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Abstract

We consider a hydrodynamic system that models the Smectic-A liquid crystal flow. The

model consists of the Navier-Stokes equation for the fluid velocity coupled with a fourth-order

equation for the layer variable ϕ, endowed with periodic boundary conditions. We analyze

the long-time behavior of the solutions within the theory of infinite-dimensional dissipative

dynamical systems. We first prove that in 2D, the problem possesses a global attractor A in

certain phase space. Then we establish the existence of an exponential attractor M which

entails that the global attractor A has finite fractal dimension. Moreover, we show that

each trajectory converges to a single equilibrium by means of a suitable Lojasiewicz–Simon

inequality. Corresponding results in 3D are also discussed.

Keywords: Smectic-A liquid crystal flow, Navier–Stokes equations, global attractor, expo-

nential attractor, convergence to equilibrium.
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1 Introduction

Smectic liquid crystal is in a liquid crystalline phase, which possesses not only some degree of

orientational order like the nematic liquid crystal, but also some degree of positional order (layer

structure). The local orientation of the liquid crystal molecules is usually denoted by a director

field d. In the nematic state, molecules tend to align themselves along a preferred direction with

no positional order of centers of mass. In the smectic phase, molecules organize themselves into

layers that are nearly incompressible and of near constant width [6]. The layers are characterized

by the iso-surfaces of a scalar function ϕ. A key property that distinguishes the smectic-A liquid

crystals is that, the molecules tend to align themselves along the direction perpendicular to

the layers. The study on the continuum theory for the smectic-A phase has a long history, see

for instance, [4, 5, 16, 27]. A general nonlinear continuum theory for smectic-A liquid crystals

applicable to situations with large deformations and non-trivial flows was established by E in [7].

In [7], the following hydrodynamic system was proposed

ρt + v · ∇ρ = 0, (1.1)
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ρvt + ρv · ∇v+∇p = ∇ · (σe + σd), (1.2)

∇ · v = 0, (1.3)

ϕt + v · ∇ϕ = λ[∇ · (ξ∇ϕ)−K∆2ϕ], (1.4)

where

σd = µ1(d
TD(v)d)d ⊗ d+ µ4D(v) + µ5(D(v)d ⊗ d+ d⊗D(v)d),

σe = −ξd⊗ d+K∇(∇ · d)⊗ d−K(∇ · d)∇∇ϕ.

In the above system, ρ is the density of the material, v is the flow velocity and ϕ denotes the layer

variable. In the Smectic-A phase, molecule orientational direction lies normal to the layer that

d = ∇ϕ. The scalar function p represents the pressure of the fluid, σd is the viscous (dissipative)

stress tensor and σe is the elastic stress tensor (Ericksen tensor). As usual, D(v) indicates the

symmetric velocity gradient, D(v) = 1
2(∇v + ∇⊤

v). Due to the incompressibility of the fluid,

there holds ∇ ·D(v) = 1
2∆v. µ1 ≥ 0, µ4 > 0 and µ5 ≥ 0 are dissipative coefficients in the stress

tensor. The constant K > 0 arises in the free energy (cf. [7]) and λ > 0 is elastic relaxation time.

System (1.1)–(1.4) can be viewed as the analog for the Smectic-A liquid crystal of the

Ericksen–Leslie system [6, 9, 19] for the nematic liquid crystal flow. Equation (1.1) represents

the conservation of mass, equation (1.2) is the conservation of linear momentum, (1.3) implies

the incompressibility of the fluid and equation (1.4) is the angular momentum equation. ξ is

the Lagrange multiplier corresponding to the constraint associated with the incompressibility of

the layers such that |∇ϕ| = 1. In order to relax this constraint, an often used approach is to

introduce the Ginzburg-Landau penalization function f(d) = 1
ǫ2
(|d|2 − 1)d (0 < ǫ ≤ 1) with the

associated potential function F (d) = 1
4ǫ2 (|d|

2 − 1)2 such that f(d) = δF
δd

(cf. [3, 22]). Replacing

the original Lagrange multiplier term ξd in σe as well as in (1.4) by f(d), we arrive at the

evolution system that will be considered in the present paper:

vt + v · ∇v −
µ4
2
∆v+∇p = ∇ · (σ̃d + σ̃e), (1.5)

∇ · v = 0, (1.6)

ϕt + v · ∇ϕ = λ(−K∆2ϕ+∇ · f(d)), (1.7)

where

σ̃d = µ1(d
TD(v)d)d ⊗ d+ µ5(D(v)d ⊗ d+ d⊗D(v)d),

σ̃e = −f(d)⊗ d+K∇(∇ · d)⊗ d−K(∇ · d)∇d.

The first well-posedness result of the hydrodynamic system for Smectic-A liquid crystal flow

mentioned above was obtained in [22]. The author considered an approximate system like (1.5)–

(1.7) but with variable density (thus one also has a mass transport equation for ρ like (1.1)) in an

open bounded domain Ω ⊂ R
n, n = 2, 3. The system is subject to no-slip boundary condition for

v and time-independent Dirichlet–Neumann boundary conditions for ϕ. The author derived the

energy dissipative relation of the system and proved the existence of global weak solutions in both

2D and 3D by using a semi-Galerkin procedure. Moreover, he described the global regularity

of weak solutions (for large enough µ4 if n = 3) and provided a preliminary analysis on the

stability of the system. Quite recently, system (1.5)–(1.7) with constant density and subject to
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no-slip boundary condition for v but time-dependent Dirichlet–Neumann boundary data for ϕ

was studied in [3]. The authors proved the existence of weak solutions that are bounded up to

infinity time for the initial-boundary problem with arbitrary initial data. The existence of time-

periodic weak solutions is also obtained. Assuming the viscosity µ4 is sufficiently large, the author

studied the global in time regularity of the solution and proved the existence and uniqueness of

regular solutions for both the initial-valued problem and the time-periodic problem.

In our present paper, we consider the problem in the n-dimensional torus (n = 2, 3) T
n :=

R
n/Zn, namely, system (1.5)–(1.7) is subjected to periodic boundary conditions. One of the

possible reason for this choice is as follows. Contrary to the system for nematic liquid crystal flow

(cf. e.g., [20]), now the equation (1.7) for ϕ is of fourth order type and thus lacks of the maximum

principle. In particular, we lose the control of ‖d‖L∞ . We note that, the bound of ‖d‖L∞ plays

an important role in the subsequent analysis in order to prove the regularity of solutions to

system (1.5)–(1.7) (cf. Lemma 3.6 and Lemma 5.1). Higher-order estimates of solutions can be

obtained from some higher-order differential inequalities in the sprit of [20]. However, without

the estimate of ‖d‖L∞ , we are not able to control certain higher-order nonlinear terms to derive

the required higher-order differential inequalities. It seems that this is also necessary in order

to complete the calculations in [22]. This difficulty can be bypassed if one additionally assume

that the viscosity µ4 is sufficiently large (cf. Lemma 5.2, see also [3]). In the periodic boundary

case, the key observation is that we can first obtain a uniform estimate on ‖d‖H2 , which by

the embedding H
2 →֒ L

∞ yields the bound of ‖d‖L∞ . The proof relies on integration by parts,

thus if we take the boundary conditions as in [3, 22], we are not able to get rid of certain extra

boundary terms.

The main propose the present paper is to be a first step towards the mathematical study

of the long-time behavior of global solutions to the periodic boundary problem of system (1.5)–

(1.7). In the 2D case, we are interested in the study of finite dimensional global attractors. We

recall that a global attractor is the smallest compact attracting set of the phase space which

is fully invariant for the dynamics and attracts all the bounded subsets of the phase space for

large times. Thus, it is certainly a major step in the understanding of the long time dynamics

of the given evolutional system. In particular, when the global attractor is proved to have

finite fractal or Hausdorff dimension, then, although the phase space is infinite dimensional,

the dynamics of the system becomes finite dimensional for large times and can be described

with a finite numbers of parameters. This is the so called finite dimensional reduction. We

refer to [31] for a detailed description. We will prove the finite dimensionality of the global

attractor by showing the existence of an exponential attractor, which is a semi-invariant, compact

set attracting exponentially fast the bounded subsets of the phase space. Moreover, it has

finite fractal dimension and contains the global attractor. We refer to [8] and to [28] for a

detailed introduction of this concept and for discussion on its importance. This approach has

the advantage that, contrary to the volume contraction method (see [31]), it does not need

any differentiability property of the semigroup. As a second step, we will study the long-time

behavior of single trajectories, i.e., the convergence to single equilibrium. This is a nontrivial

problem because the structure of the set of equilibria can be quite complicated and, moreover,

may form a continuum. In particular, under our current periodic boundary conditions, one may

expect that the dimension of the set of equilibria is at least n. This is because a shift in each
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variable should give another steady state. Moreover, we note that for our system, every constant

vector d0 with unit-length (|d0| = 1) serves as an absolute minimizer of the functional E in (4.7).

We shall apply the Łojasiewicz–Simon approach (cf. L. Simon [30]) to prove the convergence

and obtain estimates on the convergence rate (see [2, 12, 14, 15, 29, 32, 33] and the references

therein for applications to various evolution equations). In 3D case, some partial results can be

obtained. Since the L
∞-estimate of d is still available, we can show the local existence of strong

solutions for arbitrary initial data by higher-order energy estimates. Assuming the viscosity µ4 is

sufficiently large, we also obtain the global existence of strong solution. Finally, we show that the

global weak/strong solutions will converge to single equilibrium as in the 2D case. In particular,

we prove the well-posedness and long-time behavior of global strong solutions when the initial

data is close to a local minimizer of the energy E using the Łojasiewicz–Simon inequality, which

improves the results in the literature that only the case near an absolute minimizer is considered

(cf. [22], see also [20, 32] for the nematic liquid crystal flow).

The remaining part of the paper is organized as follows. Section 2 is devoted to some

preliminaries and the main results of the paper. In Section 3, we prove that in the 2D case, the

semigroup generated by our model on a suitable phase space possesses the global attractor A

and an exponential attractor M. This allows us to infer that A has finite fractal dimension. In

Section 4, in the 2D case, we demonstrate that each trajectory converges to a single equilibrium

and also find a convergence rate estimate. Finally, in Section 5, we discuss the results in 3D

case.

2 Preliminaries and Main Results

We denote the Lebesgue spaces with Lp(Tn) (or simply Lp), p ∈ [1,∞], and their norms with

‖ · ‖Lp . When p = 2, we simply denote the L2-norm by ‖ · ‖ and its inner product by (·, ·). With

Hs, s ∈ R we indicate the Sobolev spaces Hs(Tn) endowed with norm ‖ · ‖Hs . To simplify the

notations, we will denote the vector spaces (Lp)n, (Hs)n, (Lp)n×n, (Hs)n×n... by L
p and H

s,

respectively, and their norms are denoted in the same way as above. For any norm space X, we

denote its subspace by Ẋ such that Ẋ = {w ∈ X :
∫

Tn wdx = 0}. As customary, we introduce

the following standard functional spaces for the Navier–Stokes equation

H := {v ∈ L
2(Tn), ∇ · v = 0}, V := {v ∈ H

1(Tn), ∇ · v = 0}, V ′ := the dual of V.

〈·, ·〉 denotes the duality product between V ′ and V . The shorthand notation Dij will be used

for the entries of the matrix D. We indicate with the same symbol C different constants. Special

dependence will be indicated if it is necessary. Analogously, D : R
+ → R

+ denotes a generic

monotone function. Throughout the paper, the Einstein summation convention will be used.

We introduce the notions of weak/strong solutions to problem (1.5)–(1.7):

Definition 2.1. (1) (v, ϕ) is a weak solution to problem (1.5)–(1.7) in [0, T )×T
n (T ∈ (0,+∞)),

if v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ϕ ∈ L∞(0, T ;H2) ∩ L2(0, T ;H4) and verifying

〈∂tv,w〉 + ((v · ∇)v,w) +
µ4
2
(∇v,∇w) = (σ̃d + σ̃e,∇w), ∀w ∈ V,

ϕt + v · ∇ϕ = λ(−K∆2ϕ+∇ · f(∇ϕ)), a.e. in [0, T ]× T
n
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v(0) = v0, ϕ(0) = ϕ0, in T
n.

(2) A weak solution (v, ϕ) to problem (1.5)–(1.7) is a strong solution, if for T > 0, v ∈

L∞(0, T ;V ) ∩ L2(0, T ;H2), ϕ ∈ L∞(0, T ;H4) ∩ L2(0, T ;H6), and the system (1.5)–(1.7) is

satisfied point-wisely in [0, T ) × T
n.

The calculation in [22] (with different boundary conditions but the proof is the same) implies

that system (1.5)–(1.7) has a dissipative nature, in particular, the following basic energy law

holds

Proposition 2.1. Let (v, ϕ) be a smooth solution to the system (1.5)–(1.7). Define the total

energy

E(t) =
1

2
‖v(t)‖2 +

K

2
‖∆ϕ(t)‖2 +

∫

Tn

F (d)(t) dx. (2.1)

Then following identity holds:

d

dt
E(t) = −

∫

Tn

(

µ1(d
⊤D(v)d)2 +

µ4
2
|∇v|2 + 2µ5|D(v)d|2

)

dx

−λ
∥

∥−K∆2ϕ+∇ · f(d)
∥

∥

2
. (2.2)

We can prove the existence of weak solutions to (1.5)–(1.7) by applying the semi-Galerkin

approximation scheme as in [22] (cf. also [3, 20, 21]). The proof is similar to [3, 22] and we omit

the details here.

Theorem 2.1. [Existence of weak solution] Suppose n = 2, 3. For any (v0, ϕ0) ∈ H × H2,

system (1.5)–(1.7) admits at least one weak solution.

