
\begin{aligned}
\nabla: \operatorname{Der}_{F} \times \operatorname{Der}_{F} & \longrightarrow \operatorname{Der}_{F} \\
(\theta, \delta) & \mapsto \nabla_{\theta} \delta
\end{aligned}
$$

be the Levi-Civita connection with respect to the inner product I on V. We need the following theorem for our proof of Theorem 1.1:

Theorem 1.2
([AT2010, AT2009] $)$ Let $D(\mathcal{A},-\infty)^{W}$ be the W-invariant part of $D(\mathcal{A},-\infty)$. Then

$$
\nabla_{D}: D(\mathcal{A},-\infty)^{W} \xrightarrow{\sim} D(\mathcal{A},-\infty)^{W}
$$

is a T-linear automorphism where $T:=\{f \in R \mid D f=0\}$. When $\mathcal{A}=$ $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition,

$$
\nabla_{D_{1}}: D\left(\mathcal{A}_{1},-\infty\right)^{W_{1}} \xrightarrow{\sim} D\left(\mathcal{A}_{1},-\infty\right)^{W_{1}}
$$

is a T_{1}-linear automorphism where

$$
R_{1}:=S^{W_{1}}, T_{1}:=\left\{f \in R_{1} \mid D_{1} f=0\right\} .
$$

Let E be the Euler derivation characterized by the equality $E(\alpha)=\alpha$ for every $\alpha \in V^{*}$. Suppose that $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition and that the primitive derivation D_{1} is W-invariant. Define

$$
E^{(p, q)}:=\nabla_{D}^{-q} \nabla_{D_{1}}^{q-p} E
$$

for $p, q \in \mathbb{Z}$. Here, thanks to Theorem 1.2, we may interpret $\nabla_{D}^{m}=\left(\nabla_{D}^{-1}\right)^{-m}$ and $\nabla_{D_{1}}^{m}=\left(\nabla_{D_{1}}^{-1}\right)^{-m}$ when m is negative. Denote the equivariant multiplicity \mathbf{m} by $\left(m_{1}, m_{2}\right)$ when $\mathbf{m}(H)=m_{1}\left(H \in \mathcal{A}_{1}\right)$ and $\mathbf{m}(H)=m_{2}\left(H \in \mathcal{A}_{2}\right)$. Let x_{1}, \ldots, x_{ℓ} be a basis for V^{*} and P_{1}, \ldots, P_{ℓ} be a set of basic invariants with respect to $W: R=\mathbb{R}\left[P_{1}, \ldots, P_{\ell}\right]$. Let $P_{1}^{(i)}, \ldots, P_{\ell}^{(i)}$ be a set of basic invariants with respect to $W_{i}: R_{i}=\mathbb{R}\left[P_{1}^{(i)}, \ldots, P_{\ell}^{(i)}\right](i=1,2)$. We use the notation

$$
\partial_{x_{j}}:=\partial / \partial x_{j}, \quad \partial_{P_{j}}:=\partial / \partial P_{j}, \quad \partial_{P_{j}^{(i)}}:=\partial / \partial P_{j}^{(i)} \quad(1 \leq j \leq \ell, 1 \leq i \leq 2) .
$$

The following theorem gives an explicit construction of a basis:

Theorem 1.3

Let \mathcal{A} be an irreducible Coxeter arrangement. Suppose that $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition and that the primitive derivation D_{1} is W-invariant. Then
(1) the S-module $D(\mathcal{A},(2 p-1,2 q-1))$ is free with W-invariant basis

$$
\nabla_{\partial_{P_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}}} E^{(p, q)}
$$

(2) the S-module $D(\mathcal{A},(2 p-1,2 q))$ is free with basis

$$
\nabla_{\partial_{P_{1}^{(1)}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}^{(1)}}} E^{(p, q)}
$$

(3) the S-module $D(\mathcal{A},(2 p, 2 q-1))$ is free with basis

$$
\nabla_{\partial_{p_{1}^{(2)}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}^{(2)}}} E^{(p, q)},
$$

(4) the S-module $D(\mathcal{A},(2 p, 2 q))$ is free with basis

$$
\nabla_{\partial_{x_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{x_{\ell}}} E^{(p, q)}
$$

The existence of the primitive decomposition of $D(\mathcal{A},(2 p-1,2 q-1))^{W}$ is proved by the following theorem:

Theorem 1.4

Under the same assumption of Theorem 1.3 define

$$
\theta_{i}^{(p, q)}:=\nabla_{\partial_{P_{i}}} E^{(p, q)}=\nabla_{\partial_{P_{i}}} \nabla_{D}^{-q} \nabla_{D_{1}}^{q-p} E \quad(1 \leq i \leq \ell)
$$

for $p, q \in \mathbb{Z}$. Then the set

$$
\left\{\theta_{i}^{(p+k, q+k)} \mid k \geq 0,1 \leq i \leq \ell\right\}
$$

is a T-basis for $D(\mathcal{A},(2 p-1,2 q-1))^{W}$. Put

$$
\mathcal{G}^{(p, q)}:=\bigoplus_{i=1}^{\ell} T \cdot \theta_{i}^{(p, q)}
$$

Then we have a T-module decomposition (called the primitive decomposition)

$$
D(\mathcal{A},(2 p-1,2 q-1))^{W}=\bigoplus_{k \geq 0} \mathcal{G}^{(p+k, q+k)}
$$

We will also prove

Theorem 1.5

For any irreducible Coxeter arrangement \mathcal{A} and any multiplicity \mathbf{m}, the R module $D(\mathcal{A}, \mathbf{m})^{W}$ is free.

