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The structure of Bell-type inequalities detecting genuimdtipartite non-locality, and hence detecting gen-
uine multipartite entanglement, is investigated. We firespnt a simple and intuitive approach to Svetlichny’s
original inequality, which provides a clear understandifids structure and of its violation in quantum mechan-
ics. Based on this approach, we then derive a family of Bgletnequalities for detecting genuine multipartite
non-locality in scenarios involving an arbitrary numberpafties and systems of arbitrary dimension. Finally
we discuss the thightness and quantum mechanical viotatibthese inequalities.

Non-locality is a fundamental feature of quantum mechanvestigated|__[]8].
ics. On top of being a fascinating phenomenon—defying in- In the present paper, we start by providing a simple and in-
tuition about space and time in a dramatic way—non-localitytuitive approach to Svetlichny’s original inequality. Oaip-
is also a key resource for information processing [1], arsl haproach, which naturally extends to the case of an arbitrary
thus been the subject of intense research in the last years. number of parties, makes it clear why these inequalities de-

It is fair to say that, while our comprehension of bipartite tects genuine multipartite non-locality. It also providesin-
non-locality has reached a reasonable level, multipantite:  tuitive understanding of their violations in quantum mecha
locality is still poorly understood. This is partly due toeth iCS, Via the concept of steering [9]. Based on this approach,
fact that the phenomenon becomes much more complex whete derive Bell inequalities detecting genuine multipantion-
moving from the bipartite case to the multipartite case. InJocality for an arbitrary number of systems of arbitrary eim
deed, this is somehow similar to the case of entanglement th&ion. Finally, we show that the simplest of our inequalites
ory, where the structure of multipartite entanglement iczmu fine facets of the relevant polytopes of correlations, andyst
richer than that of bipartite entanglement [2]. their quantum mechanical violations.

A natural issue to investigate is genuine multipartite non-
locality E], which represents the strongest form of mutip
tite non-locality. More precisely, when considering a syst
composed ofn spatially separated parts, it is natural to ask o )
whether allm parts of the system are non-locally correlated, 10 make the main idea of our approach clear, we first focus
or whether it is only a subset df < m parts that display ©N the simplest scenario featuring three se_parated paties
non-locality while the remaining: — k parts are simply clas- €&, Bob, and Charly. Each party (labeled;)ys asked to per-
sically correlated. Indeed such a question finds a natural co form a measurement; (chosen among a finite set) yielding
text in quantum information theory and in the study of many-a resulta; with j = 1,2, 3. Thus the experiment is character-
body systems [3]. First, the presence of genuine multijgarti 12€d by the joint probablity distributiof (a1 aas| X1 X5 X5).
non-locality implies the presence of genuine multiparite Th_ere exists d|ﬁe_rgnt notions of non-locality which theres
tanglement. Also it is a fundamental issue to determine théationsP can exhibit.
role played by non-locality in quantum information process ~ First, the experiment can display ‘standard’ non-locateor

ing, for instance in the context of measurement based q[mntulations, that is, the probability distributidi cannot be written
computation([4]. under the local form:

SIMPLE APPROACH TO SVETLICHNY'’S INEQUALITY

In 1986, Svetlichny discovered the first method to detect
genuine multipartite non-locality [[5]. Focusing on the eas Pr(arazaz) = /d)‘P()‘)Pl (a1[A) P2 (az|A) Ps(as|A) - (1)
of a system of three qubits, he derived a Bell-type inequalit
which holds even if (any) two out of the three parts wouldwhere) is a shared local variable and where we have omitted
come together and act jointly—that is two parties can disthe measurement inpufs; for simplicity. To test for such
play arbitrary non-local correlations, while the third fyais  type of non-locality, one uses standard Bell inequalities.
separated. Thus it follows that a violation of such inequal- However, this notion of non-locality does not capture the
ity implies that the systems features genuine tripartita-no idea of genuine multipartite non-locality. For instancethe
locality, implying the presence of genuine tripartite engie-  case where Alice and Bob are non-locally correlated, but un-
ment. Svetlichny’s original inequality was later generatl to  correlated from Charly, it would still follow thaP cannot be
the case of an arbitrary number of partigls [6]. These worksvritten in the form[[1), although the system features no gen-
were followed by studies on the non-locality of multipagtit uine tripartite non-locality.
entangled states, see for instaride [7]. More refined coscept To detect genuine multipartite non-locality, one needsito e
and measures of multipartite non-locality have also been insure that the probability distributions cannot be reprediizy
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local means even if (any) two of the three parties would come
together and act jointly—and consequently could reproduce
any bipartite non-local probability distribution. Forryakhis
corresponds to ensuring th&tcannot be written in the form:

3 S
Pg(arazas) = » i / dXpij (N Pij (aia;1\) Py (ak|)) (2)
k=1

where{s, j} {k} = {1, 2,3} and the sum takes care of dif-
ferent bipartitions of the parties. In the following we dhal
refer to such models as ‘bipartition models’. A probability
distribution P which cannot be expressed in the above form
features genuine tripartite non-locality; to be reprodudas-
sicaly, all three parties must come together. Clearly,dseh
Bell inequalities can in general not be used to test for genui
multipartite non-locality, and one needs better adaptelto

performs one out of two possible measurements. We deno
the measurements of pagtpy X ; andX’, and their results by

a; anda’;. Considering the case of dichotomic measurements
i.e. wherea;,a; € {—1,1}, Svetlichny [5] proved that the

separated. Thus they are effectively playing the aver-
age game-CHSH+CHSH’ (the signs specifying which
game is played depend on the outputs of C). It can be
immediately checked that the algebraic maximum of
any of these average games id 4 [12]. Thus it follows
thatS; < 4 for the bipartion AB/C.

Argument 2. For the bipartition A/BC, B knows which
version of the CHSH game he is supposed to play with
A, since he is together with C. However, CHSH being a
non-local game, AB cannot achieve better than the local
bound (i.e. CHSH=2 or CHSH’=2), as they are sepa-
rated. Thus it follows thab; < 4. Note that the same
reasoning holds for the bipartition B/AC.

From these two arguments, it follows that Svetlichny’s in-
equality [4) holds for any correlation of the forf (2). Note
From now on, we shall focus on the case where each part%gat_Since the polynomid; is invariant under pe_rmutation of
arties, the proof already follows by applying either onéhef

WO arguments given above. However, using both arguments
above allows one in principle to deal with polynomials which

are not invariant under permutation of parties.

J
inequality

S3 = ajasal + arahas + ajazaz — ajahay 3)
a’la/2a3 + a/lagaé + alaéag —ajasaz < 4
holds for any probability disitribution of the forril(2). Tha

violation of inequality[(B) implies the presence of genuirie
partite non-locality, and hence of genuine tripartite agte-

ment (regardless of the Hilbert space dimension [10]). Not
that the above polynomial should be understood as a sum

expectation values; for instaneeasa’y, meanst (ajaza}), the

expectation value of the product of the measurement outsom

when the measurements axg, X5, and X?.

The starting point of our approach is to rewrite the inequal

ity @) as follows:
S3 = CHSHaj + CHSH a3 < 4 4)

where CHSH= ajas + a1d}, + dfas —
Clauser-Horne-Shimony-Holt polynomi

ayal is the usual
11], and CHSH

ayah + ajas + aral, — ajaq is one of its equivalent forms,
obtained by the primed and non-prime measurements. Notgef.

Furthermore, expressing Svetlichny’s inequality under th
form (4) allows one to understand its optimal quantum me-
chanical violation. Suppose ABC share a three qubit GHZ
state|y)) = (]000) + |111))/+/2. From [3) it is clear that C
should choose his measurement settings in order to prepare
for AB the state that is optimal for the corresponding CHSH
game, i.e. amaximally entangled state of two qubits. Lete\li
and Bob choose measurements which are optimal for CHSH—
X, = o, andX| = g, for A; Xy = (0, — 0,)/v2 and