A weak/strong uniqueness result was obtained in [3] for system (1.5)–(1.7) with different

boundary conditions (see [22] for a statement for the system with variable density). A similar

argument yields the same conclusion for our case:

Theorem 2.2. [Weak/strong uniqueness] If (v1, ϕ1) and (v2, ϕ2) are respectively a weak and a

strong solution of (1.5)–(1.7) in [0, T ], then (v1, ϕ1) ≡ (v2, ϕ2) almost everywhere in [0, T ]×T
n.

Here are the main results of the paper:

Theorem 2.3. Suppose n = 2.

(1) Any weak solution to system (1.5)–(1.7) becomes strong for strictly positive times such

that for any t > 0,

‖(v, ϕ)(t)‖V ×H4 +

∫ t+1

t

‖∆v(s)‖2 + ‖ϕ(s)‖2H6ds ≤ D(‖(v0, ϕ0)‖H×H2 , t), (2.3)

D is a positive function depending on ‖v0‖, ‖ϕ0‖H2 , t and coefficients of the system. In partic-

ular, limt→0+ D(t) = +∞.

(2) For any (v0, ϕ0) ∈ V ×H4, system (1.5)–(1.7) admits a unique strong solution.

Theorem 2.4. Suppose n = 2. Denote the phase space H×H2
c , where H = {v ∈ H :

∫

T2 vdx =

h} and H2
c = {ϕ ∈ H2 :

∫

T2 ϕdx = c}, with h being any given constant vector in R
2 and c is an

arbitrary constant.
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(1) System (1.5)–(1.7) processes a global attractor A with finite fractal dimension in H×H2
c .

Moreover, A is bounded in V × H4 and it is generated by all the complete trajectories.

(2) System (1.5)–(1.7) possesses an exponential attractor M in H×H2
c , which is bounded in

V ×H4.

Theorem 2.5. Suppose n = 2. For any v0 ∈ Ḣ, ϕ0 ∈ H2, the global weak solutions to problem

(1.5)–(1.7) has the following property:

lim
t→+∞

(‖v(t)‖H1 + ‖ϕ(t)− ϕ∞‖H4) = 0, (2.4)

where ϕ∞ ∈ H4 is a solution to the following periodic elliptic problem:

−K∆2ϕ∞ +∇ · f(∇ϕ∞) = 0, x ∈ T
2,with

∫

T2

ϕ∞dx =

∫

T2

ϕ0dx, (2.5)

Moreover, there exists a positive constant C depending on v0, ϕ0, ϕ∞,K, λ, µ
′s such that

‖v(t)‖H1 + ‖ϕ(t)− ϕ∞‖H4 ≤ C(1 + t)
− θ

(1−2θ) , ∀ t ≥ 1. (2.6)

θ ∈ (0, 12 ) is usually called Łojasiewicz exponent and it depends on ϕ∞.

For any v0 ∈ V̇ , ϕ0 ∈ H4, the global strong solution to problem (1.5)–(1.7) has the same

property (2.4) and (2.6) holds for t ≥ 0.

Theorem 2.6. Suppose n = 3.

(1) For any (v0, ϕ0) ∈ V ×H4, problem (1.5)–(1.7) admits a unique local strong solution.

(2) For any (v0, ϕ0) ∈ V ×H4, if µ4 ≥ µ
4
(v0, ϕ0) is sufficiently large (cf. (5.11)), problem

(1.5)–(1.7) admits a unique global strong solution.

(3) Let (v, ϕ) be the weak solution to problem (1.5)–(1.7) on [0,+∞). Then there is some

T ∗ > 0 such that v ∈ L∞(T ∗,∞;V ) ∩ L2
loc(T

∗,∞;H2), ϕ ∈ L∞(T ∗,∞;H4) ∩ L2
loc(T

∗,∞;H6).

(4) Let ϕ∗ ∈ H2 be a local/absolute minimizer of E(ϕ) (cf. (4.7)). For any v0 ∈ V , ϕ0 ∈ H4

satisfying ‖v0‖H1 ≤ 1, ‖ϕ0 − ϕ∗‖H4 ≤ 1, there are constants σ1, σ2 ∈ (0, 1] which depend on

ϕ∗ and coefficients of the system such that if ‖v0‖ ≤ σ1 and ‖ϕ0 − ϕ∗‖H2 ≤ σ2, then problem

(1.5)–(1.7) admits a unique global strong solution.

(5) If we further assume that
∫

T3 v0dx = 0, then the global weak/strong solution to (1.5)–

(1.7) enjoys the same long-time behavior as in Theorem 2.5, with t ≥ 1 in (2.6) being replaced

by t ≥ T ∗ for the weak solution.

Remark 2.1. Due to the periodic boundary conditions, we can easily see that the mean value of

v and ϕ are conserved in the evolution:
∫

Tn

v(t)dx =

∫

Tn

v0dx,

∫

Tn

ϕ(t)dx =

∫

Tn

ϕ0dx, ∀ t ≥ 0.

For the sake of simplicity, by replacing v (respectively ϕ) with v0 −
∫

Tn v0dx (respectively with

ϕ0 −
∫

Tn ϕ0dx), we shall always assume that
∫

Tn v0dx ≡ 0 and
∫

Tn ϕ0dx ≡ 0 in the subsequent

proof. Since system (1.5)–(1.7) is invariant under a shift of ϕ by any constant, the transformation

on ϕ will not influence all our results. However, when we shift the velocity v to make it has a

zero mean, there will be one extra lower-order term in the equations (1.5) and (1.7) respectively.

This difference will not influence most results we obtain except the convergence of global solutions

to equilibria (Theorem 2.5 and point (5) in Theorem 2.6). If the mean value of v is not zero, we

cannot apply the Poincaré inequality to obtain the decay of ‖v‖H1 from the convergence of ‖∇v‖.
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Remark 2.2. If we simply set v = 0, system (1.5)–(1.7) is reduce to the single equation ϕt =

λ(−K∆2ϕ +∇ · f(∇ϕ)), which has been used to model epitaxial growth of thin films with slope

selection in 2D, where ϕ denotes a scaled height function of a thin film (cf. [17, 23]). Existence

and uniqueness of the weak solutions as well as some preliminary results on long-time behavior

of the solutions as time goes to infinity (like sequent convergence) was obtained in [18].

3 Global Attractor and Exponential Attractors in 2D

In this section we study the long time behavior of the system (1.5)–(1.7) in terms of global and

exponential attractors. As suggested by Remark 2.1, we work in the phase spaces

Φ := Ḣ × Ḣ2, Φ1 := V̇ × Ḣ4

with the norms ‖(v, ϕ)‖2Φ := ‖v‖2H + ‖ϕ‖2
H2 , ‖(v, ϕ)‖

2
Φ1

:= ‖v‖2V + ‖ϕ‖2
H4 , respectively. It is

obvious that Φ1 is compactly embedded into Φ.

Recall the definition of the global attractor (cf. [31])

Definition 3.1. Suppose X is a complete metric space. Given a semigroup S(t) : X 7→ X , a

subset A ⊂ X is the global attractor if (i) The set A is compact in X ; (ii) It is strictly invariant:

S(t)A = A, t ≥ 0; (iii) For every bounded set B ⊂ X and for every neighborhood O = O(A) of

A in M, there exists a time T = T (O) such that S(t)B ⊂ O(A) for all t ≥ T .

As far as our system is concerned, we define S(t) : Φ 7→ Φ to be the map (v0, ϕ0) 7→

(v(t), ϕ(t)). Unfortunately, Theorem 2.1 does not guarantee that S(t) is well defined on the

phase space Φ, since we are not able to prove a uniqueness result for weak solutions. We will

refer to S(t) as a solution operator, being aware of the fact that, in principle, S(t)(v0, ϕ0) could

be multi-valued due to the possible non-uniqueness. In the cases in which uniqueness holds,

with a little abuse of notation, we will still indicate with S(t) the corresponding semigroup. As

a consequence of the possible non-uniqueness, as it will be further explained later, we will not

directly construct the global attractor on the phase space Φ but rather on the "lifted" phase

space of ℓ-trajectories.

3.1 Dissipativity

The following lower-order uniform estimate follows from the basic energy law:

Lemma 3.1. Suppose n = 2, 3. For v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, the weak solution to (1.5)–(1.7) has the

following uniform estimates

‖v(t)‖ + ‖ϕ(t)‖H2 ≤ C, t ≥ 0, (3.1)

where C > 0 is a constant depending on ‖v0‖, ‖ϕ0‖H2 ,K. Moreover,

∫ +∞

0

(

‖∇v(t)‖2 +
∥

∥−K∆2ϕ(t) +∇ · f(d(t))
∥

∥

2
)

dt ≤ max

{

2

µ4
,
1

λ

}

E(0). (3.2)

Next, we prove some dissipative estimates for the weak solutions to (1.5)–(1.7).
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Lemma 3.2. Suppose n = 2. For v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, any weak solution of (1.5)–(1.7) verifies

‖(v(t), ϕ(t))‖2Φ ≤ D(‖(v0, ϕ0)‖Φ)e
−αt +C, (3.3)

where the positive constants C and α are independent on the solution and depend only on the

coefficients of the system.

Proof. Multiplying (1.7) with ϕ and integrating over T
2, we get

1

2

d

dt
‖ϕ‖2 +Kλ‖∆ϕ‖2 +

λ

ǫ2

∫

T2

|∇ϕ|4dx = −

∫

T2

(v · ∇)ϕϕdx +
λ

ǫ2

∫

T2

|∇ϕ|2dx. (3.4)

The righthand side of (3.4) can be estimated as follows

λ

ǫ2

∫

T2

|∇ϕ|2dx ≤
λ

4ǫ2

∫

T2

|∇ϕ|4dx+
λ

ǫ2
|Q|,

−

∫

T2

(v · ∇)ϕϕdx ≤ ‖v‖‖∇ϕ‖L4‖ϕ‖L4 ≤
1

2δ1
‖v‖2 +

δ1
2
‖∇ϕ‖2L4‖ϕ‖

2
L4 ,

δ1 > 0 is a small constant to be determined later. For v ∈ V̇ , we infer from the Poincaré

inequality that ‖v‖ ≤ CP ‖∇v‖, where the constant CP > 0 depends only on T
2. For ϕ ∈ Ḣ2,

we infer from the Sobolev embedding theorem, Poincaré inequality and Hölder inequality that

|T2|−
1
4 ‖ϕ‖ ≤ ‖ϕ‖L4 ≤ C1‖∇ϕ‖ ≤ C1|T

2|
1
4 ‖∇ϕ‖L4 ,

where C1 is constant depending only on T
2. As a result,

δ1
2
‖∇ϕ‖2

L4‖ϕ‖
2
L4 ≤

δ1
2
C2
1 |T

2|
1
2

∫

T2

|∇ϕ|4dx,

‖ϕ‖2 ≤ C2
1 |T

2|‖∇ϕ‖2
L4 ≤

λ

4ǫ2

∫

T2

|∇ϕ|4dx+
ǫ2C4

1 |T
2|2

λ
.

Hence, we deduce that

1

2

d

dt
‖ϕ‖2 +Kλ‖∆ϕ‖2 +

(

λ

2ǫ2
−
δ1
2
C2
1 |T

2|
1
2

)
∫

T2

|∇ϕ|4dx+ ‖ϕ‖2

≤
CP

2δ1
‖∇v‖2 +

λ

ǫ2
|T2|+

ǫ2C4
1 |T

2|2

λ
. (3.5)

Multiplying (3.5) by δ2 > 0 and adding it to the basic energy law (2.2), we obtain

d

dt

[

1

2
‖v‖2 +

K

2
‖∆ϕ‖2 +

∫

T2

F (d) dx+
δ2
2
‖ϕ‖2

]

+

∫

T2

[

µ1(Dkpdkdp)
2 + 2µ5|Dd|2

]

dx

+λ
∥

∥−K∆2ϕ+∇ · f(∇ϕ)
∥

∥

2
+

(

µ4
2

−
δ2CP

2δ1

)

‖∇v‖2 + δ2Kλ‖∆ϕ‖
2

+δ2

(

λ

2ǫ2
−
δ1
2
C2
1 |T

2|
1
2

)
∫

T2

|∇ϕ|4dx+ δ2‖ϕ‖
2

≤ δ2

(

λ

ǫ2
|T2|+

ǫ2C4
1 |T

2|2

λ

)

. (3.6)

Take δ1, δ2 that satisfying

δ1 =
λ

2ǫ2C2
1 |T

2|
1
2

, δ2 =
µ4δ1
2CP

=
λµ4

4ǫ2CPC2
1 |T

2|
1
2

.
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We deduce from (3.6) that

d

dt

[

1

2
‖v‖2 +

K

2
‖∆ϕ‖2 +

∫

T2

F (d) dx+
δ2
2
‖ϕ‖2

]

+
µ4
4
‖∇v‖2

+δ2Kλ‖∆ϕ‖
2 +

δ2λ

4ǫ2

∫

T2

|∇ϕ|4dx ≤ δ2

(

λ

ǫ2
|T2|+

ǫ2C4
1 |T

2|2

λ

)

. (3.7)

Define Ψ(t) := E(t) + δ2
2 ‖ϕ‖

2. It is easy to see that

C3

(

‖v‖2 + ‖∆ϕ‖2 + ‖ϕ‖2 +

∫

T2

|∇ϕ|4dx+ 1

)

≥ Ψ(t) ≥ C2(‖v‖
2 + ‖ϕ‖2H2),

where C2, C3 are positive constants depending on T
2,K, ǫ, λ, µ4 but not on the solution. Thus,

we can conclude that there exist two positive constants C4, C5 depending only on T,K, ǫ, λ, µ4

such that
d

dt
Ψ(t) + C4Ψ(t) ≤ C5.

