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RUMOUR PROCESSES ON N

VALDIVINO V. JUNIOR, FÁBIO P. MACHADO, AND MAURICIO ZULUAGA

Abstract. We study four discrete time stochastic systems on N

modeling processes of rumour spreading. The involved individuals
can either have an active or a passive role, speaking up or asking
for the rumour. The appetite in spreading or hearing the rumour
is represented by a set of random variables whose distributions
may depend on the individuals. Our goal is to understand - based
on those random variables distribution - whether the probability of
having an infinite set of individuals knowing the rumour is positive
or not.

1. Introduction

Until a few decades ago, epidemic and rumour models where treated

under the same class of models. While there is a clear similitude

among the status of the individuals in the models (susceptible are ig-

norants, immunes are stiflers and infected are spreaders) the rates at

which individuals change their status might be qualitatively different

(Pearce [16]). Generally speaking, the production of stiflers is definitely

more complex than the production of immune individuals.

Lately the mathematics of rumors has observed a good deal of in-

terest. The focus used to be at deterministic or stochastic models,
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modeling homogeneously mixed populations living on spaces with no

structure as the Maki-Thompson (Maki and Thompson [15] and Sud-

bury [18]) and Daley-Kendall (Daley and Kendal [5] and Pittel [17])

models. Among the possible variations one can find in recent literature

are competing rumours (Kostka et al [11]), more than two people meet-

ing at a time (Kesten and Sidoravicius [10]), moving agents (Kurtz et

al [12]) and rumours through tree-like graphs (Lebensztayn and Ro-

driguez [14] and Lebensztayn et al [13]), complex networks (Isham et

al [9]), grids (Roy et al [1]) and multigraphs (Bertachi and Zucca [2]).

Still, the most important question for both models, epidemic and

rumour, is in terms of a rumour model, if a spreader (an individual

who wants to see the rumour spread) is introduced into a reservoir of

ignorants under what conditions the rumour will spread to a large pro-

portion of the population, instead of dying out quickly without having

done so. Another important question is, if it does not dies out quickly,

what is the final proportion of individuals hit by the rumour?

We study discrete time stochastic systems on N = {0, 1, 2, . . . } which

dynamic is as follows. First, consider that at time zero all vertices of N

are declared inactive, except for the origin, which is active. It instantly

exerts influence on its neighbors vertices, activating a contiguous ran-

dom set of them placed on its right. In general, that is the behavior of

every vertex in case it is activated.
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We take into account an homogeneous and an heterogeneous versions

for what we call the radius of influence of a vertex. In the homogeneous

version, as a rule, the next moment to what it has been activated, each

active vertex carries the same (random) behavior of the origin, inde-

pendent of it and of everything else. We also deal with an heterogeneous

version where each vertex, if activated, has a distinct distribution for

its radius of influence.

We say that the process survives if the amount of vertices activated

is infinite. Otherwise we say the process dies out. We call this the

Firework Process, associating the activation dynamic of a vertex to a

rumour process. Vertices become spreaders as soon as they are acti-

vated. Next time, they propagate the rumour and immediately become

stiflers.

A possible variation is what we call Reverse Firework Process. In this

variation a vertex, instead of being hit by a rumour, defines a set of

neighbors on its left to which it asks once someone in this set hears the

rumour. We call this variation Reverse Firework Process. We also deal

with an homogeneous and an heterogeneous versions of this variation.

The models are shown to be qualitatively different in some pertinent

cases.

Our main interest is to establish whether each process has positive

probability of survival which is equivalent to a rumour propagation.
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This is done according to the distribution of the random variable that

defines the radius of influence of each active vertex.

The paper is organized as follows. Section 2 presents the main re-

sults. Section 3 brings the proofs for the main results together with

auxiliary lemmas and handy inequalities. In Section 4 we present ex-

amples where some conditions can be verified.

2. Main Results

2.1. Firework Process. Consider {ui}i∈N a set of vertices of N such

that 0 = u0 < u1 < u2 < · · · and a set of independent random variables

{Ri}i∈N assuming values in R+ whose joint distribution is P. The

Firework Process can be formally defined in the following way. At time

0, an explosion of size R0 comes from the origin, activating all vertices

ui ≤ R0. As a rule, at every discrete time t all vertices uj activated

at time t − 1 generate their explosions (whose radius of influence is

Rj), and they do this just once, activating the vertices ui (only those

which has not been activated before) such that uj < ui ≤ uj + Rj.