The organization of this article is as follows. In Section 2 we prove Thereom 1.3 when $q \geq 0$. In Section 3 we prove Theorem 1.4 to have the primitive decomposition, which is a key to complete the proof of Theorem 1.3 at the end of Section 3. In Section 4 we verify that the primitive derivation D_{1} can be chosen to be W-invariant when \mathcal{A} is a Coxeter arrangement of either the type B_{ℓ} or F_{4}. We also review the cases of G_{2} and $I_{2}(2 n)(n \geq 4)$ and find that the primitive derivation D_{1} is W_{2}-antiinvariant. In Section 5, combining Theorem 1.3 with earlier results in T2002, AT2010, W2010, we finally prove Theorems 1.1 and 1.5 ,

2 Proof of Theorem 1.3 when $q \geq 0$

In this section we prove Theorem 1.3 when $q \geq 0$.
Recall $R=S^{W}=\mathbb{R}\left[P_{1}, \ldots, P_{\ell}\right]$ is the invariant ring with basic invariants P_{1}, \ldots, P_{ℓ} such that $2=\operatorname{deg} P_{1}<\operatorname{deg} P_{2} \leq \cdots \leq \operatorname{deg} P_{\ell-1}<\operatorname{deg} P_{\ell}=h$, where h is the Coxeter number of W. Put $D=\partial_{P_{\ell}} \in$ Der R which is a primitive derivation. Recall $T=\operatorname{ker}(D: R \rightarrow R)=\mathbb{R}\left[P_{1}, \ldots, P_{\ell-1}\right]$. Then
the covariant derivative ∇_{D} is T-linear. For $\mathbf{P}:=\left[P_{1}, \ldots, P_{\ell}\right]$, the Jacobian matrix $J(\mathbf{P})$ is defined as the matrix whose (i, j)-entry is $\frac{\partial P_{j}}{\partial x_{i}}$. Define $A:=$ $\left[I^{*}\left(d x_{i}, d x_{j}\right)\right]_{1 \leq i, j \leq \ell}$ and $G:=\left[I^{*}\left(d P_{i}, d P_{j}\right)\right]_{1 \leq i, j \leq \ell}=J(\mathbf{P})^{T} A J(\mathbf{P})$.
Definition 2.1
(Y2002, W2010]) Let $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}$ and $\zeta \in D(\mathcal{A},-\infty)^{W}$. We say that ζ is m-universal when ζ is homogeneous and the S-linear map

$$
\begin{aligned}
\Psi_{\zeta}: \operatorname{Der}_{S} & \longrightarrow D(\mathcal{A}, 2 \mathbf{m}) \\
\theta & \longmapsto \nabla_{\theta} \zeta
\end{aligned}
$$

is bijective.

Example 2.2

The Euler derivation E is 0-universal because $\Psi_{E}(\delta)=\nabla_{\delta} E=\delta$ and $D(\mathcal{A}, \mathbf{0})=\operatorname{Der}_{S}$.

Recall the T-automorphisms

$$
\nabla_{D}^{k}: D(\mathcal{A},-\infty)^{W} \xrightarrow{\sim} D(\mathcal{A},-\infty)^{W}(k \in \mathbb{Z})
$$

from Theorem 1.2. Recall the following two results concerning the \mathbf{m}-universality:

Theorem 2.3

W2010, Theorem 2.8] If ζ is \mathbf{m}-universal, then $\nabla_{D}^{-1} \zeta$ is $(\mathbf{m}+\mathbf{1})$-universal.

Proposition 2.4

[W2010, Proposition 2.7] Suppose that ζ is \mathbf{m}-universal. Let $\mathbf{k}: \mathcal{A} \rightarrow\{+1,0,-1\}$. Then an S-homomorphism

$$
\Phi_{\zeta}: D(\mathcal{A}, \mathbf{k}) \rightarrow D(\mathcal{A}, \mathbf{k}+2 \mathbf{m})
$$

defined by

$$
\Phi_{\zeta}(\theta):=\nabla_{\theta} \zeta
$$

gives an S-module isomorphism.
We require that assumption of Theorem 1.3 is satisfied in the rest of this section: Suppose that $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition and that D_{1}, a primitive derivation with respect to \mathcal{A}_{1} in the sense of AT2009, Definition 2.4], is W-invariant. Let $W_{i}, R_{i}, P_{j}^{(i)}, T_{i}, D_{i}(i=1,2)$ are defined as in Section [1. Even when \mathcal{A}_{1} is not irreducible, we may consider a T_{1}-isomorphism

$$
\nabla_{D_{1}}^{k}: D\left(\mathcal{A}_{1},-\infty\right)^{W_{1}} \xrightarrow{\sim} D\left(\mathcal{A}_{1},-\infty\right)^{W_{1}}(k \in \mathbb{Z})
$$

from Theorem 1.2

Proposition 2.5

Suppose $q \geq 0$. The derivation $E^{(p, q)}:=\nabla_{D}^{-q} \nabla_{D_{1}}^{q-p} E$ is (p, q)-universal.
Proof. When \mathcal{A}_{1} is irreducible, AY2007] and AT2010] imply that $\nabla_{D_{1}}^{q-p} E$ is $(p-q, 0)$-universal. When \mathcal{A}_{1} is not irreducible, $\nabla_{D_{1}}^{q-p} E$ is $(p-q, 0)$-universal because of AT2009. Thus $E^{(p, q)}=\nabla_{D}^{-q} \nabla_{D_{1}}^{q-p} E$ is (p, q)-universal by Theorem 2.3 .

