THE ISENTROPIC EULER SYSTEM ADMITS SOME PLANE WAVE SUPERPOSITIONS

ROBERT E. TERRELL*

Abstract

A class of differentiable solutions is proved for the isentropic Euler equations in two and three space dimensions. The solutions are explicitly given in terms of solutions to inviscid Burgers equations, and several directions of propagation. The relative orientation of the directions is critical. Within the directional constraints, the Burgers solutions are arbitrary. The several velocities add, and the pressures combine nonlinearly. These solutions cannot exist beyond the time when shocks develop in any of the Burgers solutions.

Key words. Euler equations, Burgers equation, plane wave, isentropic, shock

AMS subject classifications. 35Q31, 76N15

1. Main result. Consider the isentropic Euler equations

$$
u_{t}+u \cdot \nabla u+\rho^{-1} \nabla p=0, \quad \rho_{t}+\operatorname{div}(\rho u)=0, \quad p=k \rho^{\gamma}
$$

We assume $1<\gamma<3, k$ is constant, and set $a=\frac{\gamma-1}{2}$.
Theorem 1.1. Let v_{j} be unit vectors in $\mathbb{R}^{d}, d=2$ or 3 , for which the dot products

$$
\begin{equation*}
v_{i} \cdot v_{j}=-a, \quad i \neq j \tag{*}
\end{equation*}
$$

The number N of such vectors is indicated in the table below.
Further suppose that $f_{j}(s, t)$ are differentiable solutions to Burgers equation

$$
f_{t}+(1+a) f f_{s}=0, \quad s \in \mathbb{R}, \quad 0 \leq t<T
$$

Define

$$
u(x, t)=\sum_{j=1}^{N} f_{j}\left(x \cdot v_{j}, t\right) v_{j}, \quad \text { and } \rho=\left(\frac{a}{\sqrt{k \gamma}} \sum_{j=1}^{N} f_{j}\left(x \cdot v_{j}, t\right)\right)^{\frac{1}{a}}
$$

Then u and ρ satisfy the isentropic Euler equations on this time interval and while $\sum f_{j}>0$.

Note that the case $\gamma=2$ corresponds to the shallow water model and you have three vectors v_{k} coplanar at 120 degrees, while $\gamma=\frac{5}{3}$ corresponds to the monatomic gas with four v_{k} having the symmetry of a regular tetrahedron.

Proof. We will write out the $d=3$ case, and the case $d=2$ can be obtained by deleting the third component of all vectors. Inspired by the treatment in Lax [3], we work with the symmetric hyperbolic form

$$
q_{t}+A_{1} q_{x_{1}}+A_{2} q_{x_{2}}+A_{3} q_{x_{3}}=0, \quad q=\left[\begin{array}{c}
u \\
w
\end{array}\right]
$$

of the Euler equations where q is a 4×1 vector consisting of the velocities together with $w=a^{-1} \sqrt{\gamma p / \rho}$, which is proportional to the sound speed. That gives in the isentropic case $\rho=\left(\frac{a}{\sqrt{k \gamma}} w\right)^{\frac{1}{a}}$. The two forms of the Euler equations are equivalent

[^0]for differentiable solutions with $\rho>0$. Here $A_{j}=u_{j} I+a w L_{j}$, where I is the 4×4 identity matrix and
\[

L_{1}=\left[$$
\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}
$$\right], \quad L_{2}=\left[$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}
$$\right], \quad L_{3}=\left[$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}
$$\right]
\]

We abbreviate $\partial f_{j} / \partial s$ evaluated at $\left(x \cdot v_{j}, t\right)$ by $f_{j s}$. Component i of vector v_{j} is written $v_{j i}$. Also abbreviate $\partial f_{j} / \partial t\left(x \cdot v_{j}, t\right)$ by $f_{j t}$, and $f_{j}\left(x \cdot v_{j}, t\right)$ by f_{j}. Sums are from 1 to $N=2,3$, or 4 , depending on the number of vectors v_{k}.