5 = (0, + 0,)V/2 for B. Itis then straightforward to check
?hat the measurements of C must¥ig = o, andX} = —o,.
é:or instance, when C measures and gets outcome-1, he
prepares the state..) = (|00) + |11))/+/2 for AB which is
optimal for the CHSH game. Note that, given the measure-
‘ment of A and B, the statie,) gives CHSH=-2+/2; thus the
output of C ensures that the overall sign is positive. Siryila
when C measureso, and gets outcome:1, he prepares for
AB the statelg+) = (|00) + i[11))/+/2. Given the measure-
ments of A and B, the state.) gives CHSH'=:£21/2. Thus
ABC achieve the score of; = 4v/2, which is the optimal
quantum violation as can be checked using the techniques of
[I’k]. Moreover, the idea of steering also allows one to

that we can also obtain CHSH’ from CHSH by applying the Understand the resistance to (white) noise of this quantam v

mappingas — a) anda, — —as.

lation. Basically, Svetlichny’s inequality should be \at#d if

The main point of our observation is now the following: It @nd only if the state of AB (prepared by a measurement of C)
is the input setting of Charly that defines which version ef th Violates CHSH. Thus we expect the resistance to noise of the
CHSH game Alice and Bob are playing. When C gets thé>HZ state for Svetlichny’s inequality should coincide wiitle
input X4, then AB play the standard CHSH game; when Cresistance to noise of a maximally entangled two qubit state
gets the inputYs, AB play CHSH'. From this observation, for CHSH. Thisisindeed what happens; in both cases we have

two simple arguments show immediately th&t < 4 holds
for any bipartition model of the fornil2).

e Argument 1. Consider the bipartition AB/C. Although
AB are together, and could thus produce any (bipar-

the critical visibility w = 1//2.
The form of inequality[(#) also suggests a straightforward
generalization to an arbitrary number of parties

S =Sm_1a, +S | a, <2m! (5)

tite) non-local probability distribution, they do notknow whereS/,_; is obtained fromS,,,_; by interverting primed
which CHSH game they are supposed to play, as C i&nd non-primed settings. FroArgument 2 above it is clear



that if inequalityS,,—1 < 2™~2 holds for any bipartition of For instance, for the case of = 4 parties we obtain
them — 1 parties, then inequality{5) holds for any biparti-
tion where partym is not alone. The fact thafl(5) holds for S1.d = [a1 + a2 + az + as + 1] + [a1 + a2 + az + a} + 1]*
this partition as well follows from the fact that the polyniain +a1 + az + af + a}y] + [a1 + ah + af + 4] (10)
S 1S symmetric .under permutation of the parties (thls will tlah +ah+al+a,— 1]+ ... >4(d—1)
be shown below in a more general context). Inequalifiés (5)
are the generalizations of Svetlichny’s inequality préséin  where we have omitted the symmetric terms obtained by per-
Ref. [6]. muting the players.
Proof of inequality (8). The proof that[{9) holds for any
bipartition of them players is again based okrgument 2
DETECTING GENUINE MULTIPARTITE NON-LOCALITY and goes by induction. Let us suppose that(i),—1).q >
IN SYSTEMS OF ARBITRARY DIMENSION 2m=3(d — 1) holds for any bipartition of then — 1 parties,
and that (i) S(,,1),q is invariant under any permutation of
The form [@) suggests further generalizations. We nowparties and contains all possil#@ ! terms. Then, it follows
present a family of inequalities detecting genuine muitipa from (i) thatsS,, 4 holds for all bipartitions, except for the one
tite non-locality for scenarios involving an arbitrary nber  in which partym is alone.
of parties and systems of arbitrary dimension. The main idea To deal with this last bipartition, we need to show that the
here consists of replacing the CHSH expression[by (4) withpolynomialS,,, 4 is invariant under any permutation of parties.
the Collins-Gisin-Linden-Massar-Popescu (CGLMP) expres This is done in two steps. First note that by constructign,
sion [14], which gives bipartite Bell inequalities for sgsts ~ contains all2™ possible terms. So it remains to be shown
of arbitrary dimension. Here we use the form of CGLMP in- that all terms featuring a given number of unprimed inputs ap