Since $E^{(p, q)}$ is (p, q)-universal, Proposition 2.4 yields the following:

Proposition 2.6

Let $q \geq 0$ and $\mathbf{m}: \mathcal{A} \rightarrow\{+1,0,-1\}$. Then an S-homomorphism

$$
\Phi_{p, q}: D(\mathcal{A}, \mathbf{m}) \rightarrow D(\mathcal{A},(2 p, 2 q)+\mathbf{m})
$$

defined by

$$
\Phi_{p, q}(\theta):=\nabla_{\theta} E^{(p, q)}
$$

gives an S-module isomorphism.
Proof of Theorem $1.3(q \geq 0)$. We may apply Proposition 2.6 because
(1) $\partial_{P_{1}}, \ldots, \partial_{P_{\ell}}$ form a basis for $D(\mathcal{A},(-1,-1))$,
(2) $\partial_{P_{1}^{(1)}}, \ldots, \partial_{P_{\ell}^{(1)}}$ form a basis for $D(\mathcal{A},(-1,0))$,
(3) $\partial_{P_{1}^{(2)}}, \ldots, \partial_{P_{\ell}^{(2)}}$ form a basis for $D(\mathcal{A},(0,-1))$, and
(4) $\partial_{x_{1}}, \ldots, \partial_{x_{\ell}}$ form a basis for $D(\mathcal{A},(0,0))$.

3 Primitive decompositions

In this section we first prove Theorem 1.4 to define the primitive decomposition of $D(\mathcal{A},(2 p-1,2 q-1))^{W}$. Next we prove Theorem 1.3.

Proposition 3.1

Let ζ be m-universal. Then
(1) the set $\left\{\nabla_{\partial_{P_{j}}} \nabla_{D}^{-k} \zeta \mid 1 \leq j \leq \ell, k \geq 0\right\}$ is linearly independent over T.
(2) Define $\mathcal{G}^{(k)}$ to be the free T-module with basis $\left\{\nabla_{\partial_{P_{j}}} \nabla_{D}^{-k} \zeta \mid 1 \leq j \leq \ell\right\}$ for $k \geq 0$. Then the Poincaré series $\operatorname{Poin}\left(\bigoplus_{k \geq 0} \mathcal{G}^{(k)}, t\right)$ satisfies:

$$
\operatorname{Poin}\left(\bigoplus_{k \geq 0} \mathcal{G}^{(k)}, t\right)=\left(\prod_{i=1}^{\ell} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{j=1}^{\ell} t^{p-d_{j}}\right)
$$

where $p=\operatorname{deg} \zeta$ and $d_{j}=\operatorname{deg} P_{j}(1 \leq j \leq \ell)$.

$$
\begin{equation*}
D(\mathcal{A}, 2 \mathbf{m}-1)^{W}=\bigoplus_{k \geq 0} \mathcal{G}^{(k)} \tag{3}
\end{equation*}
$$

Proof. Let $k \in \mathbb{Z}_{\geq 0}$. By Theorem 2.3, $\zeta^{(k)}:=\nabla_{D}^{-k} \zeta$ is $(\mathbf{m}+k)$-universal, where the " k " in the $(\mathbf{m}+k)$ stands for the constant multiplicity k by abuse of notation. Thus by Proposition 2.4 we have the following two bases:

$$
\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}
$$

for the S-module $D(\mathcal{A}, 2 \mathbf{m}+2 k-1)$ and

$$
\nabla_{\partial_{I^{*}\left(d P_{1}\right)}} \zeta^{(k)}, \ldots, \nabla_{\partial_{I^{*}\left(d P_{\ell}\right)}} \zeta^{(k)}
$$

for the S-module $D(\mathcal{A}, 2 \mathbf{m}+2 k+1)$. Note that the two bases are also R bases for $D(\mathcal{A}, 2 \mathbf{m}+2 k-1)^{W}$ and $D(\mathcal{A}, 2 \mathbf{m}+2 k+1)^{W}$ respectively. Since the T-automorphism

$$
\nabla_{D}: D(\mathcal{A},-\infty)^{W} \xrightarrow{\sim} D(\mathcal{A},-\infty)^{W}
$$

in Theorem 1.2 induces a T-linear bijection

$$
\nabla_{D}: D(\mathcal{A}, 2 \mathbf{m}+2 k+1)^{W} \xrightarrow{\sim} D(\mathcal{A}, 2 \mathbf{m}+2 k-1)^{W}
$$

as in AT2009, Theorem 4.4], we may find an $\ell \times \ell$-matrix $B^{(k)}$ with entries in R such that

$$
\begin{aligned}
\nabla_{D}\left(\left[\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}\right] G\right) & =\nabla_{D}\left[\nabla_{\partial_{I^{*}\left(d P_{1}\right)}} \zeta^{(k)}, \ldots, \nabla_{\partial_{I^{*}\left(d P_{\ell}\right)}} \zeta^{(k)}\right] \\
& =\left[\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}\right] B^{(k)} .
\end{aligned}
$$

The degree of (i, j)-th entry of $B^{(k)}$ is $m_{i}+m_{j}-h \leq h-2<h$. In particular, the degree of $B_{i, \ell+1-i}^{(k)}$ is 0 and $B_{i, j}^{(k)}=0$ if $i+j<\ell+1$. Hence each entry of $B^{(k)}$ lies in T and $\operatorname{det} B^{(k)} \in \mathbb{R}$. Since D is a derivation of the minimum degree in Der_{R}, one gets $\left[D, \partial_{P_{i}}\right]=0$. Thus $\nabla_{D} \nabla_{\partial_{P_{i}}}=\nabla_{\partial_{P_{i}}} \nabla_{D}$. Operate ∇_{D}^{-1} on the both sides of the equality above, and get

$$
\left[\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}\right] G=\left[\nabla_{\partial_{P_{1}}} \zeta^{(k+1)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k+1)}\right] B^{(k)} .
$$