As a result,

‖v(t)‖2 + ‖ϕ(t)‖2H2 ≤
1

C2
Ψ(t) ≤

1

C2
e−C4tΨ(0) +

C5

C2C4
, ∀ t ≥ 0.

The proof is complete.

3.2 Higher-order estimates

Next, we show that the weak solutions turn out to be regular for strictly positive times. This, will

imply the compactness of the solution operator S(t). The following lemma plays an important

role in the subsequent proof. It is worthwhile noting that, since the coupling in equation (1.7) is

weak, this result is valid both for n = 2, 3.

Lemma 3.3. Suppose n = 2, 3. We have

d

dt
‖∇∆ϕ‖2 + λK

∥

∥∇∆2ϕ
∥

∥

2
≤ C(‖∇v‖2 + ‖∇∆ϕ‖2)‖∇∆ϕ‖2 +C‖∇v‖2 + C, (3.8)

where C is a positive constant depending on ‖v0‖, ‖ϕ0‖H2 and coefficients of the system.

Proof. We just work in the 3D case and it is easy to verify that the same result holds in 2D.

Multiplying (1.7) by ∆3ϕ, integrating over T
3, due to the periodic boundary condition, we have

1

2

d

dt
‖∇∆ϕ‖2 + λK

∥

∥∇∆2ϕ
∥

∥

2

= −

∫

T3

∇∆2ϕ · ∇(v · ∇ϕ)dx− λ

∫

T3

∇∆2ϕ · ∇ [∇ · f(d)] dx. (3.9)

By the uniform estimates (3.3), the Agmon inequality and Gagliardo–Nirenberg inequality in

3D, we get

‖∇ϕ‖L∞ ≤ C‖ϕ‖
1
2

H3‖ϕ‖
1
2

H2 ≤ C(‖∇∆ϕ‖
1
2 + 1),

‖∇∇ϕ‖L3 ≤ C(‖∇∆ϕ‖
1
2 ‖∆ϕ‖

1
2 + ‖∆ϕ‖) ≤ C(‖∇∆ϕ‖

1
2 + 1).
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Now we estimate the right-hand side of (3.9) term by term.

∣

∣

∣

∣

∫

T2

∇∆2ϕ · ∇(v · ∇ϕ)dx

∣

∣

∣

∣

≤ C‖∇∆2ϕ‖(‖∇v‖‖∇ϕ‖L∞ + ‖v‖L6‖∇∇ϕ‖L3)

≤ C‖∇∆2ϕ‖‖∇v‖(‖∇∆ϕ‖
1
2 + 1)

≤ ε‖∇∆2ϕ‖2 + ‖∇v‖2‖∇∆ϕ‖2 + C‖∇v‖2.

λ

∣

∣

∣

∣

∫

T2

∇∆2ϕ · ∇ [∇ · f(d)] dx

∣

∣

∣

∣

= −
λ

ǫ2

∫

T2

∇∆2ϕ · ∇
[

(3|∇ϕ|2 − 1)∆ϕ
]

dx

≤ C‖∇∆2ϕ‖‖∇∆ϕ‖ + C‖∇∆2ϕ‖‖∇ϕ‖2L∞‖∇∆ϕ‖

+C‖∇∆2ϕ‖‖∇ϕ‖L∞‖∇∇ϕ‖L3‖∆ϕ‖L6

≤ ε‖∇∆2ϕ‖2 + C‖∇∆ϕ‖2 + C‖∇∆ϕ‖2‖∇ϕ‖4L∞ + C‖∇∇ϕ‖2
L3‖∆ϕ‖

2
L6‖∇ϕ‖

2
L∞

≤ ε‖∇∆2ϕ‖2 + C‖∇∆ϕ‖4 + C.

Taking ε = λK
4 , we infer from the above estiamtes that (3.8) holds. The proof is complete.

Denote

Q = −K∆2ϕ+∇ · f(d).

By the definition of Q and the Sobolev embedding theorem, we can easily derive the the following

estimates.

Lemma 3.4. Suppose n = 2, 3. We have ‖∇∆ϕ‖ ≤ C‖Q‖
1
2 + C, ‖∆2ϕ‖ ≤ 2

K
‖Q‖ + C,

‖∇∆2ϕ‖ ≤ 2
K
‖∇Q‖ + C, where C is a constant depending on ‖ϕ‖H2 ,K, ǫ. Moreover, ‖∆3ϕ‖ ≤

2
K
‖∆Q‖+ C, where C is a constant depending on ‖ϕ‖H3 ,K, ǫ.

Next, we prove the following higher-order estimate for ϕ:

Lemma 3.5. Suppose n = 2, 3. For any v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, the weak solution to (1.5)–(1.7)

satisfies

‖ϕ(t)‖H3 ≤
1 + t

t
D(‖(v0, ϕ0)‖Φ), ∀t > 0. (3.10)

Moreover, if we assume in addition that ϕ0 ∈ H3, ‖ϕ(t)‖H3 can be bounded by a constant

depending on ‖v0‖ and ‖ϕ0‖H3 uniformly in time.

Proof. We infer from Lemma 3.1 and Lemma 3.4 that for any r > 0 and t ≥ 0,

sup
t≥0

∫ t+r

t

‖∇∆ϕ(τ)‖2dτ ≤ sup
t≥0

C

∫ t+r

t

‖Q(τ)‖dτ+Cr ≤ C

∫ ∞

0
‖Q(τ)‖2+Cr ≤ C(1+r), (3.11)

sup
t≥0

∫ t+r

t

‖∇v(τ)‖2dτ ≤

∫ +∞

0
‖∇v(τ)‖2dτ ≤ C. (3.12)

It follows from (3.8) and the uniform Gronwall lemma [31, Lemma III.1.1] that

‖∇∆ϕ(t+ r)‖2 ≤ C

(

1 +
1

r

)

, ∀t ≥ 0, (3.13)

which together with (3.3) yields (3.10).
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If we assume that ϕ0 ∈ H3, then by (3.8), (3.11), (3.12) and the standard Gronwall inequality,

we have

‖∇∆ϕ(t)‖2

≤ ‖∇∆ϕ0‖
2exp

(

C

∫ t

0
(‖∇v(τ)‖2 + ‖∇∆ϕ(τ)‖2 + 1)dτ

)

+C

∫ t

0
(‖∇v(s)‖2 + 1) exp

(

−C

∫ s

0
(‖∇v(τ)‖2 + ‖∇∆ϕ(τ)‖2 + 1)dτ

)

ds

≤ ‖∇∆ϕ0‖
2exp

(

C

∫ 1

0
(‖∇v(τ)‖2 + ‖∇∆ϕ(τ)‖2 + 1)dτ

)

+ C

∫ 1

0
(‖∇v(s)‖2 + 1)ds

≤ C, ∀ t ∈ [0, 1],

where C is a constant depending on ‖v0‖, ‖ϕ0‖H3 . Taking r = 1 in (3.13) and using (3.3), we

obtain the uniform estimate on ‖ϕ(t)‖H3 for all t ≥ 0. The proof is complete.

By the Sobolov embedding theorem, we easily deduce the follow result

Corollary 3.1. Suppose n = 2, 3. For any v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, we have

‖∇ϕ(t)‖L∞ ≤
1 + t

t
D(‖(v0, ϕ0)‖Φ), ∀t > 0. (3.14)

Moreover, if we assume in addition that ϕ0 ∈ H3, ‖∇ϕ(t)‖L∞ can be bounded by a constant

depending on ‖v0‖ and ‖ϕ0‖H3 uniformly in time.

Using Corollary 3.1, we are able to derive the higher-order energy inequality in 2D.

Lemma 3.6. Suppose n = 2. Let

A(t) = ‖∇v(t)‖2 + α ‖Q(t)‖2 ,

where α > 0 is a small constant to be chosen later (cf. (3.24) below). We have

d

dt
A(t) +

µ4
4
‖∆v‖2 +

αλK

2
‖∆Q‖2 ≤ C(A2(t) +A(t)), ∀ t ≥ t1 > 0, (3.15)

where t1 > 0 is arbitrary and C is a constant depending on ‖v0‖, ‖ϕ0‖H2 and t1. Moreover, if

we assume that ϕ0 ∈ H3, (3.15) holds for t ≥ 0 with C being dependent of ‖v0‖, ‖ϕ0‖H3 .

Proof. Recall the computation in [3, pp. 1475] that ∇· σ̃e = −(∇·f(d))d−∇F (d)+K∆2ϕ∇ϕ−

K∇
(

|∇ϕ|2

2

)

. We note that (1.5) can be written in the following form

vt + v · ∇v −
µ4
2
∆v+∇P = ∇ · σ̃d + (K∆2ϕ−∇ · f(d))d, (3.16)

where P = p+∇
(

K|∇ϕ|2

2 + F (d)
)

. Using (3.16), we have

1

2

d

dt
‖∇v‖2 = −

∫

T2

vt ·∆vdx

=

∫

T2

(v · ∇)v ·∆vdx−
µ4
2
‖∆v‖2 − µ1

∫

T2

[∇ · ((d⊤D(v)d)d⊗ d)] ·∆vdx

−µ5

∫

T2

[∇ · ((D(v)d ⊗ d+ d⊗D(v)d))] ·∆vdx
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−

∫

T2

[(K∆2ϕ−∇ · f(d))d] ·∆vdx. (3.17)

Using the periodic boundary condition and integration by parts, the right-hand side of (3.17)

can be manipulated as follows

−µ1

∫

T2

∇ · [(d⊤D(v)d)d ⊗ d] ·∆vdx = −µ1

∫

T2

∇j(dkDkpdpdidj)∇l∇lvidx

= −µ1

∫

T2

∇l(dkDkpdpdidj)∇l∇jvidx = −µ1

∫

T2

∇l(dkDkpdpdidj)∇lDijdx

= −µ1

∫

T2

(dkdp∇lDkp)
2dx− 2µ1

∫

T2

Dkp∇ldkdpdidj∇lDijdx

−2µ1

∫

T2

Dkpdkdpdi∇ldj∇lDijdx := −µ1

∫

T2

(didj∇lDij)
2dx+ I1 + I2.

−µ5

∫

T2

∇ · [(D(v)d ⊗ d+ d⊗D(v)d)] ·∆vdx

= −µ5

∫

T2

∇j(Dikdkdj)∇l∇lvidx− µ5

∫

T2

∇i(djDikdk)∇l∇lvjdx

= −µ5

∫

T2

∇l(Dikdkdj)∇l∇jvidx− µ5

∫

T2

∇l(djDikdk)∇l∇ivjdx

= −2µ5

∫

T2

∇l(Dikdkdj)∇lDijdx

= −2µ5

∫

T2

(∇lDikdk)
2dx− 2µ5

∫

T2

∇ldjdkDik∇lDijdx− 2µ5

∫

T2

dj∇ldkDik∇lDijdx

:= −2µ5

∫

T2

(∇lDikdk)
2dx+ I3 + I4.

−

∫

T2

[(K∆2ϕ−∇ · f(d))d] ·∆vdx := I5.

Summing up, we have

1

2

d

dt
‖∇v‖2 +

µ4
2
‖∆v‖2 + µ1

∫

T2

(didj∇lDij)
2dx+ 2µ5

∫

T2

(∇lDikdk)
2dx

=

∫

T2

(v · ∇)v ·∆vdx+

5
∑

k=1

Ik. (3.18)

By Lemma 3.5 and Corollary 3.1, for any t1 > 0, we have obtained the uniform estimate:

‖ϕ(t)‖H3 + ‖∇ϕ(t)‖L∞ ≤M, ∀t ≥ t1 > 0. (3.19)

We now apply the Gagliardo–Nirenberg inequality, Lemma 3.4 and (3.19) to estimate the right-

hand side of (3.18).

∫

T2

(v · ∇)v ·∆vdx ≤ ‖v‖L4‖∇v‖L4‖∆v‖ ≤
µ4
8
‖∆v‖2 + C‖∇v‖4,

Since

‖∇v‖2‖∇d‖2L∞‖d‖2L∞ ≤ C‖∇v‖2(‖∆2ϕ‖+ 1)
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≤ C‖∇v‖2(‖Q‖ + 1) ≤ C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2,

we have

I1 ≤
µ1
4

∫

T2

(didj∇lDij)
2dx+ C‖∇v‖2‖∇d‖2L∞‖d‖2L∞

≤
µ1
4

∫

T2

(didj∇lDij)
2dx+ C‖Q‖2 + C‖∇v‖4 +C‖∇v‖2.

For I2, after integrating by parts, we have

I2 = −2µ1

∫

T2

Dkpdkdpdi∇ldj∇lDijdx

= 2µ1

∫

T2

∇lDkpdkdpdi∇ldjDijdx+ 4µ1

∫

T2

Dkp∇ldkdpdi∇ldjDijdx

+2µ1

∫

T2

Dkpdkdp∇ldi∇ldjDijdx+ 2µ1

∫

T2

Dkpdkdpdi∇l∇ldjDijdx

:= I2a + I2b + I2c + I2d,

where

I2a ≤
µ1
4

∫

T2

(didj∇lDij)
2dx+ C‖∇v‖2‖∇d‖2L∞‖d‖2L∞

≤
µ1
4

∫

T2

(didj∇lDij)
2dx+ C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2,

I2b + I2c ≤ C‖∇v‖2‖∇d‖2L∞‖d‖2L∞ ≤ C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2,

I2d ≤ C‖d‖3L∞‖∆d‖‖∇v‖2
L4 ≤ C(‖∆2ϕ‖

1
2 + 1)‖∆v‖‖∇v‖

≤
µ4
8
‖∆v‖2 + C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2.

