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Entanglement transitions in random definite particle states
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Entanglement within qubits are studied for the subspace of definite particle states or definite
number of up spins. A transition from an algebraic decay of entanglement within two qubits (∼
1/N2) with the total number N of qubits, to an exponential one when the number of particles is
increased from two to three is studied in detail. In particular the probability that the concurrence
is non-zero is calculated using statistical methods and shown to agree with numerical simulations.
Further entanglement within a block of m qubits is studied using the log-negativity measure which
indicates that a transition from algebraic to exponential decay occurs when the number of particles
exceeds m.
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Entanglement has been extensively investigated in the
recent past, as it is a critical resource for quantum infor-
mation processing [1]. One model of quantum compu-
tation, the one-way quantum computing, relies explicitly
on entanglement. The resource of entanglement is not at
all rare, a random pure quantum state is typically highly
entangled [2, 3]. In fact there is so much entanglement
in typical random pure states that recent studies [4, 5]
find them not to be useful for one-way quantum compu-
tation. This motivates the question of studying subsets
of states with a control over the amount of entanglement
available.

It is well known that most of the entanglement in many
body quantum systems is multipartite. In random pure
states ofN qubits, we need to consider blocks whose total
size is at least larger than N/2, for them to be entangled
[6]. This being the case, entanglement in smaller blocks
is nearly impossible to observe. Previous studies have
shown how rare it is to have two qubits entangled in a
many qubit random pure state [6, 7]. In this Letter it is
shown that there is a surprising connection between the
number of up-spins or particles present in definite par-
ticle states and entanglement. Thus producing definite
particle random states, as defined below, may allow con-
trol over the type of entanglement that is desired. For
instance if two qubit entanglement is to be obtained, it is
shown that typical three-particle states will render this
nearly impossible to achieve. The border between prob-
able and improbable is described by a transition from an
algebraic to an exponential decay, which is typically ob-
tained at phase transitions. Further, the approach pre-
sented in this letter might shed light on methods that
are applicable to a wider class of problems in the area of
quantum complex systems.

Random pure states belong to the ensemble of states
that are uniformly sampled from the Hilbert space, with
the only constraint being normalization. Such states
arise for instance in mesoscopic systems [8], nuclear
physics [9] etc. and have been modeled as eigenfunctions
of random matrices from the usual Gaussian ensembles.

There have been studies that explore how to efficiently
produce operators with statistical properties of random
matrices [10]. Classically chaotic systems have long been
known to exhibit such states in their quantum limit, and
studies of entanglement in quantum chaotic systems of-
ten take recourse to random states [11, 12].

A definite particle state is a random pure state in
a subspace formed by the basis vectors of the Hilbert
space, which, when expressed in the spin-z basis, have
a fixed number, say l, of “ones”, or spin ups. Clearly
many Hamiltonian systems including spin models (such
as the quantum spin-glass, or the disordered Heisenberg
lattices) are potential places where such states can oc-
cur as eigenstates. The number of particles allows to
add complexity to the states in a systematic manner,
and interesting properties for entanglement unfold in the
process. The ensemble of interest is taken to be the one
where the vectors in this subspace are such that they
are all equally likely, subject only to the constraint of
normalization.

A previous study of entanglement in random one-
particle states showed that the averaged concurrence be-
tween any two qubits scales as 1/N [13]. Thus with in-
creasing number of qubits entanglement between any two
still remains considerable, although decreasing, in con-
trast to a full random state. In this Letter it is shown
that for random two-particle states the average entan-
glement between qubits scales as 1/N2, while for three-
particle states this becomes exponentially small, as it
goes as exp(−N ln(N)). Thus when the number of parti-
cles exceeds two a transition is seen in the entanglement
between two qubits. It maybe noted that for full random
states it is not precisely known how such an entanglement
scales with the number of qubits.