Observe that except for the set of vertex {ui}, all others vertices are

non-actionable, meaning that the random variable associated to them

is 0 almost surely.

If for all uj activated at time t − 1 there are no vertices ui in this

latter condition the process dies out. That means the rumour reaches

only a finite amount of individuals. If, on the contrary the process
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never stops, we say it survives, meaning that the rumour reaches an

infinity number of individuals. We call the process homogeneous if all

Ri have the same distribution and ui = i for all i. Otherwise we call it

heterogeneous. We focus to the cases P(Ri < 1) ∈ (0, 1) for all i.

Let us consider the following events

• Vn = the vertex un is hit by an explosion,

• V = limn→∞ Vn.

2.1.1. The Homogeneous case.

Theorem 2.1. For the Homogeneous Firework Process, consider

an =

n
∏

i=0

P(R < i+ 1).

Then
∞
∑

n=1

an = ∞ if and only if P[V ] = 0.

Besides

P(V ) ≥

∞
∏

j=0

[

1−

j
∏

i=0

P(R < i+ 1)
]

, (2.1)

P(V ) ≤ 1− P(R = 0)−

n
∑

k=1

[

P(R = k)

k−1
∏

j=0

P[R ≤ j]

]

. (2.2)

Corollary 2.2. For the Homogeneous Firework Process, consider

L = lim
n→∞

nP(R ≥ n).

We have that

(I) If L > 1 then P[V ] > 0.

(II) If L < 1 then P[V ] = 0.
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(III) If L = 1 and there exists N such that for all n ≥ N

P(R ≥ n) ≤
1

n− 1
, then P[V ] = 0.

Remark 2.3. Consider a Homogeneous Firework Process with R as-

suming values on N. Observe that, in this case, if E[R] < ∞ then L = 0.

Consequently for R assuming values on N,

E[R] < ∞ ⇒ P[V ] = 0.

Next result gives a criteria for the case when the distribution of the

random variable R is a power law.

Corollary 2.4. Let α > 1 and Zα be an appropriate constant. Con-

sider the Homogeneous Firework Process such that

P(R = k) =
Zα

(k + 1)α
for k ∈ N. (2.3)

(I) If α < 2 then P[V ] > 0.

(II) If α ≥ 2 then P[V ] = 0.

Remark 2.5. Observe that for the Homogeneous Firework Process if

R has a power law distribution as in (2.3), with α = 2, we have that

E[R] = ∞ and P[V ] = 0.
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2.1.2. The Heterogeneous case.

Remark 2.6. Consider the Heterogeneous Firework Process. One can

get a sufficient condition for P[V ] = 0 (P[V ] > 0) by a coupling argu-

ment. Consider P(Ri ≥ k) ≤ P(R ≥ k) (P(Ri ≥ k) ≥ P(R ≥ k)) for

some random variable R which distribution P satisfies limn→∞ nP(R ≥

n) < 1 (limn→∞ nP(R ≥ n) > 1). Finally use part (II) (part (I)) of

Corollary 2.2.

Theorem 2.7. Consider a Heterogeneous Firework Process which ac-

tionable vertices are at integer positions 0 = u0 < u1 < u2 < . . . such

that un+1 − un ≤ m, for m ≥ 1. Besides, let us assume P(Rn < m) ∈

(0, 1) for all n.

(I) If
∑∞

n=0[P(Rn < tm)]t < ∞ for some t ≥ 1 then P[V ] > 0.

(II) If for some random variable R, which distribution is P, the

following conditions hold

• P(R ≥ k)− P(Rn ≥ k) ≤ bk for all k ≥ 0 and all n ≥ 0,

• limn→∞ n[P(R ≥ n)− bn] > m,

• limn→∞ bn = 0.

Then P[V ] > 0.

(III) P(V ) ≥
∏∞

j=0

[

1−
∏j

i=0 P(Rj−i < (i+ 1)m)
]

.

2.2. Reverse Firework Process. Consider {ui}i∈N a set of vertices

of N such that 0 = u0 < u1 < u2 < · · · and a set of independent random
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variables {Ri}i∈N assuming values in N which joint distribution is P.

