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Dynamical control of quantum state transfer within hybrid open systems
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We analyze quantum state-transfer optimization within hybrid open systems, from a “noisy”
(write-in) qubit to its “quiet” counterpart (storage qubit). Intriguing interplay is revealed between
our ability to avoid bath-induced errors that profoundly depend on the bath-memory time and
the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no
circumstances is the fastest transfer optimal (for a given transfer energy).
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Commonly, manipulations of quantum information can
be schematically divided into three stages: “writing-in”,
“storage”, and “reading-out” [1]. Realistically, some
systems are better suited for writing-in or reading-out
than for storage, and vice versa. This has prompted
the suggestion of hybrid, composite quantum systems [2–
5]: quantum operations are rapidly performed and effi-
ciently written in a qubit susceptible to decoherence, e.g.,
a Josephson (superconducting) qubit; then the quantum
information is transferred (directly or via a link) to a
storage qubit resilient to decoherence (encoded in an en-
semble of, e.g., ultracold atoms); then, on demand, trans-
ferred back and read-out from the same fragile qubit.
Our aim is to examine a strategy for maximizing the av-
erage fidelity of quantum state-transfer in such hybrids,
from a subspace fragile against decoherence to a robust
subspace, by choosing an appropriate dynamical control
field.

To this end, we resort to a novel general approach to
the control of arbitrary multidimensional quantum op-
erations in open systems described by the reduced den-
sity matrix ρ̂(t): if the desired operation is disturbed
by linear couplings to a bath, via operators Ŝ ⊗ B̂
(where Ŝ is the traceless system operator, and B̂ is the
bath operator), one can choose controls to maximize
the operation fidelity according to the following recipe,
which holds to second order in the system-bath cou-
pling (Suppl. Info.): (i) The control (modulation) trans-
forms the system-bath coupling operators to the time-
dependent form Ŝ(t) ⊗ B̂(t) in the interaction picture,
via the rotation matrix εi(t): a set of time dependent co-
efficients in the operator basis σ̂i (Pauli matrices in the
case of a qubit), such that:

Ŝ(t) =
∑

i

εi(t)σ̂i. (1)

(ii) This allows to write the time-independent score ma-

trix, describing how the fidelity scores (changes) for each
pair of basis operators applied:

Γij ≡ 〈ψ| [σi, σj |ψ〉 〈ψ|] |ψ〉, (2)

where the overline is an average over all possible initial
states. (iii) Using Γij one arrives at a simple expression
for the average fidelity of any desired operation (within
the stipulated second-order accuracy):

favr(t) =1−

∫ ∞

−∞

dωG(ω)F (t, ω),

F (t, ω) ≡t−1εt,i(ω)Γijε
∗
t,j(ω),

(3)

where εt,i(ω) is the finite-time Fourier-transform of the
rotation matrix εi(t), and the coupling spectrum G(ω)
is the Fourier-transform of the bath memory (correla-

tion) function
〈

B̂eıĤBtB̂e−ıĤBt
〉

. Namely, the modula-

tion (control) spectrum F (t, ω) is defined according to the
operation, via the Γij score matrix. (iv) This fidelity is
maximized by the variational Euler-Lagrange method [6],
which minimizes the overlap between G(ω) and F (t, ω)
under the constraint of a given control energy or action.
We use this general approach to optimize a reliable

transfer of a quantum state from a fragile qubit to a
robust qubit. We choose to focus on the case of two reso-
nant qubits with temporally controlled coupling strength.
The free Hamiltonian without decoherence is then

ĤS(t) =
ω0

2

(

σ̂(1)
z + σ̂(2)

z

)

+Hc(t),

Ĥc(t) =V (t)σ̂(1)
x ⊗ σ̂(2)

x

(4)

where Ĥc(t) is the Hamiltonian for the controlled inter-
action between the qubits, V (t) describing the ajustable
amplitude of the interaction (see Fig. 1-inset, for an ex-
ample where the interaction amplitude is ajustable using
an external laser field, as in [2]). The system-bath inter-
action Hamiltonian is taken to be

ĤI = Ŝ ⊗ B̂(t) = σ̂(1)
z ⊗ B̂(t), (5)

where B̂(t) is the bath operator B̂ rotating with the free
bath Hamiltonian ĤB. This model represents proper de-
phasing in the source qubit 1 due to the bath operator B̂,
whereas the target qubit 2 is robust against decoherence.
This model can be generalized to any degree of asymme-

try between the decoherence properties of the two qubits.
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Equations (4)-(5) conserve the parity of the number
of excitations. Hence, the full two-qubit system can be
split into two subsystems O = span{|g1e2〉 , |e1g2〉} and
E = span{|g1g2〉 , |e1e2〉}, O and E standing for odd and
even excitation numbers, respectively:

ĤS + ĤI =ĤO + ĤE

ĤO =V (t)σ̂O
x + σ̂O

z ⊗ B̂(t)

ĤE =ω0σ̂
E
z + V (t)σ̂E

x + σ̂E
z ⊗ B̂(t)

(6)

where the appropriate Pauli matrices in the O (E)
subsystems are: σ̂O

x = |g1e2〉 〈e1g2| + H.C., σ̂O
z =

|e1g2〉 〈e1g2|− |g1e2〉 〈g1e2|, σ̂
E
x = |g1g2〉 〈e1e2|+H.C. and

σ̂E
z = |e1e2〉 〈e1e2| − |g1g2〉 〈g1g2|. In essence we have one

resonant and one non-resonant two-level system, both
coupled to the same dephasing bath, which renders them
inseparable. Both are subject to the same σ̂x control,
which must be chosen to maximize the fidelity of a rota-
tion in the O subsystem while keeping the E subsystem
unchanged.
The accumulated phase

φ(t) =

∫ t

0

V (t′)dt′ (7)

is our control function. In the ideal case, without de-
coherence or leakage, the state transfer from qubit 1 to
qubit 2 can be perfectly realized if at the final time, tf ,
the phase φ(t) satisfies φ(tf ) = π

2 , whence any initial
state of qubit 1 is mapped onto that of qubit 2 (initially
in the ground state)

(α|g1〉+ β|e1〉) |g2〉 → |g1〉 (α|g2〉 − iβ|e2〉) , (8)

for any normalized α, β. Here the states |g1〉 (|g2〉) and
|e1〉 (|e2〉) are respectively the ground and the excited
states of the source qubit 1 and the target qubit 2.
There are two conflicting noise (error) considerations

for the transfer, each affecting a different subsystem: (i)
In the presence of interaction between the source qubit 1
and the bath, the longer the information stays in qubit 1
the lower the fidelity of the transfer (manifest in subsys-
tem O). (ii) On the other hand, if we make the transfer
extremely fast, it may result in population from |g1〉 |g2〉
leaking into |e1〉 |e2〉, thus lowering the fidelity of transfer
(manifested in subsystem E). Such leakage[6, 7] signifies
the violation of the rotating wave approximation (RWA).
Namely, fast modulation V (t) may incur unwanted, off-
resonant transitions if the transfer rate is comparable to
the energy difference (level distance) of the qubits, ω0.
We first focus on bath-related errors (i), assuming that

the RWA is valid, i.e., there is no leakage because of the
RWA violation. This may be the case if the transfer time
is much slower than the energy separation ω0. This is
also true when the non-RWA terms simply do not exist,
such as in 2D or 3D Heisenberg interactions (of the form

σ̂
(1)
x ⊗ σ̂

(2)
x + σ̂

(1)
y ⊗ σ̂

(2)
y or σ̂

(1)
x ⊗ σ̂

(2)
x + σ̂

(1)
y ⊗ σ̂

(2)
y + σ̂

(1)
z ⊗

σ̂
(2)
z , respectively) where only number-conserving terms

exist. The control Hamiltonian HC(t) then has the RWA
form [8]:

Ĥc(t) ≡V (t) (|e1g2〉 〈g1e2|+ |g1e2〉 〈e1g2|) (9)

The general expression (3) derived from the score ma-
trix (2) for the average fidelity of the transfer, completed
at tf , is then (see Suppl.):

f(tf ) = 1−

∫ ∞

−∞

dωG(ω)F (tf , ω), (10)

F (t, ω) =
2

3

∣

∣

∣

∣

∫ t

0

dτ cos2(φ(τ))2e−iωτ
∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∫ t

0

dτ sin(2φ(τ))e−iωτ
∣

∣

∣

∣

2

,

(11)

being the transfer-oriented modulation control spectrum.
Thus, the average fidelity of the transfer has an in-

volved dependence on the modulation V (t) and the trans-
fer time tf . The problem at hand is to find the optimal

transfer that minimizes the average infidelity at time tf ,

1 − F (tf ). Obviously, zero infidelity is obtainable for
infinitely fast (zero-time) transfer, if we allow infinitely
strong control. Since this is unphysical, we add a con-
straint on the total energy E of the transfer process

∫ tf

0

dt (V (t))
2
=

∫ tf

0

dt

(

dφ(t)

dt

)2

= E. (12)