It is possible to generalize the results of concurrence
between two qubits to entanglement within the block A
having m qubits of the system for instance by study-
ing the log-negativity measure [14]. Numerical evidence
points to the plausible result that the entanglement de-
cays with N algebraically if the number of particles in
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the subspace (l) is less than or equal to the block-length
(m). Once again quite surprisingly the decay of entangle-
ment becomes exponential when the number of particles
exceeds the block-length.
A definite l-particle state is best written by grouping

states with a given number of particles present in one
block, say A, and its complementary block, say B. Let
the number of qubits in block A be m and let l ≥ m.
Label the states by the number of particles (or total spin
Sz) in subsets A and B to write:

|ψ〉 =

(N−m
l )
∑

j=1

c
(0)
1j |0〉A|l〉jB +

(N−m
l−1 )
∑

j=1

(m1 )
∑

i=1

c
(1)
ij |1〉iA|l − 1〉jB

+ . . .+

(N−m
l−m )
∑

j=1

c
(m)
1j |m〉A|l −m〉jB. (1)

The reduced density matrix of the subsystem A de-
noted ρA, which is the state of the block of qubits we are
interested in studying, then has a block structure with
square blocks of sizes

(

m
0

)

,
(

m
1

)

, . . . ,
(

m
m

)

. These blocks
correspond to having a given number of particles, k, in
the subsystem A and can be identified with one of the
terms in the expression for the state. Further, each of
these blocks can be written as Gk = QkQ

†
k where Qk is a

matrix whose entries are the coefficients c
(k)
ij of the state.

The condition that trace of a density matrix is unity im-
plies that

∑

k Tr(QkQ
†
k) = 1. To construct the ensemble

of l-particle states, draw all the N =
(

N
l

)

coefficients c
(k)
ij

from the normal distribution N(0, 1) and normalize them
so that the trace condition is met. This is equivalent to
choosing them uniformly with the only constraint being
normalization [15].
In the important case of the reduced density matrix of

a block A with m = 2 qubits in a pure state of N qubits
and l particles can be written as:

ρA =









a00 0 0 0
0 a11 a12 0
0 a∗12 a22 0
0 0 0 a33









, (2)

where, a00 =
∑µ0

i=1(c
(0)
1i )

2, a33 =
∑µ2

i=1(c
(2)
1i )

2, and

(

a11 a12
a∗12 a22

)

= Q1Q
†
1, Q1 =

(

c
(1)
11 . . . c

(1)
1µ1

c
(1)
21 . . . c

2µ
(1)
1

)

. (3)

Here µi =
(

N−2
l−i

)

, i = 0, 1, 2. The results presented in

this work deal with real coefficients, c
(k)
ij

∗
= c

(k)
ij , a situa-

tion that would be relevant for example for systems with
time reversal symmetry. The central features, including
the scaling, remain the same in the complex case. Also
note that while the above expressions have been written
when l ≥ m, it is straightforward to write the same in
the other case.

Concurrence [16] is a measure of entanglement present
between two qubits such as those in the subsytem A. The
above structure in Eq. (2), greatly simplifies the expres-
sion for concurrence [17]

C = 2 max(|a12| −
√
a00a33, 0), (4)

and this allows for analytical estimates to be made, in
contrast to the case of a full random state.
Due to the large number of coefficients c

(k)
ij involved,

it is a good approximation to assume that the normal-
ization constraint is only important to set their scale and
that they are otherwise independent. This implies that
these are i.i.d. random variables drawn from the normal
distribution N(0, 1/N ).
The approach to finding the mean concurrence will be

to first estimate the probability that it will be nonzero.
The term a12 involves a correlation between two strings
of normally distributed numbers, each of length µ1, while
a00 maybe taken to be effectively its average and consid-
ered to be non-fluctuating. The following approximation
then ensues:

Pr(C > 0) ≈ Pr(|a12| −
√

〈a00〉
√
a33 > 0). (5)

The distribution of |a12|, P12, is of central importance
and can obtained from, for example, the probability den-
sity function of one of the marginals of the Wishart dis-
tribution for correlation matrices. Suppressing the cal-
culation, the result is

P12 (|a12| = x) = 2N Kν(Nx)√
πΓ(µ1/2)

(Nx

2

)ν

, (6)

whereKν(x) is the modified Bessel function of the second
kind, and ν = (µ1 − 1)/2. The distribution of

√
a33,

P33, follows from that of (square root of) a chi-square
distribution with µ2 degrees of freedom:

P33 (
√
a33 = y) =

Nµ2/2

2µ2/2−1Γ(µ2/2)
yµ2−1e−Ny2/2. (7)

Thus in view of the approximation above it follows
that:

Pr(C > 0) =

∫ ∞

0

P33(y)

∫ ∞
√

〈a00〉y
P12(x) dx dy. (8)

This can be evaluated by steps which are outlined here:
(a) change variable y to

√

2y/N , andNx to x; (b) use the
integral representation Kν(x) =

∫∞
0 e−x cosh t cosh(νt) dt,

and change variable from x cosh t to x. This leads to the
exact expression (given the approximation in Eq. (5))

Pr(C > 0) = β

∫ ∞

0

cosh(νt)

coshν+1 t
∫ ∞

0

y
µ2
2 −1e−y Γ (ν + 1,

√
γy cosh t) dy dt. (9)
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Here β = 2−ν+1/
√
πΓ(µ1/2)Γ(µ2/2), and γ = 2〈a00〉N .

While further simplification is possible, for example by
expanding e−y, it is expedient to seek a non-trivial up-
per bound that reveals the nature of the decay with N ,
the number of qubits. A careful examination of the in-
tegrands indicate that this can be most easily achieved
by using e−y < 1 and thus effectively removing the ex-
ponential from the integral. The remaining integrals can
be done exactly to give the first inequality below, while
the second follows from standard inequalities for ratios
of gamma functions:

Pr(C > 0) <
2µ2

γµ2/2
√
π

Γ
(

µ1+µ2

2

)

Γ
(

µ1

2

)

Γ(µ2+1
2 )

Γ(µ2

2 + 1)

<
1√
π

(

2µ1η

γ

)

µ2
2 1
√

µ2

2 + 1
4

, (10)

where η = 1+(µ2−2)/(2µ1). Note that when the number
of particles is much less than the number of qubits, η ≈
1. For the case of two particle states, l = 2, the first
inequality yields

Pr(C > 0) <
2
√
2

π

1√
N
, (11)

as µ1 = N − 2 and µ2 = 1. The inequality is valid for
large N . especially as the value of 〈a00〉 is taken to be
1. As a matter of fact that this is an excellent estimate
itself is seen from Fig. (1).
The two particle case is of special interest and can be

essentially derived from simpler formulae, if it is observed
that the fluctuations in a33, arising from a single realiza-
tion of the random variables, is more than the others.
Note that: a00 ∼ µ0/N ∼ 1, a33 ∼ µ2/N ∼ 1/N2,
and |a12|2 ∼ µ1/N 2 ∼ 4/N3. Hence typically the
concurrence will indeed be zero. Replacing the aver-
age values for the fluctuating a00 and |a12| results in

Pr(C > 0) ≈ Pr(
√
a33 <

√

2
π

2
N3/2 ) =

2
√
2

π
1√
N
, coinciding

with the upper bound just derived.The average value of
|a12| is used, rather than the (square root of the) aver-
age of |a12|2; the exact distribution can be used to show
that 〈|a12|2〉 = π

2 (〈|a12|〉2). Thus for two particle states
the probability of concurrence being positive decreases
algebraically, in contrast to the one-particle case when
P (C > 0) = 1, as a33 = 0.
For l = 3, three particle states, a completely different

behavior is obtained as µ1 ∼ N2/2, µ2 ∼ N , and γ ∼
N3/3 which result in

Pr(C > 0) <

√

2

πN
exp

(

−N
2
log(N/3)

)

. (12)

Unlike the two-particle case the probability that the con-
currence is positive decreases at least exponentially with
the number of qubits, see Fig. (2). Another new fea-
ture is that it is quite essential to take into account the
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FIG. 1: The scaling of Pr(C > 0) for random two particle
states with N qubits. The dashed line is of slope −1/2, the
circles are from numerical simulations, while the solid line is
the estimate in Eq. (11). Inset shows the average concurrence,
the dashed line is of slope−2, the dashed-dot line is the upper-
bound while the solid line is the estimate in Eq. (13).