We will need to know the eigenvectors of linear combinations of the L_{j}. These eigenvectors may be read from the calculation

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & h \\
0 & 0 & 0 & k \\
0 & 0 & 0 & m \\
h & k & m & 0
\end{array}\right]\left[\begin{array}{c}
h \\
k \\
m \\
\pm 1
\end{array}\right]= \pm\left[\begin{array}{c}
h \\
k \\
m \\
\pm 1
\end{array}\right], \quad\left[\begin{array}{cccc}
0 & 0 & 0 & h \\
0 & 0 & 0 & k \\
0 & 0 & 0 & m \\
h & k & m & 0
\end{array}\right]\left[\begin{array}{c}
h_{0} \\
k_{0} \\
m_{0} \\
0
\end{array}\right]=0
$$

whenever $h^{2}+k^{2}+m^{2}=1$ and $h h_{0}+k k_{0}+m m_{0}=0$.
Now look for solutions of the form $q(x, t)=\sum_{k} f_{k}\left(x \cdot v_{k}, t\right) z_{k}$ where constant vectors $v_{k} \in \mathbb{R}^{3}$ and $z_{k} \in \mathbb{R}^{4}$ are to be found. Then

$$
\begin{gathered}
q_{t}+\sum_{j}\left(u_{j} I+a w L_{j}\right) q_{x_{j}}=\sum_{k}\left(f_{k t}+\sum_{j}\left(u_{j} I+a w L_{j}\right) f_{k s} v_{k j}\right) z_{k} \\
=\sum_{k}\left(f_{k t}+f_{k s} u \cdot v_{k}+a w f_{k s} \sum_{j}\left(v_{k j} L_{j}\right)\right) z_{k}
\end{gathered}
$$

Now suppose we are looking for eigenvectors $\sum_{j}\left(v_{k j} L_{j}\right) z_{k}=\lambda_{k} z_{k}$. As displayed above, we may either choose $z_{k}=\left[\begin{array}{c}v_{k} \\ \lambda_{k}\end{array}\right]$ with $\lambda_{k}= \pm 1$, or if $\lambda_{k}=0$ then the first three components of z_{k} must be orthogonal to v_{k}.

With any such choices of eigenvectors then

$$
\begin{gathered}
q_{t}+\sum_{j} A_{j} q_{x_{j}}=\sum_{k}\left(f_{k t}+f_{k s} \cdot\left(u \cdot v_{k}+a w \lambda_{k}\right)\right) z_{k} \\
=\sum_{k}\left(f_{k t}+f_{k s} \cdot\left(q \cdot\left[\begin{array}{c}
v_{k} \\
a \lambda_{k}
\end{array}\right]\right)\right) z_{k}=\sum_{k}\left(f_{k t}+f_{k s} \cdot\left(\sum_{m} f_{m} z_{m} \cdot\left[\begin{array}{c}
v_{k} \\
a \lambda_{k}
\end{array}\right]\right)\right) z_{k}
\end{gathered}
$$

We choose to make the dot products $z_{m} \cdot\left[\begin{array}{c}v_{k} \\ a \lambda_{k}\end{array}\right]=0$ for $k \neq m$, which decouples the system into the equations

$$
f_{k t}+\left(z_{k} \cdot\left[\begin{array}{c}
v_{k} \\
a \lambda_{k}
\end{array}\right]\right) f_{k} f_{k s}=0
$$

If $\lambda_{k}= \pm 1$ we have $z_{k} \cdot\left[\begin{array}{c}v_{k} \\ a \lambda_{k}\end{array}\right]=v_{k} \cdot v_{k}+a \lambda_{k}^{2}=1+a$. If $\lambda_{k}=0$ then $z_{k}=\left[\begin{array}{c}v_{k}^{\perp} \\ 0\end{array}\right]$ where v_{k}^{\perp} is some vector perpendicular to v_{k}, and $z_{k} \cdot\left[\begin{array}{c}v_{k}^{\perp} \\ 0\end{array}\right]=0$, so we need f_{k} independent of t, as well as $v_{m}^{\perp} \cdot v_{k}=0$ for $k \neq m$.

