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Abstract

An infinite discrete series of solutions of the free Schrödinger equa-
tion in one dimension is constructed. These solutions are normalizable,
expand the whole space of solutions, are spatially multi-localized and
are eigenstates of a suitable defined number operator. Associated with
these states, new sets of coherent states for the free particle are defined,
representing traveling multi-localized wave packets. Some applications
of these new families of states and a procedure to experimentally realize
them are outlined.

1 Introduction

In the context of the quantum free particle, the eigenstates of the Hamil-
tonian, which are also eigenstates of the momentum operator, are not nor-
malizable. These states, the plane waves, are fully delocalized. However, it
is customary to expand any normalizable solution of the free Schrödinger
equation in terms of plane waves, using the Fourier transform, building in
this way wave packets which represent localized solutions. The simplest ex-
ample is the Gaussian wave packet, which has the property of minimizing
the uncertainty relations between the position and the momentum operator.

In [1] a transformation is proposed that maps states and operators from
certain quantum systems to the free particle. This transformation is the
quantum version of the Arnold transform (QAT), which in its original ver-
sion [2] maps solutions of the classical equation of motion which is a non-
homogeneous linear second order ordinary differential equation (LSODE) to
solutions of the classical equation for the free particle.

In this paper we construct a discrete basis of the space of solutions of the
quantum free particle in one dimension which is the map through the QAT
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of the eigenstates of the quantum harmonic oscillator. The first state of this
basis is a Gaussian wave packet. They are not eigenstates of the free particle
Hamiltonian, i.e. they are not stationary states, but, rather, eigenfunctions
of a number operator N̂ with discrete eigenvalues n. The lowest one, the
Gaussian wave packet, is localized with arbitrary initial width L, which is
related to the oscillator frequency and can be conveniently chosen, and has
initial minimal uncertainty. The following ones are “multi-localized” in the
sense that the nth-order state presents n zeros and n+1 humps which spread
out with time. This mimics the situation for the harmonic oscillator to such
an extent that it is possible to build creation and annihilation operators â†

and â. The number operator is going to be N̂ ∼ â†â, although in the case
of the free particle it is not the Hamiltonian. Going even further, we give a
set of “coherent states” which are interpreted as traveling wave packets.

Although this construction could seem of a mere academic interest, it
can be of physical relevance in Quantum Information Theory, using these
states to transmit digital information. It might also be useful in describing
scattering process in a discrete basis, instead of using plane waves.

The content of the letter is as follows. Section 2 is devoted to the con-
struction of the discrete base of states by means of the Quantum Arnold
transformation mapping the eigenstates of the harmonic oscillator to the
free particle Hilbert space. Section 3 deals with the construction of coherent
states and interpreting them as traveling wave packets. Section 4 presents
some possible physical applications, and Section 5 proposes an experimen-
tal setting for producing these states. Finally, in an Appendix, an intuitive
construction of these states without resorting to the QAT is presented.

2 A discrete basis of wave packets

Let H be the Hilbert space of solutions of the free particle Schrödinger
equation, and HHO the corresponding to the Harmonic oscillator. Since
QAT involves a change of variables, we shall denote by ψ(x, t) ∈ H the free
particle solutions and by ϕ(x′, t′) ∈ HHO the harmonic oscillator ones. Then
the QAT [1], or rather, its inverse, is given by:

ϕ(x′, t′) = Â−1ψ(x, t) =
1

√

u2(t′)
e

i

2
m

~

1
W (t′)

u̇2(t
′)

u2(t
′)
x′2

ψ(
x′

u2(t′)
,
u1(t

′)

u2(t′)
) , (1)

where the classical Arnold transform is

A : R× T ′ −→ R× T

(x′, t′) 7−→ (x, t) = A
(

(x′, t′)
)

= ( x′

u2(t′)
, u1(t′)
u2(t′)

) ,
(2)

with T and T ′ are open intervals of the real line containing t = 0 and t′ = 0,
respectively, u1(t

′) and u2(t
′) are two independent solutions of the LSODE
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(here dots means derivation with respect to t′):

ẍ′ + ḟ(t′)ẋ′ + ω(t′)2x′ = 0 , (3)

and W (t′) is the Wronskian W (t′) = u̇1(t
′)u2(t

′) − u1(t
′)u̇2(t

′) of the two
solutions. For the case of the harmonic oscillator ḟ = 0 and ω(t′) = ω,
and the two independent solutions can be chosen (see [1] for details) as
u1(t