As a consequence,

I2 ≤
µ1
4

∫

T2

(didj∇lDij)
2dx+

µ4
8
‖∆v‖2 + C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2.

Next,

I3 + I4 ≤ ‖∆v‖‖∇v‖‖d‖L∞‖∇d‖L∞ ≤ ε‖∆v‖2 + C‖∇v‖2‖∇d‖2L∞‖d‖2L∞

≤
µ4
8
‖∆v‖2 + C‖Q‖2 +C‖∇v‖4 + C‖∇v‖2.

I5 =

∫

T2

Qd ·∆vdx ≤ ‖∆v‖‖Q‖‖∇ϕ‖L∞ ≤
µ4
8
‖∆v‖2 + C‖Q‖2.

It follows from (3.18) and the above estimates that

d

dt
‖∇v‖2 +

µ4
2
‖∆v‖2 + µ1

∫

T2

(didj∇lDij)
2dx+ 4µ5

∫

T2

(∇lDikdk)
2dx

≤ C‖Q‖2 +C‖∇v‖4 + C‖∇v‖2, t ≥ t1. (3.20)

On the other hand, by equation (1.7) and integration by parts, we have

1

2

d

dt
‖Q(t)‖2 = −K

∫

T2

Q∆2ϕtdx+

∫

T2

Q(∇ · f(d))tdx
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= −λK‖∆Q‖2 +K

∫

T2

∆Q ·∆(v · ∇ϕ)dx

+
1

ǫ2

∫

T2

∇Q · [(|∇ϕ|2 − 1)∇(v · ∇ϕ)]dx−
λ

ǫ2

∫

T2

∇Q · [(|∇ϕ|2 − 1)∇Q]dx

+
2

ǫ2

∫

T2

∇Q · [(∇ϕ · ∇(v · ∇ϕ))∇ϕ]dx−
2λ

ǫ2

∫

T2

∇Q · [(∇ϕ · ∇Q)∇ϕ]dx

:= −λK‖∆Q‖2 +
5

∑

k=1

Jk. (3.21)

The terms J1, ..., J5 on the right hand side of (3.21) can be estimated as follows.

J1 = K

∫

T2

∆Q∆v · ∇ϕdx+ 2K

∫

T2

∆Q∇kvi∇k∇iϕdx+K

∫

T2

∆Qv · ∇∆ϕdx

:= J1a + J1b + J1c,

where by the uniform estimate (3.19), Lemma 3.4 and the Sobolev embedding theorem, we get

J1a ≤ K‖∇ϕ‖L∞‖∆v‖‖∆Q‖ ≤
µ4
16α

‖∆v‖2 +
4αK2M2

µ4
‖∆Q‖2,

J1b ≤ C‖∆Q‖‖∇v‖L4‖ϕ‖W 2,4 ≤ C‖∆Q‖‖∇v‖
1
2‖∆v‖

1
2

≤
λK

8
‖∆Q‖2 +

µ4
16α

‖∆v‖2 + C‖∇v‖2,

J1c ≤ C‖∆Q‖‖v‖L4‖ϕ‖W 3,4 ≤ C‖∆Q‖‖∇v‖(‖∇∆ϕ‖L4 + 1)

≤
λK

8
‖∆Q‖2 + C‖∇v‖2(‖Q‖ + 1)

≤
λK

8
‖∆Q‖2 + C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2.

Next,

J2 + J4 ≤ C‖∇Q‖(‖∇ϕ‖2L∞ + 1)(‖∇v‖‖∇ϕ‖L∞ + ‖v‖L4‖ϕ‖W 2,4)

≤ C(‖∆Q‖
1
2‖Q‖

1
2 + ‖Q‖)‖∇v‖

≤
λK

8
‖∆Q‖2 + C‖Q‖2 + C‖∇v‖2,

J3 + J5 ≤ C‖∇Q‖2(‖∇ϕ‖2L∞ + 1) ≤
λK

8
‖∆Q‖2 + C‖Q‖2.

Inserting the above estimates into (3.21), we obtain that

d

dt
‖Q(t)‖2 +

(

λK −
8αK2M2

µ4

)

‖∆Q‖2 −
µ4
4α

‖∆v‖2 ≤ C‖Q‖2 + C‖∇v‖4 + C‖∇v‖2. (3.22)

Multiplying (3.22) by α and adding it to (3.20), we have

d

dt
A(t) +

µ4
4
‖∆v‖2 + α

(

λK −
8αK2M2

µ4

)

‖∆Q‖2

≤ C(1 + α)(‖Q‖2 + ‖∇v‖4 + ‖∇v‖2), ∀ t ≥ t1. (3.23)

Taking

α =
λµ4

16KM2
, (3.24)

we conclude from (3.23) that (3.15) holds. The lemma is proved.
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Lemma 3.7. Suppose n = 2. For any v0 ∈ Ḣ, ϕ0 ∈ H2, the weak solution to (1.5)–(1.7)

satisfies

‖(v, ϕ)(t)‖Φ1 ≤ C(t2), ∀ t ≥ t2 > 0, (3.25)

where t2 > 0 is arbitrary and C(t2) is a positive constant depending on ‖v0‖, ‖ϕ0‖H2 , t2 and

coefficients of the system. In particular, limt2→0+ C(t2) = +∞. If we assume in addition that

v0 ∈ V and ϕ0 ∈ H4, ‖(v, ϕ)(t)‖Φ1 can be bounded by a constant depending on ‖(v0, ϕ0)‖Φ1

uniformly in time.

Proof. By Corollary 3.1, Lemma 3.1 and the definition of α (cf. (3.24)), we infer that for arbitrary

t1 > 0,
∫ +∞

t1

A(t)dt < +∞. (3.26)

Since (3.15) holds for t ≥ t1, we can apply the uniform Gronwall lemma [31, Lemma III.1.1] to

get the following uniform estimate: for any r > 0,

A(t+ r) ≤ C(t1)

(

1 +
1

r

)

, ∀t ≥ t1,

where C(t1) is a positive constant depending on ‖v0‖, ‖ϕ0‖H2 , t1. Since t1 and r are arbitrary

positive constants, we can prove the uniform estimate (3.25) for any t2 > 0.

If the initial data is more regular, namely, v0 ∈ V and ϕ0 ∈ H4, by Lemma 3.5 we can easily

show that ‖(v, ϕ)(t)‖Φ1 can be uniformly bounded by a constant depending on ‖(v0, ϕ0)‖Φ1 .

The proof is complete.

Corollary 3.2. Suppose n = 2. For any v0 ∈ Ḣ, ϕ0 ∈ H2, there exists t∗ > 0 depending on

‖v0‖, ‖ϕ0‖H2 , such that for all t ≥ t∗, the weak solution to (1.5)–(1.7) satisfies

‖(v, ϕ)(t)‖Φ1 ≤ M, ∀ t ≥ t∗, (3.27)

where M is independent of v0, ϕ0.

Proof. It follows from Lemma 3.2 that there exists t3 depending on ‖v0‖, ‖ϕ0‖H2 , such that for

all t ≥ t3, the weak solution to (1.5)–(1.7) satisfies

‖(v, ϕ)(t)‖Φ ≤ M1, ∀ t ≥ t3, (3.28)

where M1 is independent of v0, ϕ0. Now, Lemma 3.1 and Lemma 3.4 imply that for t ≥ t3,

sup
t≥t3

∫ t+1

t

(‖∇v(τ)‖2 + ‖∇∆ϕ(τ)‖2)dτ ≤ C

∫ ∞

t3

(‖Q(τ)‖2 + ‖∇v(τ)‖2) + C ≤ C,

with C depending on M1. Then (3.8) and the uniform Gronwall lemma yield that ‖ϕ(t+1)‖H3 ≤

C, for t ≥ t3. As a consequence, ‖∇ϕ(t)‖L∞ ≤ M2 for all t ≥ t3 + 1. For t ≥ t3 + 1, we fix α

in (3.24) with α = λµ4

16KM2
2
. Then (3.15) holds with C only depending on M1,M2. Applying the

uniform Gronwall inequality once more, we have A(t) ≤ M3, for t ≥ t3 + 2, where M3 depends

on M1,M2. Finally, taking t∗ = t3 + 2, we conclude the proof.
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Proof of Theorem 2.1. First, thanks to Lemma 3.7, we see that

A(t) ≤ C(t), ∀t > 0, (3.29)

where C(t) depends on ‖(v0, ϕ0)‖Φ and C(t) ր +∞ for tց 0+ but remains uniformly bounded

for tր +∞. Integrating (3.15) over [t, t+ 1], recalling Lemma 3.1, we have

∫ t+1

t

(

‖∆v(s)‖2 + ‖ϕ(s)‖2H6

)

ds ≤ C(t), ∀ t > 0. (3.30)

As a consequence of (3.29) and (3.30), we immediately have

∫ t+1

t

(

‖v(s) · ∇v(s)‖2 + ‖v(s) · ∇ϕ(s)‖2H2

)

ds ≤ C(t), ∀ t > 0.

On the other hand, it is easy to check that (3.29) and (3.30) gives an analogous L2(t, t+1;L2(T2))

estimate of ∇ · (σ̃d + σ̃e) for any t > 0. Hence, by direct comparison with (1.5)–(1.7), we can see

that
∫ t+1

t

(

‖∂tv(s)‖
2 + ‖∂tϕ(s)‖

2
H2

)

ds ≤ C(t), ∀ t > 0.

The 2D smoothing property is thus proved.

Finally, similar to [20], we know that if the initial data are regular, the existence of a weak

solution together with high-order estimates implies a strong solution, and by Theorem 2.2, the

strong solution is actually unique.

3.3 The global attractor and exponential attractors

Lemma 3.2 and Corollary 3.2 entail that there exists a compact absorbing set in Φ. If we had

uniqueness for the weak solutions, this would be sufficient to prove the existence of the global

attractor by using the classical theory on dynamical systems (see, e.g., [31]). We can overcome

this difficulty essentially relying on the regularization of weak solutions to strong solutions for

strictly positive times proved in Theorem 2.3. This implies that, for strictly positive times, we

have enough regularity to ensure uniqueness by Theorem 2.2. As a consequence, we have the

following weaker form of uniqueness, to which we refer as unique continuation:

Proposition 3.1. Suppose n = 2. For any two weak solutions (v1, ϕ1) and (v2, ϕ2) such that

(v1(T ), ϕ1(T )) = (v2(T ), ϕ2(T )) at some T > 0, then it holds (v1, ϕ1) ≡ (v2, ϕ2) for any

t ≥ T .

A possible way to construct the global attractor is to apply the theory of ℓ-trajectories in-

troduced by Málek and Nečas in [24] and later developed by Málek and Pražák in [25] (For

other possible approaches, the reader is referred to, e.g., Ball [1] or to Remark 3.1 in this pa-

per). Besides, we can also use the ℓ-trajectory method to study the existence of an exponential

attractor.

For the sake of convenience, we recall some highlight points of the ℓ-trajectory method here.

Roughly speaking, the ℓ-trajectory method consists in lifting the dynamics from the physical

phase space to a space of trajectories with an arbitrary but fixed length ℓ > 0. More precisely,

for our current problem, by ℓ-trajectory we mean any solution to (1.5)-(1.7) defined on the time
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interval [0, ℓ]. Then, we endow the space of ℓ-trajectories denoted by Xℓ with the topology of

L2(0, ℓ; Φ). Note that weak solutions to (1.5)–(1.7) lie (at least) in

Cw([0, ℓ]; Φ) := {(v, ϕ) ∈ L∞(0, ℓ; Φ) : 〈(v, ϕ), (u, ψ)〉Φ,Φ′ ∈ C([0, ℓ]), ∀ (u, ψ) ∈ Φ′},

which makes it reasonable to talk about the point values of trajectories.

The unique continuation property implies that from an end point of an ℓ-trajectory there

starts at most one solution. Combined with the existence theorem, this implies that if (u, φ) ∈ Xℓ

and T > ℓ, then there exists a unique (v, ϕ) which is a solution to (1.5)–(1.7) on [0, T ] such that

(u, φ) = (v, ϕ)|[0,ℓ]. Then we can define the semigroup S (t) on Xℓ:

(S (t)(u, φ))(τ) := (v(t + τ), ϕ(t+ τ)), τ ∈ [0, ℓ]. (3.31)

From now on, without loss of generality, we will fix ℓ = 1. Corollary 3.2 implies that there exists

R > 0 such that

B1 = {(v, ϕ) ∈ Φ1 : ‖(v, ϕ)‖Φ1 ≤ R} ⊂ Φ1 ⊂⊂ Φ

is a compact, absorbing set for the solution map S(t). Theorem 2.2 entails that the solution

operator S(t) confined on B1 is indeed a semigroup. Let

B1 :=
⋃

t∈ [0,T0]

S(t)B1

Φ1

(3.32)

where T0 > 0 is a time such that S(t)B1 ⊂ B1 for all t ≥ T0 and the closure is taken with

respect to the weak topology of Φ1. Then B1 is a compact, absorbing and positive invariant set

for S(t). Define

B
1
1 = {(u, φ) ∈ Xℓ : (u, φ)(0) ∈ B1}. (3.33)

Note that B1
1 is indeed closed with respect to the topology of L2(0, 1;Φ). Using Corollary 3.2

and Proposition 3.1, one can verify that all the assumptions in [25, Theorem 2.1] are satisfied

and as a result, the dynamical system (S (t),Xℓ) possesses the global attractor A. Next, we

introduce the following map evaluation map

e : L2(0, 1;Φ) 7→ Φ defined by e((u, φ)) = (u(1), φ(1)). (3.34)

Define B = e(B1
1). We see that B ⊂ Φ1, thus S(t) : Φ → Φ is a semigroup on B and B is

positively invariant. If we can show that the map e is Lipschitz continuous on B1
1 (which is

indeed true, see (3.52) below), then we can project the global attractor A back to the physical

space Φ obtaining the usual global attractor A = e(A) for the dynamic system (S(t),B). Since

B is actually absorbing, A is also a global attractor in the phase space Φ.

