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Detecting genuine multipartite quantum non-locality –
a simple approach and generalization to arbitrary dimension
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The structure of Bell-type inequalities detecting genuinemultipartite non-locality, and hence detecting gen-
uine multipartite entanglement, is investigated. We first present a simple and intuitive approach to Svetlichny’s
original inequality, which provides a clear understandingof its structure and of its violation in quantum mechan-
ics. Based on this approach, we then derive a family of Bell-type inequalities for detecting genuine multipartite
non-locality in scenarios involving an arbitrary number ofparties and systems of arbitrary dimension. Finally
we discuss the thightness and quantum mechanical violations of these inequalities.

Non-locality is a fundamental feature of quantum mechan-
ics. On top of being a fascinating phenomenon—defying in-
tuition about space and time in a dramatic way—non-locality
is also a key resource for information processing [1], and has
thus been the subject of intense research in the last years.

It is fair to say that, while our comprehension of bipartite
non-locality has reached a reasonable level, multipartitenon-
locality is still poorly understood. This is partly due to the
fact that the phenomenon becomes much more complex when
moving from the bipartite case to the multipartite case. In-
deed, this is somehow similar to the case of entanglement the-
ory, where the structure of multipartite entanglement is much
richer than that of bipartite entanglement [2].

A natural issue to investigate is genuine multipartite non-
locality [5], which represents the strongest form of multipar-
tite non-locality. More precisely, when considering a system
composed ofm spatially separated parts, it is natural to ask
whether allm parts of the system are non-locally correlated,
or whether it is only a subset ofk < m parts that display
non-locality while the remainingm− k parts are simply clas-
sically correlated. Indeed such a question finds a natural con-
text in quantum information theory and in the study of many-
body systems [3]. First, the presence of genuine multipartite
non-locality implies the presence of genuine multipartiteen-
tanglement. Also it is a fundamental issue to determine the
role played by non-locality in quantum information process-
ing, for instance in the context of measurement based quantum
computation [4].

In 1986, Svetlichny discovered the first method to detect
genuine multipartite non-locality [5]. Focusing on the case
of a system of three qubits, he derived a Bell-type inequality
which holds even if (any) two out of the three parts would
come together and act jointly—that is two parties can dis-
play arbitrary non-local correlations, while the third party is
separated. Thus it follows that a violation of such inequal-
ity implies that the systems features genuine tripartite non-
locality, implying the presence of genuine tripartite entangle-
ment. Svetlichny’s original inequality was later generalized to
the case of an arbitrary number of parties [6]. These works
were followed by studies on the non-locality of multipartite
entangled states, see for instance [7]. More refined concepts
and measures of multipartite non-locality have also been in-

vestigated [8].
In the present paper, we start by providing a simple and in-

tuitive approach to Svetlichny’s original inequality. Ourap-
proach, which naturally extends to the case of an arbitrary
number of parties, makes it clear why these inequalities de-
tects genuine multipartite non-locality. It also providesan in-
tuitive understanding of their violations in quantum mechan-
ics, via the concept of steering [9]. Based on this approach,
we derive Bell inequalities detecting genuine multipartite non-
locality for an arbitrary number of systems of arbitrary dimen-
sion. Finally, we show that the simplest of our inequalitiesde-
fine facets of the relevant polytopes of correlations, and study
their quantum mechanical violations.

SIMPLE APPROACH TO SVETLICHNY’S INEQUALITY

To make the main idea of our approach clear, we first focus
on the simplest scenario featuring three separated partiesAl-
ice, Bob, and Charly. Each party (labeled byj) is asked to per-
form a measurementXj (chosen among a finite set) yielding
a resultaj with j = 1, 2, 3. Thus the experiment is character-
ized by the joint probablity distributionP (a1a2a3|X1X2X3).
There exists different notions of non-locality which the corre-
lationsP can exhibit.