′) = 1
ω
sin(ωt′) and u2(t

′) = cos(ωt′), with W (t′) = 1. It can be checked
that the change of variables results in:

t′ =
1

ω
arctan(ωt)

x′ = cos(arctan(ωt))x =
x√

1 + ω2t2
. (4)

Applying now the QAT to the time-dependent harmonic oscillator eigen-
states,

ϕn(x
′, t′) =

(mω
π~

)
1
4

√
2nn!

e
−iω(n+ 1

2
)t′
e
−mω

2~
x′2
Hn(

√

mω

~
x′) , (5)

we obtain the following sets of states, solutions pf the Schrödinger equation
for the free particle:

ψn(x, t) =
(2π)−

1
4

√

2nn!L|δ|
e

−
x2

4L2δ

(

δ∗

|δ|

)n+ 1
2

Hn(
x√
2L|δ|

) , (6)

where, in order to obtain a more compact notation, we have introduced the

quantities L =
√

~

2mω
, with dimensions of length, and τ = 2mL2

~
= ω−1,

with dimensions of time. We also denote by δ the complex, time dependent,
adimensional expression δ = 1 + iωt = 1 + i ~t

2mL2 = 1 + it/τ .
The fact that these states are written in terms of the Hermite polyno-

mials can be used to show that the set of states is a basis for the Hilbert
space of solutions of the free Schrödinger equation, L2(R). In fact, at t = 0,
ψn(x, 0) are the Hermite functions, which constitute a basis of L2(R). Since
the time evolution is unitary, the set of states ψn(x, t) is still a basis for any
time t.

The first state of this basis, the one mapped from the harmonic oscillator
vacuum state, is given by:

ψ0(x, t) =
(2π)−

1
4

√

L|δ|

(

δ∗

|δ|

)
1
2

e

−
x2

4L2δ =
(2π)−

1
4

√
Lδ

e

−
x2

4L2δ , (7)

which is nothing other than a Gaussian wave packet with center at the origin
and width L. The parameter τ is the dispersion time of the Gaussian wave
packet, (see, for instance, [3])
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Figure 1: Spreading under time evolution of wave functions ψ0, ψ1 and ψ2,
with tk = kτ .

The QAT also allows to map operators from one Hilbert space to the
other (see [1]), in such a way that ladder operators for the Harmonic os-
cillator can be mapped to ladder operators for the free particle that act as
creation and annihilation operators for theses states:

â = Lδ
∂

∂x
+

x

2L

â† = −Lδ∗ ∂
∂x

+
x

2L
. (8)

The action of â and â† on these wave functions is the usual one:

âψn =
√
nψn−1, â†ψn =

√
n+ 1ψn+1. (9)

Figure 1 shows some of these wave functions and how they evolve in
time.

We see that the number of “parts”, or humps, of the wave functions,
determined by the number of zeros, is quantized, in the sense that there is
one hump between two consecutive zeros. This property will be important
for the physical applications discussed at the end of the paper. Another as-
pect of this quantum realization is shown when computing the uncertainties
associated with each wave function. As a function of time, for each n, they
read:

∆xn∆pn = (n+
1

2
)~|δ|. (10)

For n = 0 the time evolution of the uncertainty is the one which results from
the usual Gaussian wave packet [3], and, among all, the minimal one.

The number operator associated with the creation and annihilation oper-
ators above will provide the position of the state in this grid of uncertainties.
We can compute it (or map it from the number operator for the Harmonic
oscillator) in the usual way:

N̂ =
~

2

(

â†â+ â â†
)

= ~

[

−|δ|2L2 ∂
2

∂x2
+ i

t

τ
(x

∂

∂x
+

1

2
) +

x2

4L2

]

, (11)

where we have added the factor ~ for convenience.