As discussed below, this constraint can prevent leakage
to levels out of the operational qubit subspace[6, 7]. The
constraint defines the minimum possible time for the

transfer tmin = π2

4E .
We illustrate the general expressions (10)-(12) for a

typical non-Markovian Lorentzian bath spectrum, i.e.
an exponentially decaying correlation function Φ(t) =
γ
tc
e−|t|/tc , tc being the correlation (memory) time. One

might expect that for such a simple bath the best strat-
egy is the fastest possible transfer under the energy con-
straint, i.e. when the modulation is given by V (0 ≤ t ≤
tmin) = 2E/π. Surprisingly, a slower transfer (tf > tmin)
with an appropriate modulation φ(t) (detailed below) can
improve the average fidelity even for a purely Marko-

vian bath, with negligible correlation (memory) time
tc/tmin → 0, and more so for baths with memory times
longer than the transfer time, tc & tmin.
When the bath is memoryless, i.e. Markovian, this

improvement is limited, as shown in Fig. 1, to about 12%.
By comparing the “best” solution to the “fastest” one
(Fig. 1 (a), (b)), one can see the the “best” solution starts
off faster and then slows down, being overtaken by the
“fastest” solution only at t ≈ 0.9tmin. This illustrates
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the source of the Markovian noise reduction: the “best”
solution starts off faster, so as to transfer more of the
information while it is still nearly untainted by the bath.
Obviously, towards the end it must slow down so as to
comply with the energy constraint, thus resulting in total
transfer time tf that is longer than the fastest time tmin

for the given energy.

However, when the memory-time tc of the bath is com-
parable to or larger than the characteristic transfer time
tc & tmin, a much larger improvement can be achieved
(see Fig. 1). Remarkably, the best solution actually per-
forms a full transfer, φ(t) = π/2, well within the mod-
ulation time, but rather than stop at φ = π/2 it then
“overshoots” the transfer, so that φ(t) > π/2, and then
returns slowly to π/2. This can explain the source of
the noise reduction — when “overshooting”, the infor-
mation partially returns from the target (storage) qubit
to the source (noisy) qubit, but with a negative sign.
Hence, similarly to the “echo” method, the noise now op-
erates in the reverse direction, correcting itself, i.e., the
non-Markov bath effect is undone. This requires transfer
times significantly larger than the minimal transfer time
tmin, ranging from 3tmin to even 10tmin or more, yet the
fidelity increases substantially (up to 50% in Fig. 1).

Using the Euler-Lagrange variational method one can
find an analytical solution for the optimal modulation
phase φ(t), given a Markovian bath at long times (see
Suppl. Info.). This yields:

dφM (x)

dx
=

√

sin2(2φM (x))

2
+ 2

cos4(φM (x))

3
, (13)

with φM (0) = 0. Eq. (13) determines the shape of
φM (x) and its formal “energy” eM =

∫∞

0
|φ′M (x)|2dx =

1.038 . . . (where both x and eM are dimensionless). The
general Markovian optimal modulation at infinite time
for any energy E is then φ(t) = φM ( EeM t), with an infi-

delity of γ
e2M
E = γ 1.077...

E , γ being the dephasing rate of
the source qubit 1. The fastest modulation with energyE

has an infidelity of γ π
2

8E = γ 1.233...
E . This means that the

optimal modulation has about 12% less infidelity than
the fastest modulation for the same energy.

Let us now take into account the breakdown of the
RWA as a noise source. A realistic coupling of the form

σ
(1)
x ⊗ σ

(1)
x , as in (4), has non-RWA terms of the form

|g1g2〉 〈e1e2| which do not conserve excitation. In all con-
trol scenarios such terms are either discarded or, at best,
any transfer of population via non-RWA terms is consid-
ered alongside all other forms of leakage. However, there
is a drastic difference in timescale between the non-RWA
terms in (4) and leakage to higher levels: the qubit level
separation ω0 is often orders of magnitude smaller than
the separation to the next (non-qubit) level. Hence, leak-
age to higher levels requires timescales that are orders of
magnitude smaller than those breaking the RWA.