First, the experiment can display ‘standard’ non-local corre-
lations, that is, the probability distributionP cannot be written
under the local form:

PL(a1a2a3) =

∫

dλρ(λ)P1(a1|λ)P2(a2|λ)P3(a3|λ) (1)

whereλ is a shared local variable and where we have omitted
the measurement inputsXj for simplicity. To test for such
type of non-locality, one uses standard Bell inequalities.

However, this notion of non-locality does not capture the
idea of genuine multipartite non-locality. For instance, in the
case where Alice and Bob are non-locally correlated, but un-
correlated from Charly, it would still follow thatP cannot be
written in the form (1), although the system features no gen-
uine tripartite non-locality.

To detect genuine multipartite non-locality, one needs to en-
sure that the probability distributions cannot be reproduced by

http://arxiv.org/abs/1011.0089v1


2

local means even if (any) two of the three parties would come
together and act jointly—and consequently could reproduce
any bipartite non-local probability distribution. Formally, this
corresponds to ensuring thatP cannot be written in the form:

PB(a1a2a3) =

3
∑

k=1

pk

∫

dλρij(λ)Pij(aiaj |λ)Pk(ak|λ) (2)

where{i, j}⋃{k} = {1, 2, 3} and the sum takes care of dif-
ferent bipartitions of the parties. In the following we shall
refer to such models as ‘bipartition models’. A probability
distributionP which cannot be expressed in the above form
features genuine tripartite non-locality; to be reproduced clas-
sicaly, all three parties must come together. Clearly, standard
Bell inequalities can in general not be used to test for genuine
multipartite non-locality, and one needs better adapted tools.

From now on, we shall focus on the case where each party
performs one out of two possible measurements. We denote
the measurements of partyj byXj andX ′

j , and their results by
aj anda′j . Considering the case of dichotomic measurements,
i.e. whereaj , a′j ∈ {−1, 1}, Svetlichny [5] proved that the
inequality

S3 = a1a2a
′
3 + a1a

′
2a3 + a′1a2a3 − a′1a

′
2a

′
3 (3)

a′1a
′
2a3 + a′1a2a

′
3 + a1a

′
2a

′
3 − a1a2a3 ≤ 4

holds for any probability disitribution of the form (2). Thus a
violation of inequality (3) implies the presence of genuinetri-
partite non-locality, and hence of genuine tripartite entangle-
ment (regardless of the Hilbert space dimension [10]). Note
that the above polynomial should be understood as a sum of
expectation values; for instancea1a2a′3 meansE(a1a2a

′
3), the

expectation value of the product of the measurement outcomes
when the measurements areX1,X2, andX ′

3.
The starting point of our approach is to rewrite the inequal-

ity (3) as follows:

S3 = CHSHa′3 + CHSH′ a3 ≤ 4 (4)

where CHSH= a1a2 + a1a
′
2 + a′1a2 − a′1a

′
2 is the usual

Clauser-Horne-Shimony-Holt polynomial [11], and CHSH′ =
a′1a

′
2 + a′1a2 + a1a

′
2 − a1a2 is one of its equivalent forms,

obtained by the primed and non-prime measurements. Note
that we can also obtain CHSH’ from CHSH by applying the
mappinga2 → a′2 anda′2 → −a2.

The main point of our observation is now the following: It
is the input setting of Charly that defines which version of the
CHSH game Alice and Bob are playing. When C gets the
input X ′

3, then AB play the standard CHSH game; when C
gets the inputX3, AB play CHSH’. From this observation,
two simple arguments show immediately thatS3 ≤ 4 holds
for any bipartition model of the form (2).

• Argument 1. Consider the bipartition AB/C. Although
AB are together, and could thus produce any (bipar-
tite) non-local probability distribution, they do not know
which CHSH game they are supposed to play, as C is

separated. Thus they are effectively playing the aver-
age game±CHSH±CHSH’ (the signs specifying which
game is played depend on the outputs of C). It can be
immediately checked that the algebraic maximum of
any of these average games is 4 [12]. Thus it follows
thatS3 ≤ 4 for the bipartion AB/C.