fluctuations in both |a12| and in a33. Ignoring say the
fluctuations in a33 results in much smaller estimates of
the probability than what is found.
When l > 2, but still much less than N , the upper-

bound in Eq. (10) does not estimate the probability ac-
curately. While it can be made tighter, this is indeed a
good bound as it is simple, decreases with N , and shows
the advertized transition in the entanglement as one par-
ticle is added to a two particle state. It will be seen that
the entanglement hitherto shared between two qubits will
now be available for three-body and multi-party entan-
glement.
If p = l/N is of order 1 (and less than 1/2), the

states are “macroscopically” occupied; employing the ap-
proximation that

(

N
Np

)

∼ eSN where S = −p ln(p) −
(1 − p) ln(1 − p) is the binary entropy corresponding to
probability p, results in the upper bound Pr(C > 0) <

d1e
−SN/2 e−d2e

SN

, where d1 and d2 are positive constants
of order 1. However the upper-bound in Eq. (10) has
to be used with caution as it can be rendered trivial if
(2µ1η/γ) > 1, and consequently d2 becomes negative.
Thus for N = 10 qubits and l = 5 particles the upper-
bound ≈ 2.2 is trivial while for l = 4 it is ≈ 1.5 × 10−5.
While N = 12, l = 6 results in a trivial bound, l = 5
results in Pr(C > 0) < 3.3 × 10−15. Similarly when
N = 14 and l = 6, the upper-bound is ≈ 1.6 × 10−43, it
is improbable that two qubits will be entangled.
The mean concurrence, E(C) is now estimated. In the

two particle case for instance

E(C) ∼ 2〈|a12|〉Pr(C > 0) ∼ 16

π3/2N2
. (13)

A more general estimate is possible as E(C) = E[2(x −
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FIG. 2: The probability Pr(C > 0) for three particle
states, and the average concurrence as number of qubits N is
changed. Note that the y-axes are on a logarithmic scale. The
circles are from numerical simulations while the solid line in
the case of Pr(C > 0) is from an exact numerical evaluation
of Eq. (8).

√

〈a00〉y)Θ(x −
√

〈a00〉y)]. Using the distribution
P12(x)P33(y) and following the same steps as outlined
for the probability above it follows that E(C) <

2µ2+2

Nγµ2/2
√
π

Γ
(

µ1+µ2+1
2

)

Γ
(

µ1

2

) <
2
√
γ

N√
π

(

2µ1η
′

γ

)

µ2+1
2

(14)

where η′ = 1 + (µ2 − 1)/(2µ1). In the two particle case
this gives E(C) < 8/

√
πN2, which is quite close to the

estimate above. The exponential decay for three or more
particles is manifest. The mean concurrences are shown
in the insets of Figs. (1),(2).
The vanishingly small two qubit entanglement for more

than l = 2 goes into multiparty entanglement. A mea-
sure of entanglement that can be easily extended to
a subsystem having more than two qubits is the log-
negativity [14] and is given by ELN (ρAB) = log(||ρΓAB ||),
where ||ρΓ|| is the trace norm of the partial transpose
matrix ρΓ [18]. Studying again block length of 2, numer-
ical results not shown here indicate that entanglement
between two qubits as measured by log-negativity de-
cays algebraically (as 1/N3 in contrast to the 1/N2 for
concurrence) for the case of two particles but becomes ex-
ponential when the particle number is increased to three.
A similar behavior is exhibited for the entanglement be-
tween a qubit and the other pair when a block of 3 qubits
is considered. Algebraic decay of the log-negativity for
l ≤ 3 is replaced by exponential decay for l > 3, see
Fig. (3). Results not presented here indicate a similar
behavior for block lengths of 4; however the numerics
becomes considerably more difficult thereon.
In summary this Letter has given definitive evidence

of an entanglement transition between two qubits as the
number of particles is increased to three, while using log-

FIG. 3: Scaling of log-negativity in a block of 3 qubits, with
the total number N of qubits for (left) two- and three-particle
and (right) four-particle states .

negativity it is indicated that the following generalization
would hold: the entanglement content inm qubits decays
algebraically withN , the number of qubits, if the number
of particles l ≤ m, and exponentially if l > m. Of course
throughout this work l ≤ [N/2].
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