Remark 3.1. If one is interested only in the existence of the global attractor, one can reason

as follows, without invoking the ℓ-trajectory theory. First of all, combining Theorem 2.1, 2.2

and 2.3, we have that the restriction of the solution operator, named S̃(t), to the bounded sets of

Φ1 is a semigroup. Moreover, Corollary 3.2 give the dissipativity of S̃(t) with respect to the Φ1

metric. As a consequence, the standard theory of dynamical systems gives the existence of the

global attractor A attracting the bounded sets of Φ1 but with respect to the Φ-topology. Finally,

the smoothing property implies that A is indeed the attractor for the weak solutions, since it

attracts also the Φ-bounded sets.
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Our next step is to prove the finite dimensionality (in terms of fractal dimension) of the global

attractor A constructed above and the existence of an exponential attractor. As anticipated in the

introduction, the finite dimensionality of the global attractor will be deduced as a consequence of

the existence of a finer attracting set, the exponential attractor. We recall the following (cf. [8])

Definition 3.1. A compact subset M of the phase space Φ is called an exponential attractor

for the semigroup S(t) if the following conditions are satisfied: (E1) The set M is positively

invariant, i.e., S(t)M ⊂ M for all t ≥ 0; (E2) The fractal dimension (see, e.g., [26, 31]) of M

in Φ is finite; (E3) The set M attracts exponentially fast the image of the bounded subsets of the

phase space Φ. Namely, there exist C, β > 0 such that

distΦ(S(t)B,M) ≤ C e−βt, ∀ bounded set B ⊂ Φ, ∀t ≥ 0. (3.35)

Note that, by construction, the exponential attractor, when it exists, always contains the

global attractor. Thus, property (E2) gives that the global attractor has finite fractal dimension

too. Besides its importance in proving the finite dimensionality of the global attractor, the

existence of an exponential attractor is of interest in itself. In fact, it may resolve some of the

major drawbacks of the global attractor, namely its arbitrary slow attraction, which makes the

global attractor very sensitive to perturbation and to numerical approximation, and the difficulty

in estimating its rate of convergence. We refer the readers to the recent survey [28] for more

details and additional references.

To prove the existence of an exponential attractor M, we first use the following existence

theorem proposed in [10], which gives an efficient strategy to obtain the existence of an exponen-

tial attractor for the discrete semigroup generated by the iterations of a proper map S. Then in

a second step, we construct the desired exponential attractor for the semigroup with continuous

time.

Lemma 3.8. (cf. [10]) Let H and H1 be two Banach spaces such that H1 is compactly embedded

into H . Suppose B1 is a bounded closed subset of H . Let us give a map S : B1 → B1 such that

‖Sb1 − Sb2‖H1
≤ L‖b1 − b2‖H , ∀ b1, b2 ∈ B1, (3.36)

where the constant L is independent of b1 and b2. Then, the discrete semigroup {S(n), n ∈ N}

generated on B1 by the iterations of the map S possesses an exponential attractor, i.e., there

exists a compact set Md ⊂ B1 such that (E1) Md is positively invariant: SMd ⊂ Md; (E2)

The fractal dimension of Md in H is finite: dimf (Md,H ) ≤ M < +∞; (E3) Md attracts

exponentially the images of B1 under the iterations of the map S: distH (S(n)B1,Md) ≤ Ce−κn.

Moreover, the positive constants M , C and κ can be expressed explicitly in terms of the squeezing

constant L, the size of the set B1 and the entropy of the compact embedding H1 ⊂⊂ H .

In order to apply Lemma 3.8, one has to properly define the map S, together with the spaces

H , H1 and B1. A typical choice for dissipative problems like (1.5)–(1.7), would be (recall (3.32))

S := S(1), H := Φ, H1 := Φ1, B1 := B1.

Unfortunately, a closer inspection to system (1.5)–(1.7) reveals that the above choice is not

completely satisfactory in the sense that proving a point-wise (in time) estimate for the difference
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of two solutions in the norm of Φ1 appears to be difficult due to the highly nonlinear character

of the problem. We overcome this difficulty by using the method of ℓ-trajectories to construct

proper spaces H and H1 and then verify the assumptions of Lemma 3.8.

As we did for the construction of the global attractor, we still set ℓ = 1. Let us define

B1 := B1
1 (recall (3.33)) and

H := L2(0, 1;Φ), H1 := L2(0, 1;Φ1) ∩ (W 1,1(0, 1;V ′) × H1(0, 1;L2)). (3.37)

It follows from the Aubin–Lions compactness lemma that the embedding H1 ⊂ H is compact.

We will apply Lemma 3.8 to the map S = S (1) (see (3.31)) acting on the set B1. To this end,

we only need to check the smoothing property (3.36). All the results in this subsection holds

only in the two dimensional case. Moreover, we do not need any particular restriction on the

values of the structural constants in the equations. Nevertheless, it would be quite interesting

and important to find an explicit (and possibly sharp) dependence of the fractal dimension of

the attractor with respect to the coefficients in the equations.

Lemma 3.9. Suppose n = 2. Let (v1, ϕ1) and (v2, ϕ2) be two solutions to problem (1.5)–(1.7)

with initial conditions in B1. Denote v̄ := v1 − v2 and ϕ̄ := ϕ1 − ϕ2. Then, the following

estimate holds

‖∂tv̄‖L1(1,2;V ′) + ‖∂tϕ̄‖L2(1,2;L2) + ‖(v̄, ϕ̄)‖L2(1,2;Φ1) ≤ C‖(v̄, ϕ̄)‖L2(0,1;Φ). (3.38)

Proof. We know from Lemma 3.7 that for i = 1, 2

‖(vi, ϕi)(t)‖Φ1 ≤ C, ∀ t ≥ 0. (3.39)

Then we test the equation for v̄ with v̄ and the equation for ϕ̄ with ∆2ϕ̄, respectively. We obtain

1

2

d

dt
(‖v̄‖2 + ‖∆ϕ̄‖2) +

µ4
2
‖∆v̄‖2 + λK‖∆2ϕ̄‖2

= −

∫

T2

(v̄ · ∇)v2 · v̄ dx−

∫

T2

(σ̃d1 − σ̃d2) · ∇v̄ dx−

∫

T2

(σ̃e1 − σ̃e2) · ∇v̄ dx

−

∫

T2

(v̄∇ϕ1 + v2∇ϕ̄)∆
2ϕ̄ dx+ λ

∫

T2

∇ · (f(d1)− f(d2))∆
2ϕ̄ dx :=

5
∑

i=1

Ki. (3.40)

Using estimate (3.39), it is not difficult to see that

K1 ≤ ‖v̄‖2
L4‖∇v2‖ ≤ ε‖∇v̄‖2 + C(ε)‖v̄‖2, (3.41)

K4 ≤ ‖v̄‖‖∇ϕ1‖L∞‖∆2ϕ̄‖+ ‖v2‖L4‖∇ϕ̄‖L4‖∆2ϕ̄‖

≤ ε‖∆2ϕ̄‖2 + C(ε)(‖v̄‖2 + ‖ϕ̄‖2H2), (3.42)

K5 ≤ ‖∇ · (f(d1)− f(d2))‖‖∆
2ϕ̄‖

≤ C[(‖ϕ1‖
2
L∞ + 1)‖∆ϕ̄‖+ ‖∆ϕ2‖L6‖∇ϕ1 +∇ϕ2‖L6‖∇ϕ̄‖L6 ]‖∆2ϕ̄‖

≤ ε‖∆2ϕ̄‖2 + C(ε)‖ϕ̄‖2H2 . (3.43)

To estimate K2, we need to control ‖σ̃d1 − σ̃d2‖.

σ̃d1 − σ̃d2 = µ1[(d
⊤
1 D(v1)d1)d1 ⊗ d1 − (d⊤

2 D(v2)d2)d2 ⊗ d2]
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+µ5(D(v1)d1 ⊗ d1 −D(v2)d2 ⊗ d2) + µ5(d1 ⊗D(v1)d1 − d2 ⊗D(v2)d2)

:= J1 + J2 + J3.

We give a detailed L2-estimate only for the terms J1 in the above decomposition, since for the

other two (lower-order) terms J2, J3, the argument is essentially the same and actually simpler.

We have

J1 := (d⊤
1 D(v1)d1)d1 ⊗ d1 − (d⊤

2 D(v2)d2)d2 ⊗ d2 = d
⊤
1 D(v̄)d1d1 ⊗ d1

+(d⊤
1 − d

⊤
2 )D(v2)d1d1 ⊗ d1 + d

⊤
2 D(v2)

(

d1d1 ⊗ d1 − d2d2 ⊗ d2

)

= J1a + J1b + J1c. (3.44)

The term J1a multiplied with ∇v̄ produces a nonnegative (hence negligible in the estimate) term

since

J1a : ∇v̄ = J1a : D(v̄) = (d⊤
1 D(v̄)d1d1 ⊗ d1) : D(v̄)

= d
⊤
1 (D(v̄))d1(d1 ⊗ d1) : D(v̄)) = |d⊤

1 D(v̄)d1|
2 ≥ 0.

Then using Sobolev embedding theorem and (3.39), we have

‖J1b‖ ≤ ‖d⊤
1 − d

⊤
2 ‖L∞‖D(v2)‖‖d1(d1 ⊗ d1)‖L∞ ≤ C‖ϕ̄‖H3 ≤ C‖ϕ̄‖

1
2

H4‖ϕ̄‖
1
2

H2 , (3.45)

‖J1c‖ ≤ ‖d2‖L∞‖D(v2)‖(‖d̄d1 ⊗ d1‖L∞ + ‖d2d̄⊗ d1‖L∞ + ‖d1d2 ⊗ d̄‖L∞)

≤ C‖ϕ̄‖H3 ≤ C‖ϕ̄‖
1
2

H4‖ϕ̄‖
1
2

H2 . (3.46)

As a consequence,

K2 ≤ ‖∇v̄‖‖σ̃d1 − σ̃d2‖ ≤ ε‖∇v̄‖2 + ε‖ϕ̄‖2H4 + C‖ϕ̄‖2H2 .

Concerning K3, we have

σ̃e1 − σ̃e2 = K[∇(∇ · d1)⊗ d1 −∇(∇ · d2)⊗ d2]−K[(∇ · d1)∇d1 − (∇ · d2)d2]

−[f(d1)⊗ d1 − f(d2)⊗ d2] := J4 + J5 + J6.

By the Sobolev embedding and (3.39), we obtain

J4 = ‖∇(∇ · d1)⊗ d1 −∇(∇ · d2)⊗ d2‖ ≤ ‖d̄‖H2‖d1‖L∞ + ‖d2‖H2‖d̄‖L∞

≤ C‖ϕ̄‖H3 ≤ C‖ϕ̄‖
1
2

H4‖ϕ̄‖
1
2

H2 ,

J5 = ‖(∇ · d1)⊗∇d1 − (∇ · d2)⊗∇d2‖ ≤ ‖d̄‖H1‖∇d1‖L∞ + ‖d2‖H1‖∇d̄‖L∞

≤ C‖ϕ̄‖H2 + C‖ϕ̄‖H3 ≤ C‖ϕ̄‖
1
2

H4‖ϕ̄‖
1
2

H2 ,

J6 ≤ C‖ϕ̄‖H2 ,

which imply that

K3 ≤ ‖∇v̄‖‖ϕ̄‖
1
2

H4‖ϕ̄‖
1
2

H2 ≤ ε‖∇v̄‖2 + ε‖ϕ̄‖2H4 + C‖ϕ̄‖2H2 .

Now we test the equation for ϕ̄ by ϕ̄+ ϕ̄t. Similar computations give

d

dt
(‖ϕ̄‖2 + ‖∆ϕ̄‖2) + ‖ϕ̄t‖

2 + ‖ϕ̄‖2H2 ≤ C(‖v̄‖2 + ‖ϕ̄‖2H2). (3.47)
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Summing (3.40) with (3.47), choosing ε sufficiently small, we obtain

d

dt
(‖v̄‖2 + 2‖∆ϕ̄‖2 + ‖ϕ̄‖2) + ‖∇v̄‖2 + ‖∂tϕ̄‖

2 + ‖ϕ̄‖2H4 ≤ C(‖v̄‖2 + ‖ϕ̄‖2H2). (3.48)

By the Gronwall Lemma, for any 0 ≤ y − t ≤ 2,

‖v̄(y)‖2 + ‖ϕ̄(y)‖2H2 ≤ Ce2C
(

‖v̄(t)‖2 + ‖ϕ̄(t)‖2H2

)

. (3.49)

Taking t ∈ [0, 1] and integrating (3.48) over [t, 2], we infer from (3.49) that

‖(v̄, ϕ̄)(2)‖2Φ +

∫ 2

t

(‖(v̄, ϕ̄)(r)‖2Φ1
+ ‖∂tϕ̄(r)‖

2)dr

≤ C

(

‖(v̄, ϕ̄)(t)‖2Φ +

∫ 2

t

‖(v̄, ϕ̄)(r)‖2Φdr

)

≤ C‖(v̄, ϕ̄)(t)‖2Φ. (3.50)

Integrating (3.50) with respect to t over [0, 1], we finally obtain

‖(v̄, ϕ̄)‖2L2(1,2;Φ1)
+ ‖∂tϕ̄‖

2
L2(1,2;L2) ≤

∫ 1

0

∫ 2

t

‖(v̄, ϕ̄)(r)‖2Φ1
+ ‖∂tϕ̄(r)‖

2)drdt

≤ C‖(v̄, ϕ̄)‖2L2(0,1;Φ). (3.51)

It remains to estimate ‖∂tv̄‖L1(1,2;V ′). We use a duality argument. First, we recall that, for

u ∈ L1(1, 2;V ′),

‖u‖L1(1,2;V ′) = sup
ϕ

∣

∣

∣

∫ 2

1
〈u, ϕ〉dr

∣

∣

∣
,

where the sup is taken over the function φ ∈ L∞(1, 2;V ) such that ‖φ‖L∞(1,2;V ) = 1 and the

duality pairing is between V ′ and V . Consequently, thanks to (3.39) and (3.51), there holds

∫ 2

1
‖∂tv̄(r)‖V ′dr ≤

∫ 2

1
‖∇v̄(r)‖dr +

∫ 2

1
(‖v̄(r)‖‖∇v1(r)‖+ ‖∇v̄(r)‖‖v2(r)‖)dr

+

∫ 2

1
(‖σ̃d1(r)− σ̃d2(r)‖+ ‖σ̃e1(r)− σ̃e2(r)‖)dr

≤ C

(
∫ 1

0
‖(v̄, ϕ̄)(r)‖2Φdr

)

1
2

.