Now we analyze the several cases of dot products and eigenvalues. In the cases where some $\lambda_{k}=-1$, we replace v_{k} by $-v_{k}$ and $f_{k}(s, t)$ by $-f_{k}(-s, t)$. This effectively replaces -1 by +1 , and we can assume from now on that all $\lambda_{k} \geq 0$.

The most important case, and the one stated in the Theorem, is when all eigenvalues are +1 . Let the v_{k} be N unit vectors with all $v_{k} \cdot v_{m}=-a$ for $k \neq m$, and all $\lambda_{k}=1$. The N is given in the table. The decoupled equations for the f_{k} are the inviscid Burgers [1] equation $f_{k t}+(1+a) f_{k} f_{k s}=0$. The solutions are of the form $q=\sum_{k=1}^{N} f_{k}\left(x \cdot v_{k}, t\right)\left[\begin{array}{c}v_{k} \\ 1\end{array}\right]$. This completes the proof.

Another possibility is that some eigenvalue is 0 . Corresponding to each 0 eigenvalue you may replace the term $f_{k}\left(x \cdot v_{k}, t\right)\left[\begin{array}{c}v_{k} \\ 1\end{array}\right]$ by $g_{k}\left(x \cdot v_{k}\right)\left[\begin{array}{c}v_{k}^{\perp} \\ 0\end{array}\right]$ where g_{k} is any differentiable function, provided that v_{k}^{\perp} is perpendicular to v_{k} and all the other v_{m}.

\mathbb{R}^{d}	$1<\gamma<\frac{5}{3}$	$\gamma=\frac{5}{3}$	$\frac{5}{3}<\gamma<2$	$\gamma=2$	$2<\gamma<3$
\mathbb{R}^{2}	2	2	2	3	2
\mathbb{R}^{3}	3	4	3	3	2

Fig. 1.1. The table shows the number N of vectors v_{k} available for various d and γ.
Remark on the time of existence. Such configurations cannot generally live beyond the time when shocks develop in any of the f_{k}. For example, suppose a shock of speed σ develops in f_{1}, and assume $\gamma=1.4$. The jump condition on density is $[\rho] \sigma=[\rho u] \cdot v_{1}$ or

$$
\left[\left(\frac{a}{\sqrt{k \gamma}} \sum_{k} f_{k}\right)^{\frac{1}{a}}\right] \sigma=\left[\left(\frac{a}{\sqrt{k \gamma}} \sum_{k} f_{k}\right)^{\frac{1}{a}}\left(f_{1}-a f_{2}-a f_{3}\right)\right]
$$

But this is not possible. Consider a line segment lying in a plane level set of f_{3} and within the shock plane. Along this segment, f_{2} will in general take a continuous range of values, while f_{3} is constant and f_{1} has different one-sided limits depending on the side of the shock plane from which the segment is approached. Since $1 / a=5$, the jump condition is a polynomial identity in the values of f_{2}. This contradicts the fundamental theorem of algebra.

Preliminary calculations done using clawpack [2, 4] suggest that there is a distinction in the appearance of pressure contours in two cases of crossing wave fronts shortly after breaking occurs, depending on whether the angles between the fronts match equation (*).

REFERENCES

[1] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948) pp. 171-179
[2] http://www.amath.washington.edu/~claw/
[3] P. D. Lax, Hyperbolic Partial Differential Equations, Providence, RI, American Mathematical Society, 2006.
[4] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.

[^0]: *Mathematics Department, Cornell University, Ithaca, New York, 14853 (ret7@cornell.edu).