This implies that $\operatorname{det} B^{(k)} \in \mathbb{R}^{\times}$because $\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}$ are linearly independent over S. Inductively we have

$$
\begin{aligned}
& {\left[\nabla_{\partial_{P_{1}}} \zeta^{(k+1)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k+1)}\right]=\left[\nabla_{\partial_{P_{1}}} \zeta^{(k)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(k)}\right] G\left(B^{(k)}\right)^{-1} } \\
= & {\left[\nabla_{\partial_{P_{1}}} \zeta, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta\right] G\left(B^{(0)}\right)^{-1} G\left(B^{(1)}\right)^{-1} \cdots G\left(B^{(k)}\right)^{-1} } \\
= & {\left[\nabla_{\partial_{P_{1}}} \zeta, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta\right] G_{k+1}, }
\end{aligned}
$$

where $G_{i}=G\left(B^{(0)}\right)^{-1} G\left(B^{(1)}\right)^{-1} \cdots G\left(B^{(i-1)}\right)^{-1}(i \geq 0)$. Note that G appears i times in the definition of G_{i}. For $M=\left(m_{i j}\right) \in M_{\ell}(F)$, define $D[M]=\left(D\left(m_{i j}\right)\right) \in M_{\ell}(F)$. Then $D^{j}\left[G_{i}\right]=O$ when $j>i$ and $\operatorname{det} D^{i}\left[G_{i}\right] \neq 0$ because $\operatorname{det} D[G] \neq 0$ and $D^{2}[G]=O$ (e.g., see Sa1993, AT2009]).
(1) Suppose that $\left\{\nabla_{\partial_{P_{j}}} \zeta^{(k)} \mid 1 \leq j \leq \ell, k \geq 0\right\}$ is linearly dependent over T. Then there exist ℓ-dimensional column vectors $\mathbf{g}_{0}, \mathbf{g}_{1}, \ldots, \mathbf{g}_{q} \in T^{\ell}(q \geq 0)$ with $\mathbf{g}_{q} \neq 0$ such that

$$
\mathbf{0}=\sum_{i=0}^{q}\left[\nabla_{\partial_{P_{1}}} \zeta^{(i)}, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta^{(i)}\right] \mathbf{g}_{i}=\left[\nabla_{\partial_{P_{1}}} \zeta, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta\right]\left(\sum_{i=0}^{q} G_{i} \mathbf{g}_{i}\right)
$$

Since $\nabla_{\partial_{P_{1}}} \zeta, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta$ are linearly independent over R, one has

$$
\mathbf{0}=\sum_{i=0}^{q} G_{i} \mathbf{g}_{i}
$$

Applying the operator D on the both sides q times, we get $D^{q}\left[G_{q}\right] \mathbf{g}_{q}=\mathbf{0}$. Thus $\mathbf{g}_{q}=\mathbf{0}$ which is a contradiction. This proves (1).
(2) Compute

$$
\begin{aligned}
\operatorname{Poin}\left(\bigoplus_{k \geq 0} \mathcal{G}^{(k)}, t\right) & =\sum_{k \geq 0}\left(\prod_{i=1}^{\ell-1} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{j=1}^{\ell} t^{p-d_{j}+k d_{\ell}}\right) \\
& =\left(\prod_{i=1}^{\ell-1} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{k \geq 0} t^{k d_{\ell}}\right)\left(\sum_{j=1}^{\ell} t^{p-d_{j}}\right) \\
& =\left(\prod_{i=1}^{\ell} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{j=1}^{\ell} t^{p-d_{j}}\right) .
\end{aligned}
$$

(3) We have

$$
D(\mathcal{A}, 2 \mathbf{m}-1)^{W} \supseteq \bigoplus_{k \geq 0} \mathcal{G}^{(k)}
$$

by (1). So it suffices to prove

$$
\operatorname{Poin}\left(D(\mathcal{A}, 2 \mathbf{m}-1)^{W}, t\right)=\operatorname{Poin}\left(\bigoplus_{k \geq 0} \mathcal{G}^{(k)}, t\right)
$$

Since $D(\mathcal{A}, 2 \mathbf{m}-1)^{W}$ is a free R-module with a basis

$$
\nabla_{\partial_{P_{1}}} \zeta, \ldots, \nabla_{\partial_{P_{\ell}}} \zeta
$$

we obtain

$$
\operatorname{Poin}\left(D(\mathcal{A}, 2 \mathbf{m}-1)^{W}, t\right)=\left(\prod_{i=1}^{\ell} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{i=1}^{\ell} t^{p-d_{j}}\right)=\operatorname{Poin}\left(\bigoplus_{k \geq 0} \mathcal{G}^{(k)}, t\right)
$$

which completes the proof.
We require that the assumption of Theorem 1.3 is satisfied in the rest of this section.