The proof is complete.

Thanks to Lemma 3.9, we have verified that the map S := S (1) satisfies all of the assumptions

of the abstract result Lemma 3.8. Therefore, the discrete semigroup {S (n), n ∈ N} possesses

an exponential attractor Md in the trajectory space B1 endowed with the topology of H =

L2(0, 1;Φ).

Multiplying (3.48) with t and using the Gronwall lemma, we easily obtain that

‖(v̄, ϕ̄)(1)‖2Φ ≤ C

∫ 1

0
‖(v̄, ϕ̄)(r)‖2Φdr, (3.52)

which means that the map e (cf. (3.34) for the definition) is Lipschitz continuous on B1. This

yields that projecting Md back to the phase space Φ via

Md := e(Md) = Md

∣

∣

t=1
, (3.53)
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the resulting Md is indeed the exponential attractor for the discrete semigroup {S(n), n ∈ N}

acting on B = e(B1) (endowed with the topology of Φ).

We note that for all the trajectories (v, ϕ) starting from B1, there holds
∫ 1

0
‖∂tv(s)‖

2 + ‖∂tϕ(s)‖
2
H2ds ≤ C.

This, together with (3.49) imply that the map (t, (v0, ϕ0)) 7→ S(t)((v0, ϕ0)) is Lipschitz contin-

uous on [0, 1] × B1 with respect to the R × Φ metric. Thus, the desired exponential attractor

M with continuous time (and on the whole phase space since B1 is absorbing) is given by the

standard expression (see [11] and [25] for further information)

M :=
⋃

t∈[0,1]

S(t)Md.

The proof of Theorem 2.4 is complete.

4 Convergence to Equilibrium in 2D

Theorem 2.1 indicates that the total energy E(t) (cf. (2.1)) is decreasing with respect to time,

consequently, it serves as a global Lyapunov functional for system (1.5)–(1.7). The ω-limit set

of (v0, ϕ0) ∈ Ḣ × Ḣ2 is defined as follows:

ω(v0, ϕ0) = {(v∞, ϕ∞) ∈ Ḣ × Ḣ2 : ∃ {ti}
∞
i=1 ր +∞, such that

(v(ti), ϕ(ti)) → (v∞, ϕ∞) in Ḣ ×H2}. (4.1)

It follows from Lemma 3.7 and the well-known result on dynamical systems (cf. [31, Lemma

I.1.1]) that

Lemma 4.1. ω(v0, ϕ0) is a non-empty bounded connected subset in V̇ × Ḣ4. Furthermore, (i) it

is invariant under the nonlinear semigroup S(t). (ii) E is constant on ω(v0, ϕ0). (iii) ω(v0, ϕ0)

consists of steady states of system (1.5)–(1.7).

We note that the energy inequality obtained in Lemma 3.6 not only yields uniform higher-

order energy estimates of weak solutions (cf. (3.25)), but also indicates that the asymptotic limit

points of weak solutions to problem (1.5)–(1.7) actually have a special form.

Lemma 4.2. For v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, the weak solutions to (1.5)–(1.7) have the following property

lim
t→+∞

(‖v(t)‖H1 + ‖Q(t)‖) = 0. (4.2)

Proof. We recall that for any t1 > 0, (3.26) holds. Using Lemma 3.6 and [35, Lemma 6.2.1], we

conclude that limt→+∞A(t) = 0, which together with Corollary 3.1 and the Poincaré inequality

leads to our conclusion.

Lemma 4.2 implies that for any initial data v0 ∈ Ḣ, ϕ0 ∈ Ḣ2, their corresponding asymptotic

limit points (v∞, ϕ∞) satisfy the following stationary problem (using the form (3.16)):

−∇P∞ = v∞ = 0, (4.3)

−K∆2ϕ∞ +∇ · f(∇ϕ∞) = 0, (4.4)
∫

T2

ϕ∞dx = 0. (4.5)
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Lemma 4.3. When n = 2, 3, for any ϕ0 ∈ L1, problem

−K∆2ϕ+∇ · f(∇ϕ) = 0,

∫

Tn

ϕdx =

∫

Tn

ϕ0dx (4.6)

admits at least one weak solution φ, which is in fact smooth. If ǫ is properly large, then the weak

solution is unique.

Proof. It is easy to verify that the energy E(ϕ) = K
2 ‖∆ϕ‖

2 +
∫

T2 F (∇ϕ)dx admits at least one

minimizer φ in H2 ∩ {ϕ ∈ L1,
∫

Tn ϕdx =
∫

Tn ϕ0dx}, which is a weak solution to problem (4.6).

Moreover, for any weak solution φ to (4.6), we have

K‖∆φ‖2 +
1

ǫ2

∫

Tn

|∇φ|4dx =
1

ǫ2
‖∇φ‖2 ≤

1

2ǫ2

∫

Tn

|∇φ|4dx+
1

2ǫ2
|Tn|,

which together with the Poincaré inequality ‖φ‖ ≤ CP (‖∇φ‖ + |
∫

Tn φdx|) implies that ‖φ‖H2

can be bounded by a constant depending on |
∫

Tn ϕ0dx|, ǫ, CP and |Tn|. A bootstrap argument

yields that φ is actually smooth and for m ∈ N, ‖φ‖Hm can be bounded by a constant depending

on |
∫

Tn ϕ0dx|, ǫ, CP and |Tn|. Finally, let φ1 and φ2 be two solutions of (4.6), using the fact

that
∫

Tn(f(∇φ1)− f(∇φ2)) · ∇(φ1 − φ2)dx ≥ 0, then we infer from the Poincaré inequality that

K‖∆(φ1 − φ2)‖
2 ≤ 1

ǫ2
‖∇(φ1 − φ2)‖

2 ≤
C2

P

ǫ2
‖∆(φ1 − φ2)‖

2. As a result, if ǫ > CPK
− 1

2 , then

φ1 = φ2. (We refer to [18] for a similar problem but with different boundary conditions)

4.1 Convergence to equilibrium

Lemma 4.2 yields the convergence of velocity field v. In what follows, we study the convergence

for ϕ. First, ǫ > CPK
− 1

2 , we infer from Lemma 4.3 that ω(v0, ϕ0) consists of a single point

(0, ϕ∞) where ϕ∞ is the unique solution to (4.4)–(4.5). However, if ǫ ≤ CPK
− 1

2 , we lose the

uniqueness of steady states. Alternatively, we shall use the Łojasiewicz–Simon approach. Denote

A = −∆ with D(A) = {φ ∈ H2,
∫

Tn φdx = 0}. Then A is self-adjoint and positive definite. Let

HA be the dual space of H1
∗ = {φ ∈ H1,

∫

Tn φdx = 0}. Then the norm on HA is given by

‖φ‖2A =
∫

Tn φA
−1φdx = ‖A− 1

2φ‖2.

We introduce the following Łojasiewicz–Simon type inequality:

Lemma 4.4. Suppose n = 2, 3. Let ψ be the critical point of energy

E(ϕ) =
K

2
‖∆ϕ‖2 +

∫

Tn

F (∇ϕ)dx. (4.7)

Then, there exist constants β > 0, θ ∈ (0, 12 ) depending on ψ such that for any ϕ ∈ H3 with

‖ϕ− ψ‖H2 < β and
∫

Tn ϕdx =
∫

Tn ψdx, there holds

‖ −K∆2ϕ+∇ · f(∇ϕ)‖A ≥ |E(ϕ) − E(ψ)|1−θ . (4.8)

Proof. Slightly modifying the arguments in [13,29], we can easily prove that there exist constants

β1 > 0, θ ∈ (0, 12) depending on ψ such that for any ϕ ∈ H3 with ‖ϕ − ψ‖H3 < β1 and
∫

Tn ϕdx =
∫

Tn ψdx, (4.8) holds. Next, we slightly relax the smallness condition and show that

(4.8) still holds if one only requires that ϕ falls into a certain H2-neighborhood of ψ. For any

ϕ ∈ H3 satisfying
∫

Tn ϕdx =
∫

Tn ψdx, using the regularity theory for elliptic problem, we can

see that

‖ϕ− ψ‖H3 ≤M‖∆2(ϕ− ψ)‖A, (4.9)
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where M is a constant independent of ϕ. On the other hand, if ‖ϕ − ψ‖H2 ≤ 1 (which implies

that ‖ϕ‖H2 ≤ ‖ψ‖H2 + 1), then by Sobolev embedding theorem, we get

‖∇ · f(∇ϕ)−∇ · f(∇ψ)‖A ≤ C1‖ϕ− ψ‖H2 ,

|E(ϕ) − E(ψ)|1−θ ≤ C2‖ϕ− ψ‖1−θ
H2 ,

where C1, C2 depend on ‖ψ‖H2 and ‖ϕ‖H2 (by our assumption, the later one can be bounded by

using only ‖ψ‖H2 ). As a consequence, there exists a (sufficiently small) β ∈ (0, 1] independent

of ϕ, such that if ‖ϕ − ψ‖H2 < β, then

‖∇ · f(∇ϕ)−∇ · f(∇ψ)‖A + |E(ϕ) − E(ψ)|1−θ <
β1K

2M
. (4.10)

Now for any ϕ ∈ H3 satisfying
∫

Tn ϕdx =
∫

Tn ψdx and ‖ϕ − ψ‖H2 < β, there are only two

possibilities: (i) If ‖ϕ − ψ‖H3 < β1, then (4.8) holds. (ii) If ‖ϕ − ψ‖H3 ≥ β1, noticing that ψ

satisfies (4.5), we deduce from (4.9) and (4.10) that

‖ −K∆2ϕ+∇ · f(∇ϕ)‖A = ‖ −K∆2(ϕ− ψ) +∇ · f(∇ϕ)−∇ · f(∇ψ)‖A

≥ K‖∆2(ϕ− ψ)‖A − ‖∇ · f(∇ϕ)−∇ · f(∇ψ)‖A

≥
K

M
‖ϕ− ψ‖H3 − ‖∇ · f(∇ϕ)−∇ · f(∇ψ)‖A

>
β1K

2M
> |E(ϕ) − E(ψ)|1−θ .

The proof is complete.

For any initial data (v0, ϕ0) ∈ Ḣ × Ḣ2, it follows from Lemma 3.7 that ‖ϕ‖H4 is uniformly

bounded for t ≥ t2 > 0. Therefore, there is an increasing unbounded sequence {ti}i∈N and a

function ϕ∞ ∈ H4 satisfying (4.4)–(4.5) such that

lim
ti→+∞

‖ϕ(ti)− ϕ∞‖H3 = 0, lim
ti→+∞

E(ti) = E(ϕ∞). (4.11)

By (1.7), we have

‖ϕt‖ ≤ ‖v · ∇ϕ‖+ ‖Q‖ ≤ ‖∇v‖‖ϕ‖H2 + ‖Q‖. (4.12)

We first exclude the trivial case, i.e., that there exists a t0 > 0 such that E(t0) = E(ϕ∞). In this

case, for all t ≥ t0, we deduce from (2.2) that ‖∇v(t)‖ = ‖Q(t)‖ = 0. It follows from (4.12) that

for t ≥ t0, ‖ϕt‖ = 0. Namely, ϕ is independent of time for all t ≥ t0. Due to (4.11), we conclude

that ϕ(t) ≡ ϕ∞ for t ≥ t0. In this case, there is nothing else to prove.

Therefore, without loss of generality, for all t > 0, we suppose that E(t) > E(ϕ∞). For

arbitrary t > 0, we know that ϕ ∈ L2(t, t + 1;H4) ∩ H1(t, t + 1;L2) which implies that ϕ ∈

C([t, t+1],H2). Due to this continuity, by a standard contradiction argument (see [15]), we can

prove that there is a (sufficiently large) t0 > 0 such that for all t ≥ t0, ‖ϕ(t) − ϕ∞‖H2 < β.