4



By making use of the Schrödinger equation, we can turn this operator
into a first order one:

N̂ = ~

[

i|δ|2τ ∂
∂t

+ i
t

τ
(x

∂

∂x
+

1

2
) +

x2

4L2

]

, (12)

this expression being valid only on solutions of the Schrödinger equation.
The action of this operator is such that:

N̂ψn(x, t) = (n+
1

2
)~ψn(x, t), (13)

thus reproducing the uncertainties given in Eq. 10 at time t = 0.
It is quite interesting to note that this operator belongs to the “maximal

kinematical” symmetry of the free particle, i.e., the Schrödinger group [4].
This symmetry is the standard Galilean symmetry (with generators P̂ 2 =
2mĤ, P̂ , X̂ and the identity Î) together with spatial dilations (X̂P ) and
non-relativistic “conformal” transformations (X̂2). These generators can be
written:

P̂ = −i~ ∂
∂x

P̂ 2 = 2mi~ ∂
∂t

X̂ = x+ i~ t
m

∂
∂x

X̂P = −2i~t ∂
∂t

− i~x ∂
∂x

− i~
2

X̂2 = 2i ~
m
t2 ∂

∂t
+ 2i ~

m
tx ∂

∂x
+ x2 + i~

m
t ,

(14)
providing the non-trivial commutation relations:

[

X̂, P̂
]

= i~ (15)
[

X̂, P̂ 2
]

= 2i~P̂
[

X̂, X̂2
]

= 0
[

X̂, X̂P
]

= i~X̂ (16)
[

P̂ , P̂ 2
]

= 0
[

P̂ , X̂2
]

= −2i~X̂
[

P̂ , X̂P
]

= −i~P̂ (17)
[

X̂2, P̂ 2
]

= 4i~X̂P
[

X̂2, X̂P
]

= 2i~X̂2
[

P̂ 2, X̂P
]

= −2i~P̂ 2 . (18)

It is easily checked that N̂ is in this Lie algebra, its relation with the basis
above being:

N̂ =
τ

2m
P̂ 2 +

m

2τ
X̂2 . (19)

From this expression it is clear that N̂ = mL2

~
ĤHO, where ĤHO is the

operator corresponding to an harmonic oscillator of frequency ω = ~

mL2 = 1
τ
,

but written in terms of constants of the motion of the free particle. See
[1] for the relevance of quadratic operators like N̂ , but distinc from the
Hamiltonian, for building basis of the Hilbert space (see also [5, 6, 7]).

3 Coherent states or traveling wave packets

As a natural consequence of the introduction of creation and annihilation
operators, we construct a set of coherent states for the free particle as the
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eigenstates of the annihilation operator (they could also be obtained from the
usual harmonic oscillator coherent states through the QAT). These states
are of the form

φa(x, t) =
(2π)−

1
4

√

L|δ|

(

δ∗

|δ|

)
1
2

e

−
(x− x0)

2 + x0v0t+ iτv0(v0t− 2x+ x0)

4L2δ ,

(20)
where a is the complex number

a =
x0
2L

+ i
mv0L

~
=

1

2L
(x0 + iv0τ) , (21)

and they verify:
â φa(x, t) = aφa(x, t) . (22)

These states can also be obtained by the action of a Galilean boost with
parameter v0 and a translation by x0 on the vacuum Gaussian packet, and
they constitute an over-complete set of the Hilbert space of the free particle.
Coherent states represent traveling Gaussian wave packets, with mean mo-
mentum and initial position mv0 and x0, respectively. They are not eigen-
states of the number operator, but its expectation values on these states
are:

〈φa|N̂ |φa〉 = ~(|a|2 + 1

2
) . (23)

Acting by Galilean boosts and translations on a fixed state of the basis,
ψn(x, t), a new over-complete set of states is obtained, with elements:

φna(x, t) =
(2π)−

1
4

√

2nn!L|δ|

(

δ∗

|δ|

)n+ 1
2

Hn(
x− x0 − v0t√

2L|δ|
)

e

−
(x− x0)

2 + x0v0t+ iτv0(v0t− 2x+ x0)

4L2δ , (24)

representing traveling multi-localized wave packets bearing n + 1 humps,
with mean momentum and initial position mv0 and x0, respectively, where
a is given by (21). The fact that these sets are over-complete is a general
property, for t = 0, of coherent states of the Heisenberg-Weyl group (see
[8]). Since the time evolution is unitary, this property is kept at any t. As
in the case n = 0, these states are not eigenstates of the number operator,
but the expectation values are:

〈φna |N̂ |φna〉 = ~(|a|2 + n+
1

2
) . (25)

Being a set of coherent states, the uncertainty relations of φna , ∀a ∈ C, are
the same as those of φn given in Eq. (10) (see [8]).
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4 Physical applications

The theoretical relevance of these multi-localized traveling wave packets, as
a discrete basis of normalized free particle states, is of no doubt. Similar
constructions, like the Harmonic Oscillator (HO) method [9] or the Trans-
formed Harmonic Oscillator (THO) method [10] have been proposed, mainly
in nuclear physics, to describe the bound states and the continuum spectrum
in a discrete basis. But there the construction is a mathematical tool for ap-
proximating the solutions, with no physical meaning. Our states, however,
are physically meaningful (as traveling wave packets) and experimentally
feasible (see next section).