Proof of Theorem 1.4. Suppose $q \geq 0$ to begin with. Then, by Proposition 3.4, $E^{(p, q)}$ is (p, q)-universal. Apply Proposition 3.1 for $\zeta=E^{(p, q)}$ and $\mathbf{m}=$ (p, q), and we have Theorem 1.4:

$$
D(\mathcal{A},(2 p-1,2 q-1))^{W}=\bigoplus_{k \geq 0} \mathcal{G}^{(p+k, q+k)}
$$

when $q \geq 0$. Send the both handsides by ∇_{D}, and we get

$$
D(\mathcal{A},(2 p-3,2 q-3))^{W}=\bigoplus_{k \geq 0} \mathcal{G}^{(p+k-1, q+k-1)}
$$

because $\nabla_{D}\left(D(\mathcal{A},(2 p-1,2 q-1))^{W}\right)=D(\mathcal{A},(2 p-3,2 q-3))^{W}$ as in AT2009, Theorem 4.4] and $\nabla_{D}\left(\theta_{i}^{(p, q)}\right)=\theta_{i}^{(p-1, q-1)}$. Apply ∇_{D} repeatedly to complete the proof for all $q \in \mathbb{Z}$.

Note that we do not assume $p \geq 0$ in the following proposition:

Proposition 3.2

For $p, q \in \mathbb{Z}$, the S-module $D(\mathcal{A},(2 p-1,2 q-1))$ has a W-invariant basis.
Proof. Recall that

$$
\nabla_{\partial_{P_{1}}} E^{(p, q)}, \nabla_{\partial_{P_{2}}} E^{(p, q)}, \ldots \nabla_{\partial_{P_{\ell}}} E^{(p, q)}
$$

which are W-invariant, form an S-basis for $D(\mathcal{A},(2 p-1,2 q-1))$ when $q \geq 0$ by Theorem 1.3 (1). It is then easy to see that they are also an R-basis for $D(\mathcal{A},(2 p-1,2 q-1))^{W}$ for $q \geq 0$. By A2008 AT2010, there exists a W-equivariant nondegenerate S-bilinear pairing

$$
(,): D(\mathcal{A},(2 p-1,2 q-1)) \times D(\mathcal{A},(-2 p+1,-2 q+1)) \longrightarrow S
$$

characterized by

$$
\left(I^{*}(\omega), \theta\right)=\langle\omega, \theta\rangle
$$

where $\omega \in \Omega^{1}(\mathcal{A},(-2 p+1,-2 q+1))$ and $\theta \in D(\mathcal{A},(-2 p+1,-2 q+1))$. Let $\theta_{1}, \ldots, \theta_{\ell}$ denote the dual basis for $D(\mathcal{A},(-2 p+1,-2 q+1))$ satisfying

$$
\left(\nabla_{\partial_{P_{i}}} E^{(p, q)}, \theta_{j}\right)=\delta_{i j}
$$

for $1 \leq i, j \leq \ell$. Then $\theta_{1}, \ldots, \theta_{\ell}$ are W-invariant because the pairing (,) is W-equivariant.

Although the following lemma is standard and easy, we give a proof for completeness.

Lemma 3.3

Let M be an S-submodule of Der_{F}. The following two conditions are equivalent:
(1) M has a W-invariant basis Θ over S.
(2) The W-invariant part M^{W} is a free R-module with a basis Θ and there exists a natural S-linear isomorphism

$$
M^{W} \otimes_{R} S \simeq M
$$

Proof. It suffices to prove that (1) implies (2) because the other implication is obvious. Suppose that $\Theta=\left\{\theta_{\lambda}\right\}_{\lambda \in \Lambda}$ is a W-invariant basis for M over S. Since it is linearly independent over S, so is over R. Let $\theta \in M^{W}$. Express

$$
\theta=\sum_{i=1}^{n} f_{i} \theta_{i}
$$

with $f_{i} \in S$ and $\theta_{i} \in \Theta(i=1, \ldots, n)$. Let $w \in W$ act on the both handsides. Then we get

$$
\theta=\sum_{i=1}^{n} w\left(f_{i}\right) \theta_{i}
$$

This implies $f_{i}=w\left(f_{i}\right)$ for every $w \in W$. Hence $f_{i} \in R$ for each i. Therefore Θ is a basis for M^{W} over R. This is (2).

Proposition 3.4

For any $p, q \in \mathbb{Z}, E^{(p, q)}$ is (p, q)-universal.
Proof. By Theorem 1.4 we have the decomposition:

$$
D(\mathcal{A},(2 p-1,2 q-1))^{W}=\bigoplus_{k \geq 0} \mathcal{G}^{(p+k, q+k)}
$$

for $p, q \in \mathbb{Z}$. As we saw in Proposition 3.1 (2), we have

$$
\begin{align*}
& \operatorname{Poin}\left(D(\mathcal{A},(2 p-1,2 q-1))^{W}, t\right)=\operatorname{Poin}\left(\bigoplus_{k^{g} e 0} \mathcal{G}^{(p+k, q+k)}, t\right) \tag{3.1}\\
&=\left(\prod_{i=1}^{\ell} \frac{1}{1-t^{d_{i}}}\right)\left(\sum_{i=1}^{\ell} t^{m-d_{j}}\right),
\end{align*}
$$

where $m:=\operatorname{deg} E^{(p, q)}$. Recall that the S-module $D(\mathcal{A},(2 p-1,2 q-1))$ has a W-invariant basis $\theta_{1}, \ldots, \theta_{\ell}$ by Proposition 3.2, By Lemma 3.3, we know that $\theta_{1}, \ldots, \theta_{\ell}$ form a basis for the R-module $D(\mathcal{A},(2 p-1,2 q-1))^{W}$. Thanks to (3.1) we may assume that $\operatorname{deg} \theta_{j}=m-d_{j}=\operatorname{deg} \nabla_{\partial_{P_{j}}} E^{(p, q)}$. Therefore there exists $M \in M_{\ell}(R)$ such that