Namely, for all t ≥ t0, ϕ(t) satisfies the conditions in Lemma 4.4. Apply Lemma 4.4, (2.2) and

the Poincaré inequality, we obtain

−
d

dt
(E(t) −E(ϕ∞))θ = −θ(E(t)− E(ϕ∞))θ−1 d

dt
E(t) ≥ θ

µ4

2 ‖∇v‖2 + λ ‖Q‖2

‖v‖2(1−θ) + ‖Q‖A
≥ C(‖∇v‖+ ‖Q‖), ∀ t ≥ t0, (4.13)
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which implies that
∫ +∞
t0

(‖∇v(τ)‖ + ‖Q(τ)‖)dτ < +∞, and by (4.12),
∫ +∞
t0

‖ϕt(τ)‖dτ < +∞.

This easily yields the convergence of ϕ(t) in L2 as t→ +∞. Since ϕ is compact in H3, we infer

from (4.11) that limt→+∞ ‖ϕ(t)− ϕ∞‖H3 = 0. By the Sobolev embedding theorem, we have

K‖∆2ϕ(t)−∆2ϕ∞‖ ≤ ‖Q(t)‖+‖∇·f(∇ϕ(t))−∇·f(∇ϕ∞)‖ ≤ ‖Q(t)‖+C‖ϕ(t)−ϕ∞‖H2 , (4.14)

where C depends on ‖ϕ(t)‖H3 and ‖ϕ∞‖H3 . As a consequence, we can conclude from (4.2) and

the H3-convergence of ϕ that

lim
t→+∞

‖ϕ(t) − ϕ∞‖H4 = 0. (4.15)

4.2 Convergence rate

It remains to prove the convergence rate. This can be done in two steps: the first consists in

obtaining, via the Łojasiewicz–Simon inequality (cf. e.g., [14]), the convergence rate for the lower

order terms. In the second step, we will use the energy method to obtain the convergence rate

for the higher order terms. From Lemma 4.4 and (4.13), we have

d

dt
(E(t)− E(ϕ∞)) + C(E(t)− E(ϕ∞))2(1−θ) ≤ 0, ∀ t ≥ t0, (4.16)

and as a consequence,

E(t)− E(ϕ∞) ≤ C(1 + t)−
1

1−2θ , ∀ t ≥ t0.

Integrating (4.13) on (t,+∞), where t ≥ t0, it follows from (4.12) that

∫ +∞

t

‖ϕt(τ)‖dτ ≤ C

∫ +∞

t

(‖∇v(τ)‖ + ‖Q(τ)‖)dτ ≤ C(1 + t)−
θ

1−2θ , (4.17)

which implies

‖ϕ(t) − ϕ∞‖ ≤ C(1 + t)−
θ

1−2θ , t ≥ t0. (4.18)

It follows from the basic energy law (2.2) and (4.5) that

d

dt
y(t) +

µ4
2
‖∇v‖2 + λ‖Q‖2 ≤ 0, (4.19)

where

y(t) =
1

2
‖v(t)‖2 +

K

2
‖∆ϕ(t)−∆ϕ∞‖2+

∫

T2

[F (∇ϕ(t))−F (∇ϕ∞)+∇· f(∇ϕ∞)(ϕ(t)−ϕ∞)]dx.

A direct calculation yields

∫

T2

[F (∇ϕ) − F (∇ϕ∞) +∇ · f(∇ϕ∞)(ϕ− ϕ∞)]dx

=
1

4ǫ2

∫

T2

(d− d∞) ·
[

(|d|2 + |d∞|2 + d · d∞)(d− d∞)
]

dx

+
1

4ǫ2

∫

T2

(d− d∞) ·
[

|d∞|2(d− d∞) + d∞(d+ d∞) · (d− d∞)
]

dx−
1

2ǫ2
‖d− d∞‖2.

Thus, we have

∣

∣

∣

∣

∫

T2

[F (∇ϕ)− F (∇ϕ∞) +∇ · f(∇ϕ∞)(ϕ− ϕ∞)]dx

∣

∣

∣

∣

≤ C‖∇ϕ−∇ϕ∞‖2,
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which together with the Poincaré inequality implies

y(t) ≥
1

2
‖v‖2 +

K

4
‖∆ϕ−∆ϕ∞‖2 − C‖ϕ− ϕ∞‖2. (4.20)

On the other hand, it follows from (3.43) and (4.14) that

K‖∆2ϕ−∆2ϕ∞‖ ≤ ‖Q‖+ C‖ϕ− ϕ∞‖H2 ≤ ‖Q‖+ C‖∆2ϕ−∆2ϕ∞‖
1
2‖ϕ− ϕ∞‖

1
2

≤ ‖Q‖+
K

2
‖∆2ϕ−∆2ϕ∞‖+ C‖ϕ− ϕ∞‖, (4.21)

which yields

y(t) ≤
1

2
‖v‖2 +

K

2
‖∆ϕ−∆ϕ∞‖2 + C‖∇ϕ−∇ϕ∞‖2

≤ C‖∇v‖2 + C‖∆2ϕ−∆2ϕ∞‖‖ϕ − ϕ∞‖+ C‖∆2ϕ−∆2ϕ∞‖
1
2 ‖ϕ− ϕ∞‖

3
2

≤ C‖∇v‖2 + C‖Q‖2 + C‖ϕ− ϕ∞‖2. (4.22)

For t ≥ t0 > 0, Lemma 3.7 implies that A(t) ≤ C that combined with (3.15) yields

d

dt
A(t) ≤ CA(t). (4.23)

It follows from (4.18), (4.19) and (4.20)–(4.23) that there exist constants M1,M2 > 0 such that

d

dt
[y(t) +M1A(t)] +M2[y(t) +M1A(t)] ≤ C‖ϕ(t)− ϕ∞‖2 ≤ C(1 + t)−

2θ
1−2θ , ∀ t ≥ t0. (4.24)

By a similar argument as in [33], we conclude from (4.24) that

y(t) +M1A(t) ≤ [y(t0) +M1A(t0)]e
γ(t0−t) + Ce−M2t

∫ t

t0

eM2τ (1 + τ)−
2θ

1−2θ dτ

≤ C(1 + t)−
2θ

1−2θ , ∀ t ≥ t0. (4.25)

Finally, from (4.18), (4.21) and (4.25) we obtain the required estimate

‖v(t)‖H1 + ‖ϕ(t) − ϕ∞‖H4 ≤ C(1 + t)−
θ

1−2θ , ∀t ≥ t0. (4.26)

5 Results in 3D

Lemma 5.1. Suppose n = 3. We have

d

dt
A(t) +

µ4
4
‖∆v‖2 +

αλK

2
‖∆Q‖2 ≤ C∗(A

3(t) +A(t)), ∀ t ≥ t1 > 0, (5.1)

where t1 > 0 is arbitrary and α > 0, C∗ > 0 are constants depending on ‖v0‖, ‖ϕ0‖H2 and t1.

Moreover, if we assume that ϕ0 ∈ H3, (5.1) holds for t ≥ 0 with C∗ being dependent of ‖v0‖,

‖ϕ0‖H3 .

Proof. Using Lemma 3.5 and Corollary 3.1, we modify the calculations in Lemma 3.6 by using

the 3D version of embedding theorems. It is not difficult to see that we are still able to choose

α > 0 sufficiently small in A(t) such that our conclusion holds true.
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The existence of local strong solution for arbitrary viscosity µ4 > 0 is a direct consequence

of Lemma 5.1.

Theorem 5.1. Suppose n = 3. For any (v0, φ0) ∈ V ×H4, problem (1.5)–(1.7) admits a unique

local strong solution.

Proof. Since ϕ0 ∈ H4, we have uniform estimates for ‖ϕ‖H3 and ‖∇ϕ‖L∞ . (5.1) is valid for

t ≥ 0. Considering the ODE problem:

d

dt
Y (t) = C∗[(Y (t))3 + Y (t)], Y (0) = A(0), (5.2)

we denote by I = [0, Tmax) the interval of existence of the maximal solution Y (t). We thus have

limt→T−
max

Y (t) = +∞. It easily follows that for any t ∈ I, 0 ≤ A(t) ≤ Y (t). Consequently,

A(t) exists on I. This and Theorem 2.2 imply the local existence of a unique strong solution of

problem (1.5)–(1.7).

Proposition 5.1. Suppose n = 3, v0 ∈ V̇ , ϕ0 ∈ H4. For any R ∈ (0,∞), whenever ‖∇v0‖
2 +

‖Q(0)‖2 ≤ R, there is a small constant ε0 ∈ (0, 1) depending only on R and coefficients of the

system such that either (i) Problem (1.5)–(1.7) has a unique global strong solution (v, ϕ), or (ii)

there is a T1 ∈ (0,+∞) such that E(T1) < E(0) − ε0.

Proof. The proof follows from the argument in [20] for simplified nematic liquid crystal model.

A statement was also given for the Smectic-A system with variable density in [22] without proof.

For the convenience of the readers, we sketch the proof here. We suppose that (v, ϕ) is a

weak solution with initial data (v0, ϕ0) such that ‖∇v0‖
2 + ‖Q(0)‖2 ≤ R. Then C∗ in (5.1) is

determined by R. Moreover, due to Corollary 3.1 we have uniform estimate on ‖∇ϕ(t)‖L∞ for

all t ≥ 0 which only depends on R. We fix through R the constant α in the definition of A(t).

Consider the ODE problem (5.2) with Y (0) = max{1, α}R ≥ A(0). Let Y (t) denote the unique

maximal solution defined on [0, Tmax). The time Tmax is determined by Y (0) and C∗ in such a

way that it is increasing when Y (0) is decreasing. Now we take

t0 =
1

2
Tmax(Y (0), C∗), ε0 =

Rt0
2

min
{µ4

2
, λ

}

.

If (ii) is not true, we have E(t) ≥ E(0) − ε0 for all t ≥ 0. From the basic energy law (2.2), we

infer that

∫ t0

t0
2

A(t)dt ≤

∫ ∞

0
A(t)dt ≤ κε0, with κ = max{1, α}max{2µ−1

4 , λ−1}.

Hence, there exists a t∗ ∈ [ t02 , t0] such that A(t∗) ≤ 2κε0
t0

≤ Y (0). Restarting the flow (5.2) from

t∗, we infer from the above argument that A(t) remains bounded at least on [0, 3t02 ] ⊂ [0, t∗ + t0]

with the same bound as that on [0, t0]. As a consequence, an iteration argument shows that A(t)

is bounded for all t ≥ 0. The proof is complete.

As an immediate consequences of the above result, we can prove (1) eventual regularization

of weak solutions and (2) the well-posedness of strong solutions near the absolute minimizers of

energy E (cf. (4.7)) (cf. [20, 22]).
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Corollary 5.1. Suppose n = 3.

(1) Let (v, ϕ) be the weak solution to problem (1.5)–(1.7) on [0,+∞). Then there is some

T ∗ > 0 such that v ∈ L∞(T ∗,∞;V ) ∩ L2
loc(T

∗,∞;H2), ϕ ∈ L∞(T ∗,∞;H4) ∩ L2
loc(T

∗,∞;H6).

(2) Let ϕ∗ ∈ H2 be an absolute minimizer of E(ϕ) in the sense that E(ϕ∗) ≤ E(ϕ) for all

ϕ ∈ H2. For any v0 ∈ V̇ , ϕ0 ∈ H4 satisfying ‖v0‖H1 ≤ 1 and ‖ϕ0 − ϕ∗‖H4 ≤ 1, there is a

constant σ which may depend on coefficients of the system and ϕ∗ such that if ‖v0‖ ≤ σ and

‖ϕ0 − ϕ∗‖H2 ≤ σ, then problem (1.5)–(1.7) admits a unique global strong solution.

Next, we improve the second part of Corollary 5.1 by proving the well-posedness of strong

solutions close to local minimizers of the energy E:

Theorem 5.2. Suppose n = 3. Let ϕ∗ ∈ H2 be a local minimizer of E(ϕ) in the sense that

E(ϕ∗) ≤ E(ϕ) for all ϕ ∈ H2 satisfying ‖ϕ − ϕ∗‖H2 < δ. For any v0 ∈ V̇ , ϕ0 ∈ H4 satisfying

‖v0‖H1 ≤ 1 and ‖ϕ0 − ϕ∗‖H4 ≤ 1, there exist constants σ1, σ2 ∈ (0, 1] which may depend on

coefficients of the system and ϕ∗ such that if ‖v0‖ ≤ σ1 and ‖ϕ0 − ϕ∗‖H2 ≤ σ2, then problem

(1.5)–(1.7) admits a unique global strong solution.