FIG. 1. Inset - scheme of coupling between “noisy” source
qubit 1 and quiet target qubit 2: 2-photon transfer off-
resonantly through |i〉 gives effective σ1

x ⊗ σ2
x coupling with a

controllable strength V (t) = κΩ(t)
∆

, where Ω(t) is the Rabi fre-
quency of an external laser field. Main panel: dependence of
the lowest achievable average infidelity on the transfer time tf
normalized to the fastest transfer time tmin at a given trans-
fer energy (Eq. 12). This function is plotted for various bath
memory times: (black, solid) tc = 0 (Markovian);(red, dash)
tc = tmin; (green, dash-dot) tc = 10tmin. Even for Markovian
baths (tc ≪ tmin) the best solution is not the fastest one.
For non-Markovian baths (tc & tmin) two plateaux (regions
of insensitivity to tf ) can be seen. The first plateau is in-
dependent of the memory time, and matches the Markovian
plateau. The second plateau is lower the longer the memory
of the bath. In (a) and (b) the transfer phase φ(t) is plotted
versus t/tmin. The fastest modulation (black, dotted) with
the Markovian optimal modulation (red, solid) and the non-
Markovian optimal modulation (green, dashed), in Marko-
vian (a) and non-Markovian (b) baths. In the Markovian
bath the optimal modulation transfer starts off faster than
the “fastest” transfer (when the information is still “fresh”),
and slows down subsequently. For the non-Markovian bath,
optimal modulation achieves full transfer (φ(t) = π/2) well
within the modulation, but then “overshoots” (φ(t) > π/2),
and eventually returns to φ(t) = π/2.

The RWA in (4) breaks down if the transfer time is
similar to or less than the inverse energy separation of
the qubit, tmin . ω−1

0 . This is a common case for qubits
whose resonance frequency is in the microwave (GHz) or
RF (MHz) range. In such cases, the optimization process
must take into account both the dephasing due to the
bath as in (10)-(12) and the error due to the non-RWA
terms when minimizing the infidelity.

If one of these errors is vastly larger than the other it
is the only one to consider. The problem changes only
if the bath-induced and the non-RWA errors are similar.
In this case we find that dephasing of the doubly excited
state caused by σ̂E

x ⊗ B̂ in (6) is a fourth order effect and
hence can be ignored in the present second order treat-
ment. The result of this approximation is that the system
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FIG. 2. Fastest (black, dots) vs. best modulation for RWA
(red, dash) and non-RWA (green) transfer with a final time
of tf = 5tmin (top) and tf = 10tmin (bottom) in a non-
Markovian bath. The level separation ω0 satisfies ω0tmin = π,
giving ∼ 2.5% population leakage for fastest modulation and
∼ 10% loss of fidelity from decoherence. The sinusoidal “wig-
gling” in the non-RWA solution is larger when the final time
is shorter (top).

can be split into two completely separate subsystems O
and E , the former suffering only from dephasing and the
latter only from unwanted population of the doubly ex-
cited level |e1e2〉. The Hamiltonians of these systems are

ĤO =V (t)σ̂O
x + σ̂O

z ⊗ B̂,

ĤE =ω0σ̂
E
z + V (t)σ̂E

x .
(14)

The goal of our optimization is to find a control V (t),
shared by both subsystems, which maximizes the fidelity
of the transfer in subsystem O (as per (10)-(12)) while at
the same time minimizing the doubly-excitation in sub-
system E .

The optimal modulation for Markovian and non-
Markovian baths, for different final times tf , is given in
Fig. 2. The result shows that the optimal modulation
resembles the solution for dephasing in Fig. 1, but with
added “wiggles”. The “wiggling” takes up the entire time
allowed for the transfer, but, given more time for the to-
tal transfer, the amplitude of the “wiggle” diminish. This
can be understood as follows: first you should complete
the transfer assuming the RWA so as to minimize the in-
formation lost to the bath. Once the transfer is complete,
and decoherence is minimized, we can use whatever en-
ergy is left to return the “leaked” excitation from |e1e2〉
back to |g1g2〉. This can be done by a weak sinusoidal
modulation of frequency 2ω0, inducing a Rabi coupling
between the doubly excited and zero-excited levels of E .
In practice this is not a two-stage modulation, as the
weak oscillation is superimposed on top of the transfer
modulation.

The energy needed to “undo” the non-RWA effect is

inversely proportional to the allowed time — E ≈ |ψee|
2

2tf

(where ψee is the amplitude of the doubly excited state
|e1e2〉). Hence, given enough time, the correction of the
non-RWA effects requires negligible energy, yielding the
same results as in the RWA case. If, however, time is
limited — a larger proportion of the energy of the trans-
fer must be reserved for the correction of the non-RWA
effect, resulting in smaller reduction of the bath-induced
noise.

To conclude, our analysis of state-transfer optimization
within hybrid open systems, from a “noisy” qubit to its
“quiet” counterpart, has revealed an intriguing interplay
between our ability to avoid both bath-induced errors
that profoundly depend on the bath-memory time and
the limitations imposed by leakage out of the operational
subspace. Counterintuitively, under no circumstances is
the fastest transfer optimal (for a given transfer energy).
Generalizations to higher-dimensional cases are expected
to follow analogous trends.
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