• Argument 2. For the bipartition A/BC, B knows which
version of the CHSH game he is supposed to play with
A, since he is together with C. However, CHSH being a
non-local game, AB cannot achieve better than the local
bound (i.e. CHSH=2 or CHSH’=2), as they are sepa-
rated. Thus it follows thatS3 ≤ 4. Note that the same
reasoning holds for the bipartition B/AC.

From these two arguments, it follows that Svetlichny’s in-
equality (4) holds for any correlation of the form (2). Note
that since the polynomialS3 is invariant under permutation of
parties, the proof already follows by applying either one ofthe
two arguments given above. However, using both arguments
above allows one in principle to deal with polynomials which
are not invariant under permutation of parties.

Furthermore, expressing Svetlichny’s inequality under the
form (4) allows one to understand its optimal quantum me-
chanical violation. Suppose ABC share a three qubit GHZ
state|ψ〉 = (|000〉 + |111〉)/

√
2. From (4) it is clear that C

should choose his measurement settings in order to prepare
for AB the state that is optimal for the corresponding CHSH
game, i.e. a maximally entangled state of two qubits. Let Alice
and Bob choose measurements which are optimal for CHSH—
X1 = σx andX ′

1 = σy for A; X2 = (σx − σy)/
√
2 and

X ′
2 = (σx + σy)

√
2 for B. It is then straightforward to check

that the measurements of C must beX3 = σx andX ′
3 = −σy.

For instance, when C measuresσx and gets outcome±1, he
prepares the state|φ±〉 = (|00〉 ± |11〉)/

√
2 for AB which is

optimal for the CHSH game. Note that, given the measure-
ment of A and B, the state|φ±〉 gives CHSH=±2

√
2; thus the

output of C ensures that the overall sign is positive. Similarly,
when C measures−σy and gets outcome±1, he prepares for
AB the state|φ̃±〉 = (|00〉 ± i|11〉)/

√
2. Given the measure-

ments of A and B, the state|φ̃±〉 gives CHSH’=±2
√
2. Thus

ABC achieve the score ofS3 = 4
√
2, which is the optimal

quantum violation as can be checked using the techniques of
Ref. [13]. Moreover, the idea of steering also allows one to
understand the resistance to (white) noise of this quantum vio-
lation. Basically, Svetlichny’s inequality should be violated if
and only if the state of AB (prepared by a measurement of C)
violates CHSH. Thus we expect the resistance to noise of the
GHZ state for Svetlichny’s inequality should coincide withthe
resistance to noise of a maximally entangled two qubit state
for CHSH. This is indeed what happens; in both cases we have
the critical visibilityw = 1/

√
2.

The form of inequality (4) also suggests a straightforward
generalization to an arbitrary number of partiesm:

Sm = Sm−1 a
′
m + S′

m−1 am ≤ 2m−1 (5)

whereS′
m−1 is obtained fromSm−1 by interverting primed

and non-primed settings. FromArgument 2 above it is clear
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that if inequalitySm−1 ≤ 2m−2 holds for any bipartition of
them − 1 parties, then inequality (5) holds for any biparti-
tion where partym is not alone. The fact that (5) holds for
this partition as well follows from the fact that the polynomial
Sm is symmetric under permutation of the parties (this will
be shown below in a more general context). Inequalities (5)
are the generalizations of Svetlichny’s inequality presented in
Ref. [6].

DETECTING GENUINE MULTIPARTITE NON-LOCALITY
IN SYSTEMS OF ARBITRARY DIMENSION

The form (4) suggests further generalizations. We now
present a family of inequalities detecting genuine multipar-
tite non-locality for scenarios involving an arbitrary number
of parties and systems of arbitrary dimension. The main idea
here consists of replacing the CHSH expression by (4) with
the Collins-Gisin-Linden-Massar-Popescu (CGLMP) expres-
sion [14], which gives bipartite Bell inequalities for systems
of arbitrary dimension. Here we use the form of CGLMP in-
troduced in Ref. [15], that is

S2,d = [a1 + a2] + [a1 + a′2]
∗ (6)

+[a′1 + a2]
∗ + [a′1 + a′2 − 1] ≥ d− 1

where[X ] =
∑d−1

j=0 jP (X = j modd) and [X ]∗ = [−X ].
Note that for convenience the measurement outcomes are now
denotedaj ∈ {0, 1, ..., d − 1}. Note also that ford = 2, the
CGLMP inequality reduces to CHSH.