The Reverse Firework Process can be defined as follows. At time 0,

only the origin is activated. At time 1, explosions of size Ri towards

the origin, come from all vertices of {ui}i∈N. All vertices ui ≤ Ri are

activated. As a rule, at discrete times t the set of vertices uj which

can find a vertex activated at time t − 1 within a distance Rj to its

left, are activated. Let us call this set At. If for some t, At is empty

the process stops. If the process never stops we say it survives. We

call the process homogeneous if all Ri have the same distribution and

ui = i for all i, otherwise we call it heterogeneous. We focus to the

cases P(Ri < 1) ∈ (0, 1) for all i. Unless stated differently, we assume

ui = i for all i.

Let S be the event “the reverse process survives”.

2.2.1. The homogeneous case.

Theorem 2.8. Consider the Reverse Homogeneous Firework Process.

We have that

(I) If E(R) = ∞ then P(S) = 1.

(II) If E(R) < ∞ then P(S) = 0.

Remark 2.9. For a random variable R, having a power law distribu-

tion as in (2.3), we have that

• if 1 < α ≤ 2 then E[R] = ∞,
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• if α > 2 then E[R] < ∞.

In conclusion, if R has a power law distribution as in (2.3), with α =

2, then P[V ] = 0 for the Homogeneous Firework Process by Remark 2.5

and P[S] = 1 for the Reverse Homogeneous Firework Process.

2.2.2. The heterogeneous case.

Theorem 2.10. Consider the Reverse Heterogeneous Firework Pro-

cess. It holds that

(I)
∑∞

k=1 P(Rn+k ≥ k) = ∞ for all n if and only if P(S) = 1.

(II) If
∑∞

n=1

∏∞
k=1 P(Rn+k < k) < ∞ then P(S) > 0.

Remark 2.11. Let ρ =
∑∞

n=1

∏∞
k=1 P(Rn+k < k). Observe now that

Theorem 2.10 gives no additional information for Theorem 2.8, as in

the homogeneous case ρ equals either 0 (E[R] = ∞) or ∞ (E[R] < ∞).

Remark 2.12. By a coupling argument and Theorem 2.8 one can see

that if there is a random variable R, which distribution is P, with

E[R] < ∞ (E[R] = ∞), such that P(Rn ≥ k) ≤ P(R ≥ k) (P(Rn ≥

k) ≥ P(R ≥ k)) for all k then P(S) = 0 (P(S) = 1).

3. Proofs

Next we present some basic facts, starting from the Raabes test

(Fort [7, p. 32] or Bonar and Khoury [3, p. 48]).
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Raabes Test. For an > 0, let us define

L = lim
n→∞

n

(

an
an+1

− 1

)

.

Then

• If L > 1 then
∑∞

n=1 an < ∞.

• If L < 1 then
∑∞

n=1 an = ∞.

• If L = 1 and n
(

an/an+1 − 1
)

≤ 1, for n large enough,

then
∑∞

n=1 an = ∞.

The following result (Bremaud [4, p. 422]) is useful for what comes

next

Lemma 3.1. Let {an}n≥1 be a sequence of real numbers in (0, 1). Then,

∞
∏

i=0

(1− ak) = 0 ⇔
∞
∑

i=0

ak = ∞. (3.1)

Remark 3.2. Consider that the actionable vertices are at integer po-

sitions 0 = u0 < u1 < u2 < . . . such that un+1 − un ≤ m, for m ≥ 1.

From the definition of Vn one can see that

• Vk+1 ⊃ Vk

⋂

{

⋃k

i=0(Rk−i ≥ (i+ 1)m)
}

,

• Vk e
⋃k

i=0(Rk−i ≥ (i+ 1)m) are increasing events,

• P(Vn) > 0 for all n.
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From FKG inequality (Grimmett [8, p.34]) we can assure that

P(Vk+1) ≥ P(Vk ∩
{

∪k
i=0(Rk−i ≥ (i+ 1)m)

}

) (3.2)

≥ P(Vk)P(
{

∪k
i=0(Rk−i ≥ (i+ 1)m)

}

)

= P(Vk)
[

1−
k
∏

i=0

P(Rk−i < (i+ 1)m)
]

and then

P(Vn) ≥
n−1
∏

j=0

[

1−

j
∏

i=0

P(Rj−i < (i+ 1)m)
]

.