Proof. Without loss of generality, we assume δ ≤ 1. By Ci, i = 1, 2, ... we denote constants that

only depend on ϕ∗ and on coefficients of the system. If ‖v0‖H1 ≤ 1 and ‖ϕ0 − ϕ∗‖H4 ≤ 1, it is

not difficult to see that ‖∇v0‖
2 + ‖Q(0)‖2 ≤ R, where R depends only on ϕ∗. Fix this R, using

Proposition 5.1, we can also fix the critical constant ε0 determined by R. It follows from Lemma

3.1 and Lemma 3.5 that ‖v(t)‖ and ‖ϕ(t)‖H3 are uniformly bounded (by a constant depending

on ϕ∗). Since E is decreasing, we can see that

0 ≤ E(0)− E(t) =
1

2
‖v0‖

2 −
1

2
‖v(t)‖2 + E(ϕ0)− E(ϕ(t)) ≤

1

2
‖v0‖

2 + E(ϕ0)− E(ϕ(t))

≤
1

2
‖v0‖

2 + C1‖ϕ(t) − ϕ0‖H2 . (5.3)

First we require σ1 ≤ min

{

1
2ε

1
2
0 , 1

}

. Let β denote the constant depending only on ϕ∗ provided

by Lemma 4.4. If we are able to prove

‖ϕ(t)− ϕ0‖H2 < ̟ := min

{

β,
ε0
2C1

, δ

}

, ∀t ≥ 0, (5.4)

then we can infer from (5.3) that

E(t) ≥ E(0) − ε0, ∀ t ≥ 0, (5.5)

and our conclusion immediately follows from Proposition 5.1. We prove (5.4) by a contradiction

argument. Assume σ2 ≤ ̟
4 . Let t∗ denote the smallest and finite time for which ‖ϕ(t∗) −

ϕ∗‖H2 ≥ ̟. Without loss of generality, we can assume that E(t) > E(ϕ∗) t ∈ [0, t∗). In

fact, if there exists t∗∗ ∈ (0, t∗) such that E(t∗∗) = E(ϕ∗), since ϕ∗ is the local minimizer and

‖ϕ(t∗∗)−ϕ∗‖H2 < ̟ ≤ δ, we can see that v(t∗∗) = 0 and ϕ(t∗∗) = ϕ∗∗, where ϕ∗∗ is also a local

minimizer (possibly different from ϕ∗) satisfying (4.4)–(4.5). Due to the uniqueness of strong

solution, the evolution starting from t∗∗ will be stationary and hence contradicting the definition

of t∗. Thus, let E(t) > E(ϕ∗) for t ∈ [0, t∗). We observe that the conditions in Lemma 4.4 are

fulfilled with ϕ∗, on the interval [0, t∗). In analogy with (4.13), we obtain

−
d

dt
(E(t) − E(ϕ∗))θ ≥ C2(‖∇v‖+ ‖Q‖), ∀ t ∈ [0, t∗), (5.6)
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where C2 depends on θ, µ4, λ. Using (4.12), we have

∫ t∗

0
‖ϕt(t)‖dt ≤ C3(E(0) − E(ϕ∗))θ ≤ C3

(

1

2

)θ

‖v0‖
2θ + C3|E(ϕ0)− E(ϕ∗)|θ

≤ C4‖v0‖
2θ + C5‖ϕ0 − ϕ∗‖θH2 .

As a result,

‖ϕ(t∗)− ϕ∗‖H2 ≤ ‖ϕ(t∗)− ϕ0‖H2 + ‖ϕ0 − ϕ∗‖H2

≤ C‖ϕ(t∗)− ϕ0‖
2
3

H3‖ϕ(t
∗)− ϕ0‖

1
3 + ‖ϕ0 − ϕ∗‖H2

≤ C(‖ϕ(t∗)‖H3 + ‖ϕ0‖H3)
2
3

(
∫ t∗

0
‖ϕt(t)‖dt

)

1
3

+ ‖ϕ0 − ϕ∗‖H2

≤ C6

(

‖v0‖
2θ
3 + ‖ϕ0 − ϕ∗‖

θ
3

H2

)

+ ‖ϕ0 − ϕ∗‖H2 , (5.7)

Taking

σ1 ≤ min

{

1

2
ε

1
2
0 , 1,

(

̟

4C6

)
3
2θ

}

, σ2 ≤ min

{

̟

4
,

(

̟

4C6

)
3
θ

}

, (5.8)

we easily infer from (5.7) that ‖ϕ(t∗)−ϕ
∗‖H2 ≤ 3

4̟ < ̟, which leads to a contradiction with the

definition of t∗. Hence, we have shown that (5.4) holds for all t ≥ 0. The proof is complete.

Remark 5.1. The above proof indicates that if the (regular) initial data are properly close to

certain local minimizer, then the global strong solution will remain in the neighborhood of this

local minimizer for all time. The conclusion is also true for the case with absolute minimizer in

Corollary 5.1. If the minimizer is isolate, then we obtain the stability of it.

Lemma 5.2. Suppose n = 3. Denote A1(t) = ‖∇v(t)‖2 + ‖Q(t)‖2 and Ã1(t) = A1(t) + 1. For

any µ4 > 0, we have

d

dt
A1(t) +

(

µ4
2

−M1µ
1
2
4 Ã1(t)

)

‖∆v‖2 +

(

λK −M2µ
− 1

2
4 (1 + µ

− 5
2

4 )Ã1(t)

)

‖∆Q‖2

≤ M3(1 + µ−3
4 )A1(t), (5.9)

where M1,M2,M3 are constants depending on ‖v0‖, ‖ϕ0‖H2 , µ1, µ5, λ,K, ǫ, but not on µ4.

Proof. We note that in the following calculation only the lower-order uniform estimates (3.1) are

used. The possible relaxation on the viscosity µ4 enable us to avoid using the L
∞-norm of ∇ϕ,

which was crucial in the proof of Lemma 3.6. In what follows, the generic constant C will only

depend on ‖v0‖, ‖ϕ0‖H2 , µ1, µ5, λ, K, ǫ.

We revisit the terms on the right-hand side of (3.18).

∫

T3

(v · ∇)v ·∆vdx ≤ ‖∆v‖‖∇v‖L3‖v‖L6 ≤ C‖∆v‖
3
2 ‖∇v‖

3
2

≤ µ
1
2
4 ‖∇v‖

4
3‖∆v‖2 + Cµ

− 1
2

4 ‖∇v‖2.

I1 + I2a + I2b + I2c ≤
µ1
4

∫

Q

(didj∇lDij)
2dx+ C‖∇v‖2

L3‖∇d‖2
L6‖d‖

2
L∞ ,

29



where

‖∇v‖2
L3‖∇d‖2

L6‖d‖
2
L∞ ≤ C‖∆v‖

3
2‖v‖

1
2‖∇d‖2

L6‖d‖
2
L∞

≤ C‖∆v‖
3
2 ‖v‖

1
2 (‖∆3ϕ‖

1
2 ‖∆ϕ‖

3
2 + ‖∆ϕ‖2)(‖∆2ϕ‖‖∇ϕ‖ + ‖∇ϕ‖2)

≤ C‖∆v‖
3
2 ‖v‖

1
2 (‖∆Q‖

1
2 + 1)(‖Q‖ + 1)

≤

[

µ4
24

+ µ
1
2
4 (1 + ‖Q‖2)

]

‖∆v‖2 + Cµ
− 1

2
4 (‖Q‖2 + ‖∇v‖2)‖∆Q‖2 + Cµ−1

4 ‖∇v‖2 + Cµ
− 1

2
4 ‖Q‖2.

Next,

I2d ≤ C‖d‖3L∞‖∆d‖‖∇v‖2
L4 ≤ C‖∇ϕ‖

3
2

H2‖∇ϕ‖
3
2

H1‖∇∆ϕ‖‖∇v‖2
L4

≤ C(‖∇∆ϕ‖
5
2 + 1)‖∆v‖

3
2 ‖∇v‖

1
2 ≤ C(‖Q‖

1
4 + 1)(‖∆Q‖

1
2 + 1)‖∆v‖

3
2 ‖∇v‖

1
2

≤

[

µ4
24

+ µ
1
2
4 (‖∇v‖

2
3 + ‖Q‖

1
3 )

]

‖∆v‖2 +C(µ
− 3

2
4 ‖Q‖ + µ−3

4 ‖∇v‖2)‖∆Q‖2

+C(µ
− 3

2
4 + µ−3

4 )‖∇v‖2.

I3 + I4 ≤ ‖∆v‖‖∇v‖L3‖d‖L∞‖∇d‖L6 ≤ ‖∆v‖
3
2 ‖∇v‖

1
2 ‖∇ϕ‖

1
2

H2‖∇ϕ‖
1
2

H1‖∇ϕ‖H2

≤ C(‖∇∆ϕ‖
3
2 + 1)‖∆v‖

3
2 ‖∇v‖

1
2 .

It is easy to see that I3 + I4 can be bounded just like I2d, because its order is lower.

I5 =

∫

T3

∆v · (Qd)dx ≤ ‖∆v‖‖Q‖‖∇ϕ‖L∞ ≤ ‖∆v‖‖Q‖(‖Q‖
1
4 + 1)

≤

(

µ4
24

+ µ
1
2
4 ‖Q‖

1
2

)

‖∆v‖2 + C(µ
− 1

2
4 + µ−1

4 )‖Q‖2.

For the terms J1, ..., J5 on the right-hand side of (3.21), we have

J1 ≤ K‖∇ϕ‖L∞‖∆v‖‖∆Q‖ + C‖∆Q‖‖∇v‖L3‖ϕ‖W 2,6 + C‖∆Q‖‖v‖L6‖ϕ‖W 3,3

≤ C(‖Q‖
1
2 + 1)‖∆v‖‖∆Q‖ ≤

µ4
24

‖∆v‖2 + Cµ−1
4 (1 + ‖Q‖)‖∆Q‖2.

J2 + J4 ≤ C‖∇Q‖(‖∇ϕ‖2L∞ + 1)(‖∇v‖‖∇ϕ‖L∞ + ‖v‖L6‖∇∇ϕ‖L3)

≤ C‖∇Q‖‖∇v‖(‖Q‖
3
4 + 1)

≤ C(‖∆Q‖
1
2‖Q‖

1
2 + ‖Q‖)‖∆v‖

1
2‖v‖

1
2‖Q‖

3
4 + C(‖∆Q‖

1
2‖Q‖

1
2 + ‖Q‖)‖∇v‖

≤

(

λK

4
+ Cµ

− 1
2

4

)

‖∆Q‖2 + µ
1
2
4 ‖Q‖‖∆v‖2 + C(1 + µ

− 1
6

4 )‖Q‖2 + C‖∇v‖2.

J3 + J5 ≤ C‖∇Q‖2
L3(‖∇ϕ‖

2
L6 + 1) ≤ C(‖∆Q‖

3
2‖Q‖

1
2 + ‖Q‖2) ≤

λK

4
‖∆Q‖2 + C‖Q‖2.

Collecting all the estimates and using the Young inequality, we can obtain that

d

dt
(‖∇v‖2 + ‖Q‖2) + µ1

∫

Q

(didj∇lDij)
2dx+ 4µ5

∫

Q

(dk∇lDki)
2dx

+

[

µ4
2

− Cµ
1
2
4 (1 + ‖∇v‖2 + ‖Q‖2)

]

‖∆v‖2

+

[

λK − Cµ
− 1

2
4 (1 + µ

− 5
2

4 )(1 + ‖∇v‖2 + ‖Q‖2)

]

‖∆Q‖2

≤ C(1 + µ−3
4 )(‖∇v‖2 + ‖Q‖2),

which yields (5.9).
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Based on Lemma 5.2, one can prove the existence and uniqueness of global strong solutions

(v, ϕ) to our system provided that the viscosity µ4 is properly large.

Theorem 5.3. Suppose n = 3. For any (v0, φ0) ∈ V × H4, if µ4 ≥ µ
4
(v0, ϕ0) (cf. (5.11)),

problem (1.5)–(1.7) admits a unique global strong solution.

Proof. The crucial step is to obtain a uniform bound of A1(t). Without loss of generality, we

assume that µ4 ≥ 1. Then we deduce from (5.9) that

d

dt
Ã1(t) +

(

µ4
2

−M1µ
1
2
4 Ã1(t)

)

‖∆v‖2 +

(

λK − 2M2µ
− 1

2
4 Ã1(t)

)

‖∆Q‖2 ≤ 2M3Ã1(t). (5.10)

(3.2) yields that
∫ t+1
t

Ã1(τ)dτ ≤
∫ +∞
0 A1(τ)dτ +1 ≤ max

{

2, 1
λ

}

E(0) + 1 =: M̃ . If the viscosity

µ4 satisfies the following relation

µ4 ≥ µ
4
:= max{1, κ2}, with κ := max

{

2M1,
2M2

λK

}

(Ã1(0) + 2M3M̃ + 2M̃). (5.11)

then applying the classical method in [20], we can argue as in [32] to obtain that

µ4
2

−M1µ
1
2
4 Ã1(t) ≥ 0, λK − 2M2µ

− 1
2

4 Ã1(t) ≥ 0, ∀ t ≥ 0.

The proof is complete.

Finally, we study the long-time behavior of global solutions.

Lemma 5.3. Let n = 3, the weak (or strong) solution (v, ϕ) to problem (1.5)–(1.7) has the

following property:

lim
t→+∞

(‖∇v(t)‖ + ‖Q(t)‖) = 0. (5.12)

Proof. Since we are only concerning the behavior of (v, ϕ) for large time, due to the eventual

regularity of weak solutions, we can reduce to the case of strong solutions by a finite shift of

time. Then we can see that ‖∇v(t)‖ and ‖Q(t)‖ are uniformly bounded for t ≥ 0. It follows

from (5.1) that d
dt
A(t) ≤ C (similarly, from (5.9), we have d

dt
A1(t) ≤ C). Recalling that

A(t),A1(t) ∈ L1(0,+∞) (cf. (3.2)), we arrive at the conclusion.

Based on Lemma 5.3, we are able to prove the convergence to equilibrium result in 3D.

One can check the argument for 2D case in the previous section step by step. By applying

corresponding Sobolev embedding theorems in 3D, we can see that all calculations in Section

4.2 are valid. Hence, the details are omitted here.

Remark 5.2. Since the set of equilibria can form a continuum, the global solution obtained in

Corollary 5.1 or in Theorem 5.2 will converge to an equilibrium ϕ∞ which is not necessarily the

original minimizer ϕ∗. However, we can show that E(ϕ∞) = E(ϕ∗). To see this, we recall the

definition of ̟ in the proof of Theorem 5.2. Actually we showed that the solution ϕ(t) will stay in

the H2-neighborhood of ϕ∗ with radius less than β, so does ϕ∞. Then, we can apply Lemma 4.4

with ψ = ϕ∗ and ϕ = ϕ∞ obtaining that |E(ϕ∞)−E(ϕ∗)|1−θ ≤ ‖−K∆2ϕ∞+∇·f(∇ϕ∞)‖A = 0.
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