$$
\left[\theta_{1}, \ldots, \theta_{\ell}\right] M=\left[\nabla_{\partial_{P_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}}} E^{(p, q)}\right]
$$

with $\operatorname{det} M \in \mathbb{R}$. Since

$$
\max _{1 \leq i, j \leq \ell}\left|\operatorname{deg} \theta_{i}-\operatorname{deg} \nabla_{\partial_{P_{j}}} E^{(p, q)}\right|=d_{\ell}-d_{1}<\operatorname{deg} P_{\ell}
$$

we get $M \in M_{\ell}(T)$. Since $\nabla_{\partial_{P_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}}} E^{(p, q)}$ are linearly independent over T by Proposition 3.1 (1), we have $\operatorname{det} M \in \mathbb{R}^{\times}$. Thus

$$
\nabla_{\partial_{P_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}}} E^{(p, q)}
$$

form an S-basis for $D(\mathcal{A},(2 p-1,2 q-1))$. Since

$$
\left[\nabla_{\partial_{P_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{P_{\ell}}} E^{(p, q)}\right] J(\mathbf{P})^{T}=\left[\nabla_{\partial_{x_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{x_{\ell}}} E^{(p, q)}\right]
$$

we may apply the multi-arrangement version of Saito's criterion Sa1980, Z1989, A2008 to prove that $\nabla_{\partial_{x_{1}}} E^{(p, q)}, \ldots, \nabla_{\partial_{x_{\ell}}} E^{(p, q)}$ form an S-basis for $D(\mathcal{A},(2 p, 2 q))$ for any $p, q \in \mathbb{Z}$. This shows that $E^{(p, q)}$ is (p, q)-universal for any $p, q \in \mathbb{Z}$.

Proof of Theorem $1.3(q \in \mathbb{Z})$. Theorem [2.3 and Proposition 3.4 complete the proof by the same argument as that in Section 2 for $q \geq 0$.

4 The cases of B_{ℓ}, F_{4}, G_{2} and $I_{2}(2 n)$

- The case of B_{ℓ}

The roots of the type B_{ℓ} are:

$$
\pm x_{i}, \pm x_{i} \pm x_{j} \quad(1 \leq i<j \leq \ell)
$$

in terms of an orthonormal basis x_{1}, \ldots, x_{ℓ} for V^{*}. Altogether there are $2 \ell^{2}$ of them. Define

$$
Q_{1}:=\prod_{i=1}^{\ell} x_{i}, \quad Q_{2}:=\prod_{1 \leq i<j \leq \ell}\left(x_{i} \pm x_{j}\right), \quad Q=Q_{1} Q_{2} .
$$

Then the arrangement \mathcal{A}_{1} defined by Q_{1} is of the type $A_{1} \times \cdots \times A_{1}=A_{1}^{\ell}$. The arrangement \mathcal{A}_{2} defined by Q_{2} is of the type D_{ℓ}. The arrangement \mathcal{A} defined by Q is of the type B_{ℓ} and $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition. Note that A_{1}^{ℓ} is not irreducible. Define

$$
D_{1}:=\sum_{i=1}^{\ell} \frac{1}{x_{i}} \partial_{x_{i}}
$$

which is a primitive derivation in the sense of AT2009. Obviously D_{1} is W-invariant. Let $P_{j}=\sum_{i=1}^{\ell} x_{i}^{2 j}(j \geq 1)$. Then P_{1}, \ldots, P_{ℓ} form a set of basic invariants under W while $Q_{1}, P_{1}, \ldots, P_{\ell-1}$ form a set of basic invariants under W_{2}. Define a primitive derivation D_{2} with respect to \mathcal{A}_{2} so that

$$
D_{2}\left(Q_{1}\right)=D_{2}\left(P_{j}\right)=0(j=1, \ldots, \ell-2), \quad D_{2}\left(P_{\ell-1}\right)=1 .
$$

Thus

$$
\left(w D_{2}\right)\left(P_{\ell-1}\right)=D_{2}\left(w^{-1} P_{\ell-1}\right)=D_{2}\left(P_{\ell-1}\right)=1(w \in W) .
$$

This implies that D_{2} is W-invariant.

- The case of F_{4}

The roots of the type F_{4} are:

$$
\pm x_{i},\left(\pm x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right) / 2, \pm x_{i} \pm x_{j} \quad(1 \leq i<j \leq 4)
$$

in terms of an orthonormal basis $x_{1}, x_{2}, x_{3}, x_{4}$ for V^{*}. Altogether there are 48 of them. Define

$$
Q_{1}:=\prod_{1 \leq i<j \leq 4}\left(x_{i} \pm x_{j}\right), Q_{2}:=\prod_{i=1}^{4} x_{i} \prod\left(x_{1} \pm x_{2} \pm x_{3} \pm x_{4}\right), Q=Q_{1} Q_{2}
$$