Therefore

P(V ) ≥
∞
∏

j=0

[

1−

j
∏

i=0

P(Rj−i < (i+ 1)m)
]

. (3.3)

Inequality (3.2) becomes an equality if ui = mi for all i ∈ N and

some m ∈ N. From the latter set of displays and (3.1) follows next

proposition.

Proposition 3.3. Consider a Heterogeneous Firework Process which

actionable vertices are at integer positions 0 = u0 < u1 < u2 < · · · such

that un+1 − un ≤ m. Let an =
∏n

i=0 P(Rn−i < (i + 1)m) and assume

P(Ri < m) ∈ (0, 1).

If
∞
∑

n=0

an < ∞ then P[V ] > 0. (3.4)

3.1. Firework Process.

Proof of Theorem 2.1. Assume
∑∞

n=0 an < ∞. From Proposition 3.3,

with m = 1, we have that P[V ] > 0.
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Assume now
∑∞

n=0 an = ∞. First consider the event

C = {∃n such that ∀ui > n ∃x such that x < ui ≤ x+Rx}.

In words that means that from some position on, all vertex belong

to the radius of influence of some other vertices. Those later vertices

not necessarily have been activated.

Next, consider the following event

B(un) = {un > x+Rx, for all x < un}

In words, the vertex un does not belong to the radius of influence of

any vertex to its left.

Assuming all independent random variables having the same distri-

bution as R and that ui = i (Bn = B(un)),

P(Bn) = P

(

n
⋂

i=1

[Rn−i < i]

)

=
n
∏

i=1

P(R < i) = an−1.

Conditional independence of the Bis as stated next, for i > j

P(Bi ∩Bj) = P

(

i−j
⋂

k=1

[Ri−k < k] ∩

j
⋂

k=1

[Rj−k < k]

)

=

i−j
∏

k=1

P(R < k)
i
∏

k=1

P(R < k)

= P(Bi−j)P(Bj)

makes the Bis satisfy the definition of a renewal event in [6, p.308].

So, from the fact that
∑∞

n=1 P(Bn) = ∞, one can rely on Theorem 2 of

Section XIII.3 of [6, p.312] to see that
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P(Bn infinitely often ) = 1.

From this we conclude that P[V ] = 0, as

V c ⊃ Cc ⊃ {Bn infinitely often }.

Inequality (2.1) follows from (3.3) and inequality (2.2) follows from

the fact that

V C ⊇

∞
⋃

k=0

[

R0 = k,

k
⋂

j=1

[Rj ≤ k − j]

]

.

�

Proof of Corollary 2.2. Observe that, as an =
∏n

i=0 P(R < i+ 1)

an
an+1

− 1 =
P(R ≥ n + 2)

P(R < n + 2)
.

Therefore

lim
n→∞

n
( an
an+1

− 1
)

= lim
n→∞

nP(R ≥ n). (3.5)

From (3.5), Raabes Test and Theorem 2.1, follow (I), (II) and (III).

�

Proof of Corollary 2.4. Observe that

1

(α− 1)(n+ 1)α−1
=

∫ ∞

n+1

1

xα
dx ≤

∞
∑

j=n+1

1

jα

≤

∫ ∞

n+1

1

(x− 1)α
dx =

1

(α− 1)nα−1
.

Then

Zα

(α− 1)

1

(n+ 1)α−1
≤ P(R ≥ n) ≤

Zα

(α− 1)

1

nα−1
.
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Consequently

lim
n→∞

nP(R ≥ n) =







+∞ if α < 2,
6/π2 if α = 2,
0 if α > 2.

From Corollary 2.2, the conclusion follows. �

Proof of Theorem 2.7

Let

an =

n
∏

j=0

P(Rn−j < (j + 1)m).

Proof of (I). As

∞
∑

n=t

[P(Rn < tm)]t < ∞

implies that

∞
∑

n=t

[

max
j∈{0,...,t−1}

{P(Rn−j < tm)}
]t

< ∞,

and as

an ≤
t−1
∏

j=0

P(Rn−j < tm) ≤
[

max
j∈{0,...,t−1}

{P(Rn−j < tm)}
]t

,

the series which terms are an converges. So we can use (3.4) in order

to get the result.