To constructS3,d we use the idea of Eq. (4). First we define
S′
2,d, an equivalent form ofS2,d [16] obtained using the rule:

[...] → [...+ 1]∗ and[...]∗ → [...]. (7)

Next we constructS3,d = S2,d ◦ a′3 + S′
2,d ◦ a3 and obtain

S3,d = [a1 + a2 + a3 + 1]∗ + [a1 + a2 + a′3]

+[a1 + a′2 + a3] + [a′1 + a2 + a3] (8)

+[a1 + a′2 + a′3]
∗ + [a′1 + a2 + a′3]

∗

+[a′1 + a′2 + a3]
∗ + [a′1 + a′2 + a′3 − 1] ≥ 2(d− 1),

where the rule◦ to include the third party works by simply
inserting its outcomes (a3 or a′3) into the brackets. In the case
d = 2 this rule reduces to Eq. (4).

From the fact thatS2,d is a Bell inequality and fromArgu-
ment 2, it follows that the inequality (8) holds for the biparti-
tions A/BC and B/AC. Moreover, since the polynomialS3 is
symmetric under permutation of the parties, the inequality(8)
holds for any bipartition.

This construction can be generalized to an arbitrary number
of partiesm. Specifically, we take

Sm,d = S(m−1),d a
′
m + S′

(m−1),d am ≥ 2m−2(d− 1) (9)

whereS′
(m−1),d is obtained fromS(m−1),d using the rule (7).

For instance, for the case ofm = 4 parties we obtain

S4,d = [a1 + a2 + a3 + a4 + 1] + [a1 + a2 + a3 + a′4 + 1]∗

+[a1 + a2 + a′3 + a′4] + [a1 + a′2 + a′3 + a′4]
∗ (10)

+[a′1 + a′2 + a′3 + a′4 − 1] + ... ≥ 4(d− 1)

where we have omitted the symmetric terms obtained by per-
muting the players.

Proof of inequality (9). The proof that (9) holds for any
bipartition of them players is again based onArgument 2
and goes by induction. Let us suppose that (i)S(m−1),d ≥
2m−3(d − 1) holds for any bipartition of them − 1 parties,
and that (ii)S(m−1),d is invariant under any permutation of
parties and contains all possible2m−1 terms. Then, it follows
from (i) thatSm,d holds for all bipartitions, except for the one
in which partym is alone.

To deal with this last bipartition, we need to show that the
polynomialSm,d is invariant under any permutation of parties.
This is done in two steps. First note that by constructionSm,d

contains all2m possible terms. So it remains to be shown
that all terms featuring a given number of unprimed inputs ap-
pear with the same type of bracket. To see this, notice that
the bracket associated to terms with an increasing number of
unprimed measurements follow a regular pattern; terms featur-
ing only primed measurements have[... − 1]; terms with one
unprimed measurement have[...]∗; terms with two unprimed
measurements have[...] etc. In order to determine the bracket
of the following terms, one simply iterates the rule (7). So,
the bracket of terms featuringk unprimed measurements is
obtained by starting from the bracket[... − 1] and iterating
k times the rule (7). Now, note that terms inSm,d featuring
a fixed number of unprimed measurementsk can come from
two possible terms: first, from terms inS(m−1),d featuringk
unprimed measurements; second from terms in inS′

(m−1),d

featuringk − 1 unprimed terms. From the pattern described
above, it follows that both of these terms appear within exactly
the same type of bracket. Thus we have thatSm,d is symmetric
under permutation of the parties, which completes the proof.
�

Note that the arguments presented above also allow us to
constructSm,d directly using rule (7) starting from the bracket
that contains only primed terms. Moreover, it can be shown
thatSm,2 is equivalent to the generalizations of Svetlichny’s
inequalities given in Ref. [6].