The arrangement \mathcal{A}_{i} defined by Q_{i} is of the type $D_{4}(i=1,2)$. Then the arrangement \mathcal{A} defined by Q is of the type F_{4} and $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is the orbit decomposition. Define
$P_{1}^{(1)}=\sum_{i=1}^{4} x_{i}^{2}, P_{2}^{(1)}=\sum_{i=1}^{4} x_{i}^{4}, P_{3}^{(1)}=x_{1} x_{2} x_{3} x_{4}, P_{4}^{(1)}=\sum_{i=1}^{4} x_{i}^{6}+5 \sum_{i \neq j} x_{i}^{2} x_{j}^{4}$.
Compute

$$
P_{4}^{(1)}=-4 \sum_{i=1}^{4} x_{i}^{6}+5 P_{1}^{(1)} P_{2}^{(1)}
$$

Thus $P_{1}^{(1)}, P_{2}^{(1)}, P_{3}^{(1)}, P_{4}^{(1)}$ are a set of basic invariants under W_{1}. The reflection τ with respect to $x_{1}+x_{2}+x_{3}+x_{4}=0$ is given by

$$
\tau\left(x_{i}\right)=\frac{2 x_{i}-\sum_{j=1}^{4} x_{j}}{2}(i=1,2,3,4)
$$

A calculation shows that $P_{4}^{(1)}$ is τ-invariant. Let s_{i} denote the reflection with respect to $x_{i}=0 \quad(1 \leq i \leq 4)$. Since the Coxeter group W_{2} is generated by τ and $s_{i}(1 \leq i \leq 4)$, we know that $P_{4}^{(1)}$ is W_{2}-invariant thus W-invariant. Define a primitive derivation D_{1} with respect to \mathcal{A}_{1} so that

$$
D_{1}\left(P_{j}^{(1)}\right)=0(j=1,2,3), \quad D_{1}\left(P_{4}^{(1)}\right)=1 .
$$

Thus

$$
\left(w D_{1}\right)\left(P_{4}^{(1)}\right)=D_{1}\left(w^{-1} P_{4}^{(1)}\right)=D_{1}\left(P_{4}^{(1)}\right)=1 \quad(w \in W) .
$$

This implies that D_{1} is W-invariant. We conclude that D_{2} is also W-invariant because an orthonormal coordinate change

$$
x_{1}=\frac{y_{1}-y_{2}}{\sqrt{2}}, x_{2}=\frac{y_{1}+y_{2}}{\sqrt{2}}, x_{3}=\frac{y_{3}-y_{4}}{\sqrt{2}}, x_{4}=\frac{y_{3}+y_{4}}{\sqrt{2}}
$$

switches \mathcal{A}_{1} and \mathcal{A}_{2}.

- The cases of G_{2} and $I_{2}(2 n)(n \geq 4)$

The arrangement \mathcal{A} of the type G_{2} has exactly two orbits \mathcal{A}_{1} and \mathcal{A}_{2}, each of which is of the type A_{2}. Let $n \geq 4$. Then the arrangement \mathcal{A} of the type $I_{2}(2 n)$ has exactly two orbits \mathcal{A}_{1} and \mathcal{A}_{2}, each of which is of the type $I_{2}(n)$. In both cases, by W2010, one may choose

$$
D_{1}=Q_{2} D, \quad D_{2}=Q_{1} D
$$

Since Q_{2} is W_{2}-antiinvariant and D is W-invariant, D_{1} is W_{2}-antiinvariant. Similarly D_{2} is W_{1}-antiinvariant.

5 Proofs of Theorems 1.1 and 1.5

Assume that \mathcal{A} is an irreducible Coxeter arrangement in the rest of the article.
Proof of Theorem 1.1. If \mathcal{A} has the single orbit, then the result in T2002, AY2007, AT2010 completes the proof. If not, then \mathcal{A} has exactly two orbits. If \mathcal{A} is of the type either G_{2} or $I_{2}(2 n)$ with $n \geq 4$, then $D(\mathcal{A}, \mathbf{m})$ is a free S module because \mathcal{A} lies in a two-dimensional vector space. For the remaining cases of the type B_{ℓ} and F_{4}, Section 4 allows us to apply Theorem 1.3 to complete the proof.

A multiplicity $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}$ is said to be odd if its image lies in $1+2 \mathbb{Z}$.

Proposition 5.1

If \mathbf{m} is equivariant and odd, then $D(\mathcal{A}, \mathbf{m})$ has a W-invariant basis over S.
Proof. When \mathcal{A} has the single orbit, \mathbf{m} is constant. In this case Proposition was proved in T2002, AY2007, AT2010. If \mathcal{A} is of the type either G_{2} or $I_{2}(2 n)(n \geq 4)$, then Proposition was verified in W2010. For the remaining cases of B_{ℓ} and F_{4}, Proposition 3.2 completes the proof.

Recall the W-action on \mathcal{A} :

$$
W \times \mathcal{A} \longrightarrow \mathcal{A}
$$

by sending (w, H) to $w H(w \in W, H \in \mathcal{A})$. For any multiplicity $\mathbf{m}: \mathcal{A} \rightarrow \mathbb{Z}$, define a new multiplicity m^{*} by

$$
\mathbf{m}^{*}(H):=\max _{w \in W}(2 \cdot\lfloor\mathbf{m}(w H) / 2\rfloor+1),
$$

where $\lfloor a\rfloor$ stands for the greatest integer not exceeding a. Then \mathbf{m}^{*} is obviously equivariant and odd.

Proposition 5.2

For any irreducible Coxeter arrangement \mathcal{A} and any multiplicity m,

$$
D(\mathcal{A}, \mathbf{m})^{W}=D\left(\mathcal{A}, \mathbf{m}^{*}\right)^{W} .
$$

Proof. Since $\mathbf{m}(H) \leq \mathbf{m}^{*}(H)$ for any $H \in \mathcal{A}$, we have

$$
D(\mathcal{A}, \mathbf{m})^{W} \supseteq D\left(\mathcal{A}, \mathbf{m}^{*}\right)^{W} .
$$

We will show the other inclusion. Let $H \in \mathcal{A}$ and $\theta \in D(\mathcal{A}, \mathbf{m})^{W}$. It suffices to verify the following two statements:
(A) $\theta\left(\alpha_{H}\right) \in \alpha_{H}^{\mathbf{m}(w H)} S_{\left(\alpha_{H}\right)}$ for any $w \in W$,
(B) $\theta\left(\alpha_{H}\right) \in \alpha_{H}^{2 m} S_{\left(\alpha_{H}\right)}$ implies $\theta\left(\alpha_{H}\right) \in \alpha_{H}^{2 m+1} S_{\left(\alpha_{H}\right)}$ for any $m \in \mathbb{Z}$.