Among the possible theoretical applications, we could think of expanding
plane waves in terms of the discrete basis {φna}∞n=0, with fixed a ∈ C, and
describing scattering process in a discrete basis, or expanding arbitrary wave
packets in a continuum over-complete set {φna}a∈C, with fixed n, which could
be discretized in a lattice Z × Z of points while keeping the over-complete
character (they are over-complete for t = 0 if the area of the unit cell is
smaller than ~, and again by the unitary time evolution they continue to be
over-complete for any t, see [8]), to perform numerical computations.

It could also be applied to relativistic systems, particularly to the free
particle in de-Sitter space-time, where the ordinary formulation of quantum
theory does not find a natural physical vacuum [12]. In this sense, the gen-
eralization of our approach to the relativistic case would provide a hierarchy
of states where the first state, the relativistic counterpart of the Gaussian
wave packet, plays the role of a vacuum.

But the main point of our letter is that they could be of practical interest
in the transmission of quantum information. As a possible application we
can consider the transmission of digital information, encoded by the number
of humps.

This encoding would be rather robust in the sense that the number of
zeros is exactly preserved in the free evolution, and the number of humps
is conserved even in the presence of small perturbations. Numerical calcu-
lations have been performed, simulating “noise” by square potentials (well
or barriers), leading to the conclusion that this holds as long as the mean
energy of the state is large compared with the scale of the noise and the
wave packet is sharp enough in momentum space in such a way that the
transmission coefficient can be considered a constant. Under these circum-
stances (see for instance [13]), the wave packet behaves as a plane wave and
the effect of the barrier in the transmitted packet is an overall attenuation,
preserving its shape, and a time delay which takes its maximum values for
energies near the resonant ones (and where the transmission coefficient is
one). As shown in [13], this result is valid for any bounded potential of com-
pact support, provided that the width of the potential is small in the sense
that the time to pass through the barrier is smaller than the dispersion time

7
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Figure 2: Transmission coefficient for the square barrier.

of the wave packet τ . Therefore, the conclusions obtained with the square
potential can be generalized to any finite-range bounded potential.

In Figure 2, the transmission coefficient T (E) for a square barrier as a
function of the energy E of the incident plane wave is shown. The values
of T (E) for values of E = 2V0 and E = 3V0 have been singularized, where
V0 is the height of the barrier. For E > 2V0,

8
9 < T (E) ≤ 1, and for

E > 3V0,
24
25 < T (E) ≤ 1. Therefore, if the wave packet has mean energy

high enough, it penetrates the barrier without distortion and practically
without attenuation, with only a time delay which can be appreciable for
the resonant energies E = V0 +

~2π2

2mb2
n2, where n = 1, 2, . . ., and b is the

width of the barrier.
It should be stressed that, for E < V0 the reflection is practically total

(no transmission), and that for E ≈ V0, T (E) varies very rapidly. Thus, the
wave packet should be extremely narrow in momentum to avoid distortion.
However, for E > 2V0 it is enough to have ∆p ≤ ~π

2b (half the period of the
oscillations of T (E)).

5 Experimental realization

The preparation of this kind of discretized free states might be achieved by
the use of a harmonic oscillator the potential of which is switched off at a
given time. The vacuum state of this harmonic oscillator, when switched off,

will provide the “vacuum” Gaussian wave packet with width L =
√

~

2mω
,

where m is the mass of the particle and ω the frequency of the oscillator.
Note that the dispersion time τ coincides with the inverse of the frequency
of the oscillator. If the harmonic oscillator is in the n-th excited state, the
(n + 1)-hump state is obtained. To obtain traveling states, the initial state
should be a coherent state φa(x, t) of eq. (20) for a one-hump traveling state
or φna(x, t) for a (n+ 1)-hump traveling state. These coherent states can be
obtained by acting with time-dependent classical forces on the harmonic
oscillator according to Glauber [11, 8]. In fact, if the classical force is given
by the potential V (x) = −f(t)x, and the initial state is the vacuum |0〉, then