troduced in Ref.[[15], that is pear with the same type of bracket. To see this, notice that
the bracket associated to terms with an increasing number of
So.q = la1 + az] + [a1 + ab]* (6) unprimed measurements follow a regular pattern; termaifeat
ld, Fas) +[d vahy—1]>d—1 ing qnly primed measurements have — 1]_; terms with.one
unprimed measurement haje]*; terms with two unprimed
where[X] = Zd:ol jP(X = jmodd) and[X]* = [-X]. Mmeasurements haye.] etc. In order to determine the bracket
Note that for convemence the measurement outcomes are nd} the following terms, one simply iterates the rlé (7). So,
denoteds; € {0,1 — 1}. Note also that forl = 2, the the Ipracket of terms featuring unprimed measurements is
CGLMP inequality reduces to CHSH. obtained by starting from the bracket. — 1] and iterating

k times the rule[{[7). Now, note that terms.$, 4 featuring
a fixed number of unprimed measuremehtsan come from
two possible terms: first, from terms #,,_1) 4 featuringk

To constructSs ; we use the idea of Eq](4). First we define
S, & an equivalent form o 4 [IE] obtained using the rule:

(] = [+ 1] and[..]* = [..]. ) unprimed measurements; second from terms i%in _, d
featuringk — 1 unprimed terms. From the pattern descrlbed
Next we construchs ¢ = So.4 o aj + S} , o as and obtain above, it follows that both of these terms appear within é)_(ac
' the same type of bracket. Thus we have faf,; is symmetric
Ssa = [a1+as +as+ 1 + a1 + a2 + i :nder permutation of the parties, which completes the proof
!/ /
Hlon + a5 + as] + [0y + 0> + ag] (8) Note that the arguments presented above also allow us to
+la1 + ay + az]” + [a] + a2 + a5]” constructs,, 4 directly using rule[{l7) starting from the bracket

+[a} + ab + as)* + [a} + ah + a5 —1] >2(d— 1), that contains only primed terms. Moreover, it can be shown
that .S, 2 is equivalent to the generalizations of Svetlichny’s
where the rule> to include the third party works by simply inequalities given in Ref[[6].
inserting its outcomes:§ or a%) into the brackets. Inthe case  Tightness. Among Bell inequalities, those which define
d = 2 this rule reduces to Ed.]1(4). facets of the polytope of local correlations are of paracul
From the fact tha5, 4 is a Bell inequality and fromrgu-  interest, since they form a minimal set of inequalities tareh
ment 2, it follows that the inequality[{8) holds for the biparti- acterize local correlationﬂll?]. These inequalities afened
tions A/BC and B/AC. Moreover, since the polynomialis  to as ‘tight’ Bell inequalities. In the present paper, weusc
symmetric under permutation of the parties, the inequ@@ly on Bell-type inequalities detecting genuine multipartitan-

holds for any bipartition. locality. These inequalities are thus satisfied by any biipam
This construction can be generalized to an arbitrary numbemnodel of the form[{(R). Indeed the set of bipartition corrielas
of partiesm. Specifically, we take also forms a polytope—which is strictly larger than the loca

polytope ]. Here we have checked that inequalifiés (&) an
Smd = Stm—1).d Uy + S(m_1),a0m > 2" *(d—1) (9) (0 are facets of the respective polytope b= 2,3. We
conjecture that all inequalitie](9) correspond to facets.
whereS{, ) ;is obtained fromsS(,, ) 4 using the rule[(7). Quantum violations. Finally we discuss the quantum vio-
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lation of our inequalities. In the case of Svetlichny’'s any ~ genuine multipartite non-locality for an arbitrary numludr
inequality, it turned out that writing the inequality in tlreem  systems of arbitrary dimensionality.

@) naturally leads us to consider steering in order to fired th  Finally, our approach to Svetlichny’s inequality suggests
optimal quantum violation. Indeed, since the structurewf o other possible generalizations. For instance it would be in

inequalities[() is based ohl(4), we follow a similar appioac teresting to investigate the case where the parties caarperf
here, which will lead us to the optimal quantum violations asmore than two measurements.
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qutrits given byly2) = (]00) +|11)+122))/+/2 + v2 where

v = (v/11 — v/3)/2 [1€]. The optimal measurements are so-

called Fourier transform measurements , 20]; the basis a

defined by the non-degenerate eigenvectors

Note added. — While completing this manuscript, we be-
came aware of the work of Ref. [21] who presented an in-
equality sharing similar properties with our inequality. ).
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