Proof of (II). Let

rn =

n
∏

j=0

[P(R < (j + 1)m) + b(j+1)m].
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As

n
( rn
rn+1

− 1
)

=
n[P(R ≥ (n+ 2)m)− b(n+2)m]

P(R < (n+ 2)m) + b(n+2)m

,

from the hypothesis

lim
n→∞

n
( rn
rn+1

− 1
)

> 1.

But an ≤ rn, therefore the series which terms are an is convergent

and so we can use Proposition 3.3 to get the desired result.

Proof of (III). It follows from (3.3). �

3.2. Reverse Firework Process. First consider the following varia-

tion of the Homogeneous Firework Process. Instead of having just the

origin activated at time zero, we consider that all vertices to its left

are also activated at time zero. The set of independent random vari-

ables which defines the radius of influence of all vertices is {Fi}i∈Z, all

having the same distribution as R, the random variable which defines

the Reverse Homogeneous Firework Process.

For this variation of the Homogeneous Firework Process let us define

the following events

• Vn = the vertex n is hit by an explosion,

• V = the process survives.
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By analogy “to survive” in this variation means to hit infinitely many

vertices of N. It follows that

V =

∞
⋂

n=0

∞
⋃

j=0

[Fn−j ≥ j + 1]. (3.6)

Proposition 3.4. If E(R) < ∞, then P(V) = 0.

Proof of Proposition 3.4 Let us define the following events

An =

n−1
⋃

i=−∞

{Fi ≥ 2n− i}

and

Bn =
2n−1
⋃

i=n

{Fi ≥ 2n− i}.

Observe that

V2n ⊆ Vn ∩ [An ∪ Bn].

Therefore

P(V2n) ≤ P(An) + P(Bn)P(Vn).

Now

P(An) ≤
n−1
∑

i=−∞

P(Fi ≥ 2n− i)

=

∞
∑

i=n+1

P(F2n−i ≥ i)

=
∞
∑

i=n+1

P(R ≥ i) −→ 0,
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and

P(Bn) = P

(

2n−1
⋃

i=n

{Fi ≥ 2n− i}

)

= 1−
2n−1
∏

i=n

P(Fi < 2n− i)

≤ 1−

∞
∏

i=1

P(R < i).

Then, (3.1) and E(R) < ∞ guarantee the existence of λ ∈ (0,1) such

that

P(Bn) ≤ λ

for all n. So, as for the homogeneous case P(An) ≥ P(An+1),

lim
n→∞

P(Vn) = 0

and this implies that P(V) = 0 as Vn+1 ⊂ Vn. �

Proof of Theorem 2.8

Let {Ri}i∈N independent random variables distributed as R. Observe

that

S =
∞
⋂

n=0

∞
⋃

j=1

[Rn+j ≥ j]. (3.7)

By using FKG inequality (Grimmett [8, p.34]) and the fact that

intersections of increasing events is an increasing event, we have that

P

(

n0
⋂

n=0

∞
⋃

j=1

[Rn+j ≥ j]

)

≥
n0
∏

n=0

P

(

∞
⋃

j=1

[Rn+j ≥ j]

)

for all n0. Taking the limit n0 → ∞, by the continuity of probability
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P

(

∞
⋂

n=0

∞
⋃

j=1

[Rn+j ≥ j]

)

≥

∞
∏

n=0

P

(

∞
⋃

j=1

[Rn+j ≥ j]

)

.

Therefore

P(S) ≥

∞
∏

n=0

[

1−

∞
∏

j=1

[1− P(Rn+j ≥ j)]
]

. (3.8)

Proof of (I). From the hypothesis

∞
∑

j=1

P(R ≥ j) = ∞. (3.9)

Now, (3.1) and (3.9) implies that

∞
∏

j=1

[1− P(R ≥ j)] = 0,

and P(S) = 1 follows by (3.8).