8



a standard coherent state |a〉 is obtained with a = i√
2ω
f̂(ω), where f̂(ω) is

the Fourier component of f(t) in the frequency ω of the oscillator.
To avoid the dispersion effect, the traveling time of these wave packets

should be less than the dispersion time τ . This would seem a severe limit for
the distances that the packets can travel being localized, but this is not the
case. For instance, an electron with velocity 106m/s with ∆x = 0.1mm can
travel a distance of 100 m while keeping localized (105 m for a proton), and
this is more than enough for practical applications in Quantum Information
theory.

Under the conditions commented in the previous section, these wave
packets evolve without distortion even in the presence of perturbations.
However, one could be interested, acting with appropriate potentials, in ob-
taining transitions between wave packets with different number of humps,
in such a way that, for instance, a one-hump packet splits into a two-hump
packet or a two-hump packet coalesces into a one-hump packet. This would
open the door to performing quantum gates acting on q-bits realized with
the one-hump and the two-hump states.

Finally, to detect this states and measure the number of humps, the
number operator N̂ could be used since its expectation value is directly
related to the number of humps, see (25), once the initial position x0 and
the mean velocity v0 are known.

It should be stressed that these states are physically observable and mea-
surable. Let us consider, for instance, a two-hump wave packet φ1a(~x, t) in
two or three dimensions with the humps in the transversal direction to that
of the mean velocity ~v0 (the expressions in two and three dimensions are a
straightforward generalization of those of one dimension). The separation of
the two maxima of |φ1a|2 (see Fig. 1) is greater, in a factor 1.6, than the un-
certainty in position ∆x1. Therefore the two humps should be measurable,
and in fact, if this wave packet propagates in a bubble or wire chamber,
two parallel, divergent tracks would be observed (if times t << τ are con-
sidered). For a three-hump wave packet, the separation among consecutive
maxima (see Fig. 1) is smaller than the uncertainty in position, although
the distance between the more separated maxima is greater than the uncer-
tainty in position. This, together with the fact that the central maximum
is smaller than the external ones, suggests that only two, overlapping thick
tracks would be observed in a bubble or wire chamber. A similar behavior
for a larger number of humps is expected.
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Appendix

Here we present an alternative construction of our discrete basis without
resorting to the QAT, which is also more intuitive. In terms of the quantities
defined at the beginning of Section 2, the Gaussian wave packet with center
at the origin and width L can be writen in the form:

ψ0(x, t) =
(2π)−

1
4

√
Lδ

e

−
x2

4L2δ =
(2π)−

1
4

√

L|δ|

(

δ∗

|δ|

)
1
2

e

−
x2

4L2δ (26)

Then, we wonder which first order operator annihilates this state, i.e.

â ψ0(x, t) = 0 . (27)

The general form of such an operator would be â = f(x, t) ∂
∂x

+ g(x, t) ∂
∂t

+
h(x, t), and it is possible to choose

â = Lδ
∂

∂x
+

x

2L
. (28)

The adjoint of this operator is going to be the creation one:

â† = −Lδ∗ ∂
∂x

+
x

2L
. (29)

Let us now check the action of â† on the vacuum state. This defines new
states ψn(x, t) up to normalization, by successively applying the creation
operator. For example, we can compute the first state:

ψ1(x, t) ≡ â†ψ0(x, t) =
(2π)−

1
4

√

L|δ|

(

δ∗

|δ|

)
3
2 x

L|δ|e
−
x2

4L2δ . (30)

A general expression for this set of states is obtained by applying n times the
creation operator and normalizing them, and can be cast into the compact
form:

ψn(x, t) =
(2π)−

1
4

√

2nn!L|δ|
e

−
x2

4L2δ

(

δ∗

|δ|

)n+ 1
2

Hn(
x√
2L|δ|

) (31)

where Hn are the Hermite polynomials. ψn(x, t) are solutions of the free
Schrödinger equation for every integer n. We recover in this simple way the
discrete basis for the free particle. All other quantities, like coherent states,
can be computed directly without resorting to the QAT.
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