Tightness. Among Bell inequalities, those which define
facets of the polytope of local correlations are of particular
interest, since they form a minimal set of inequalities to char-
acterize local correlations [17]. These inequalities are refered
to as ‘tight’ Bell inequalities. In the present paper, we focus
on Bell-type inequalities detecting genuine multipartitenon-
locality. These inequalities are thus satisfied by any bipartition
model of the form (2). Indeed the set of bipartition correlations
also forms a polytope—which is strictly larger than the local
polytope [18]. Here we have checked that inequalities (8) and
(10) are facets of the respective polytope ford = 2, 3. We
conjecture that all inequalities (9) correspond to facets.

Quantum violations. Finally we discuss the quantum vio-
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lation of our inequalities. In the case of Svetlichny’s original
inequality, it turned out that writing the inequality in theform
(4) naturally leads us to consider steering in order to find the
optimal quantum violation. Indeed, since the structure of our
inequalities (9) is based on (4), we follow a similar approach
here, which will lead us to the optimal quantum violations as
well.

First we recall that, in the bipartite case and ford = 3, the
maximal violation of the CGLMP inequality (6) is obtained by
performing measurements on a partially entangled state of two
qutrits given by|ψ2〉 = (|00〉+γ|11〉+ |22〉)/

√

2 + γ2 where
γ = (

√
11 −

√
3)/2 [19]. The optimal measurements are so-

called Fourier transform measurements [14, 20]; the basis are
defined by the non-degenerate eigenvectors

|u〉 = 1√
3

2
∑

v=0

exp

(

2iπ

3
v(αm + u)

)

|v〉 (11)

for partym, whereα1 = 0, α′
1 = −1/2, andα2 = 1/4,

α′
2 = −1/4 . This givesS2,3 = 1.0851, corresponding to a

resistance to (white) noise ofw = 0.6861.
Now moving to the case of three parties, it appears natu-

ral to choose the measurements of Alice and Bob to be the
ones which are optimal for CGLMP (i.e., as above). Next
we choose the tripartite state and Charly’s measurements to
be such that, by measuring his system, C prepares the desired
state for A and B. For instance we can take simply

|ψ3〉 =
1

√

2 + γ2
(|000〉+ γ|111〉+ |222〉) (12)

and fix Charly’s measurements to be Fourier transform as
well—we takeα3 = 1/2 andα′

3 = 0. With these parame-
ters we obtain the violationS3,3 = 2.1703, which we have
checked to be the optimal quantum violation using the tech-
niques of Ref. [13]. Note also that the resistance to noise of
|ψ3〉 is herew = 0.6861, which corresponds exactly to that
obtained for CGLMP with|ψ2〉.

From the structure of our inequalities (9), we conjecture that
this idea of steering always provides the optimal quantum vi-
olation, that is, that the optimal violation is always obtained
from the state|ψm〉 = (|0〉⊗m

+ γ|1〉⊗m
+ |2〉⊗m

)/
√

2 + γ2

and Fourier transform measurement. From this we expect the
resistance to noise to be independent of the number of parties
m and given byw = 0.6869. We could check numerically
that this is indeed the case forS4,3. Also, we expect a similar
behaviour for higher dimensionsd.

CONCLUSION

The main focus of this paper is to provide an intuitive ap-
proach to Bell-type inequalities detecting genuine multipartite
non-locality. First, we provided a natural form for Svetlichny’s
inequality, which allows one to better understand its structure
as well as its quantum violation. Based on this understanding,
we then derived a family of Bell-type inequalities detecting

genuine multipartite non-locality for an arbitrary numberof
systems of arbitrary dimensionality.

Finally, our approach to Svetlichny’s inequality suggests
other possible generalizations. For instance it would be in-
teresting to investigate the case where the parties can perform
more than two measurements.
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Note added. – While completing this manuscript, we be-
came aware of the work of Ref. [21] who presented an in-
equality sharing similar properties with our inequality Eq. (9).
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