Proof of (II). By Proposition 3.4, (3.6) and the fact that Ri and Fi

have the same distribution

P

(

∞
⋂

n=0

∞
⋃

j=0

[Rn−j ≥ j + 1]

)

= 0. (3.10)

By the other hand, as Ri are all distributed as R

P

(

∞
⋂

n=0

∞
⋃

j=0

[Rn−j ≥ j + 1]

)

= P

(

∞
⋂

n=0

∞
⋃

j=0

[Rn+j+1 ≥ j + 1]

)

,

and therefore, by (3.7) and (3.10), P(S) = 0. �

Proof of Theorem 2.10
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Proof of (I). Assuming that
∑∞

k=1 P(Rn+k ≥ k) = ∞ for all n and

considering (3.1), one can see that
∏∞

k=1[1 − P(Rn+k ≥ k)] = 0 for

all n. Therefore, by (3.8), P(S) = 1. By the other side, as P(S) ≤

1 −
∏∞

k=1 P(Rn+k < k) for all n, if P(S) = 1 we have that
∏∞

k=1[1 −

P(Rn+k ≥ k)] = 0 for all n. Now, from (3.1),
∑∞

k=1 P(Rn+k ≥ k) = ∞

for all n.

Proof of (II). From
∑∞

n=1

∏∞
k=1 P(Rn+k < k) < ∞, follows that, by the

use of (3.1),
∏∞

n=0[1−
∏∞

k=1[1− P(Rn+k ≥ k)]] > 0. Then, by (3.8) we

have that P(S) > 0. �

4. Final Remarks and Examples

We consider two discrete propagation phenomena modeling in their

homogeneous and heterogeneous versions. While the Firework Process

models a phenomena where there is at all times a finite number of indi-

viduals trying to spread an information for an infinite group of individ-

uals, the Reverse Firework Process models a phenomena where there is

always an infinite number of individuals willing and working towards

to heard about that information from a finite quantity of informed in-

dividuals. Our results show that the four versions are qualitatively

different.

Considering the Homogeneous Firework Process, Remark 2.3 shows

that the information will no be spread for an infinite number of in-

dividuals if E[R] is finite. To have a radius of influence with infinite
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expectation is also no guarantee for the information to reach an infinite

number of individuals, as Remark 2.5 shows. Besides, the probability

of not reaching an infinite amount of individuals is at least P[R = 0].

Conversely, in the Heterogeneous Firework Process, to have an infinite

expectation guarantees almost surely that the information will spread

out among an infinite amount of individuals, as Theorem 2.8 points

out. Furthermore in the case where the radius of influence has a power

law distribution as in (2.3), the process works in opposite direction as

Remark 2.9 shows for α = 2. The processes agree for R whose expec-

tation is finite. Next we present some final examples pointing to some

extreme cases.

Let {bn}n∈N be a non-increasing sequence convergent to 0 and such

that b0 < 1.

Example 4.1. It is possible to have in the Heterogeneous Firework

Process the expectation of the radius of influence infinite for all vertices

together and the process dies out almost surely.

(i) P(Rn = 0) = 1− bn and P(Rn = k) = bn+k−1 − bn+k for k ≥ 1.

(ii)
∑∞

n=0 bn = ∞.

(iii) limn→∞ nbn = 0.

Observe that E(Rn) = ∞ for all n from (ii). Besides P[V ] = 0 from

(iii), because
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P(Vn) ≤
n−1
∑

k=0

P(Rk ≥ n− k) =
n−1
∑

k=0

bn−1 = (n− 1)bn. (4.1)

Example 4.2. It is possible to have in the Heterogeneous Firework

Process the expectation of the radius of influence finite for all ver-

tices and the process survives with positive probability. Assume that

∑∞
n=0 bn < ∞, while

• P(Rn = 0) = bn

• P(Rn = 1) = 1− bn

Then E(Rn) < 1 for all n and P(V ) > 0 by part (I) of Theorem 2.7

with m = t = 1.

Example 4.3. Next we present an example where P[S] = 1 for a

Reverse Heterogeneous Firework Process while P[V ] = 0 for a Hetero-

geneous Firework Process. For this aim consider

(i) P(Rn = 0) = 1− bn and P(Rn = n) = bn.

(ii)
∑∞

n=0 bn = ∞.

(iii) limn→∞ nbn = 0.

Observe that even though limn→∞ E[Rn] = 0 and limn→∞ P(Rn =

0) = 1, from Theorem 2.10 and (ii) it is true for the Reverse Hetero-

geneous Firework Process that P(S) = 1. In the opposite direction,

by (4.1) and (iii) one have that P[V ] = 0 for the Heterogeneous Fire-

work Process.
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