For $w \in W$ let w^{-1} act on the both sides of

$$
\theta\left(\alpha_{w H}\right) \in \alpha_{w H}^{\mathrm{m}(w H)} S_{\left(\alpha_{w H}\right)}
$$

to get

$$
\theta\left(\alpha_{H}\right) \in \alpha_{H}^{\mathbf{m}(w H)} S_{\left(\alpha_{H}\right)} .
$$

This verifies (A).
Fix $H \in \mathcal{A}$. Let s be the orthogonal reflection through H. Then $s\left(\alpha_{H}\right)=$ $-\alpha_{H}$. Suppose that $\theta\left(\alpha_{H}\right)=\alpha_{H}^{2 m} p$ with $p \in S_{\left(\alpha_{H}\right)}$. Let s act on the both handsides and we have $\theta\left(-\alpha_{H}\right)=\left(-\alpha_{H}\right)^{2 m} s(p)$. This implies $-p=s(p)$. Since $s(p)=p$ on H, one has $p=0$ on H, which implies $p \in \alpha_{H} S_{\left(\alpha_{H}\right)}$. This verifies (B).
Proof of Theorem 1.5. Thanks to Proposition 5.2 we may assume that m is equivariant and odd. Apply Proposition 5.1 and Lemma 3.3 .

Corollary 5.3

$$
D(\mathcal{A}, \mathbf{m})^{W} \otimes_{R} S \simeq D\left(\mathcal{A}, \mathbf{m}^{*}\right)
$$

Proof. Apply Proposition 5.1 and Lemma 3.3 to get

$$
D\left(\mathcal{A}, \mathbf{m}^{*}\right)^{W} \otimes_{R} S \simeq D\left(\mathcal{A}, \mathbf{m}^{*}\right)
$$

Then Proposition 5.2 completes the proof.
The following corollary shows that the converse of Proposition 5.1 is true.

Corollary 5.4

The S-module $D(\mathcal{A}, \mathbf{m})$ has a W-invariant basis if and only if \mathbf{m} is odd and equivariant.

Proof. Assume that $D(\mathcal{A}, \mathbf{m})$ has a W-invariant basis over S. Then, by Lemma 3.3, we get

$$
D(\mathcal{A}, \mathbf{m})^{W} \otimes_{R} S \simeq D(\mathcal{A}, \mathbf{m})
$$

Compare this with Corollary 5.3 and we know that there exsits a common S-basis for both $D(\mathcal{A}, \mathbf{m})$ and $D\left(\mathcal{A}, \mathbf{m}^{*}\right)$. By the multi-arrangement version of Saito's criterion Sa1980, Z1989, A2008, we have $\mathbf{m}=\mathbf{m}^{*}$.

References

[A2008] T. Abe, A generalized logarithmic module and duality of Coxeter multiarrangements. arXiv.0807.2552v1.
[AT2010] T. Abe and H. Terao, A primitive derivation and logarithmic differential forms of Coxeter arrangements. Math. Z. 264 (2010), 813-828.
[AT2009] T. Abe and H. Terao, Primitive filtrations of the modules of invariant logarithmic forms of Coxeter arrangements. arXiv:0910.2506v1.
[ATY2009] T. Abe, H. Terao and M. Yoshinaga, Totally free arrangements of hyperplanes. Proc. AMS 137 (2009), 1405-1410.
[AY2007] T. Abe and M. Yoshinaga, Coxeter multiarrangements with quasi-constant multiplicities. J. Algebra 322 (2009), 2839-2847.
[OT1992] P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992.
[Sa1980] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
[Sa1993] K. Saito, On a linear structure of the quotient variety by a finite reflection group. Publ. RIMS, Kyoto Univ. 29 (1993), 535-579.
[Sa2003] K. Saito, Uniformization of the orbifold of a finite reflection group. RIMS preprint 1414 (2003).
[SoT1998] L. Solomon and H. Terao, The double Coxeter arrangements. Comment. Math. Helv. 73 (1998), 237-258.
[T2002] H. Terao, Multiderivations of Coxeter arrangements. Invent. Math. 148 (2002), 659-674.
[W2010] A. Wakamiko, Bases for the derivation modules of twodimensional multi-Coxeter arrangements and universal derivations. arXiv. 1010.5266 v 1 . to appear in Hokkaido Math. J.
[Y2002] M. Yoshinaga, The primitive derivation and freeness of multiCoxeter arrangements. Proc. Japan Acad. Ser. A 78 (2002), no. 7, 116-119.
[Z1989] G. Ziegler, Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), 345-359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.

[^0]: *Supported by JSPS Grants-in-Aid for Young Scientists (B) No. 21740014. Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan. email:abe.takuro.4c@kyoto-u.ac.jp
 ${ }^{\dagger}$ Supported by JSPS Grants-in-Aid, Scientific Research (B) No. 21340001. Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan. email:terao@math.sci.hokudai.ac.jp
 \ddagger 2-8-11 Aihara, Midori-ku, Sagamihara-shi, Kanagawa, 252-0141 Japan. email:atsushi.wakamiko@gmail.com

