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Optimal quantum state estimation by no-signaling principle
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We obtain a simple derivation of the optimal quantum state estimation of a two-level system
using the no-signaling principle. In particular, we show that the no-signaling principle determines
the unique form of the guessing probability, independently to a given figure of merit such as the
fidelity or the information gain. This proves that optimal measurements for a two-level quantum
system is the same for almost all figures of merit.
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I. INTRODUCTION

Special relativity gives no-signaling principle that no
information transfer can be faster-than-light. Quantum
nonlocality appears to contradict the no-signaling prin-
ciple. However, quantum nonlocality and no-signaling
principle are in ‘peaceful coexistence’ [1].

For the coexistence, however, the no-signaling princi-
ple gives constraints on behavior of quantum systems.
Interestingly, the bounds obtained by the no-signaling
constraint are the same as those obtained purely by quan-
tum mechanical methods. For example, there are, opti-
mal quantum cloning [2], optimal unambiguous state dis-
crimination [3], minimal error state discrimination [4–6],
and maximum confidence state discrimination [7].

The purpose of this paper is add one in the list. Our
topic is optimal state estimation for a single quantum
bit (qubit). Massar and Popescu [8] showed that maxi-
mal average fidelity for a single qubit estimation is 2/3.
Han suggested a way to derive known results by only
spatial symmetry [9]. In this paper, we show how the
known result is simply obtained by no-signaling princi-
ple. Moreover we show that, for any figure of merit,
guessing-probability (distributions) are of the same form,
A cos2(θ/2)+B sin2(θ/2). Here A,B are constants and θ
is angle between Bloch vector of prepared qubit and that
of guessed one. This result actually confirms a conjecture
in Refs. [10, 11] that optimal measurements are the same
for any figure of merit.

II. QUANTUM STATE ESTIMATION

First let us describe the procedures of quantum state
estimation more precisely. A player, Alice, randomly
chooses a direction in 3-dimension. That is, she chooses
a unit vector r̂ with isotropic probability distribution.

∗corresponding author: wyhwang@jnu.ac.kr

Then she prepares a qubit in a (pure) state with its Bloch
vector r̂, namely

ρ(r̂) =
1

2
(11 + r̂ · ~σ) = |r̂〉〈r̂|. (1)

Here r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) and ~σ =
(σx, σy , σz), and σx, σy, σz are Pauli operators. Then Al-
ice sends a qubit ρ(r̂) to another player, Bob. He knows
all of Alice’s procedures but doesn’t know identity of the
qubit of course. Then he makes a guess on the identity
of the qubit by using all possible means including quan-
tum measurement on the qubit. Bob’s figure of merit
(or score) is a function of state of sent qubit and that of
guessed one. Usually, the closer the two states are, the
higher the figure of merit is. Commonly used figures of
merit are fidelity and information gain [10, 11]. Bob’s
task is to get maximal figures of merit on average.
It was shown that Bob’s maximal average fidelity is

2/3 [8]. Bob’s strategy achieving the maximum is simple
[8]: He randomly chooses a unit vector n̂ and performs
a measurement Sn̂ whose bases are ρ(n̂) = |n̂〉〈n̂| and
ρ(−n̂) = | − n̂〉〈−n̂| on input qubit. Physically, Sn̂ cor-
responds to Stern-Gerlach measurement in n̂ direction
if the qubit is in the spin of a particle. Next, if the
measurement outcome is ρ(n̂) (ρ(−n̂)), he makes a guess
that Alice has sent a qubit in ρ(n̂) (ρ(−n̂)) state. Let us
consider guessing-probability P (m̂|r̂). Here P (m̂|r̂) dΩ
is probability that an outcome ρ(r̂′) with unit vector r̂′

around m̂ within solid angle dΩ is obtained for an input
qubit ρ(r̂). It is not difficult to see that

P (m̂|r̂) = 1

2π
cos2

θ

2
∝ |〈m̂|r̂〉|2, (2)

where θ is angle between m̂ and r̂.

III. GUESSING-PROBABILITY HAS UNIQUE

FORM.

Here we introduce a communication scenario between
two remotely separated participants, Alice and Bob, to
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FIG. 1: Note pẑ + (1− p)(−ẑ) = (1/2)θ̂ + (1/2)(θ̂′)

which quantum state estimation can be incorporated,
as in the case of minimal error state discrimination in
Refs.[4–6]. Suppose Alice and Bob are sharing many
copies of an entangled state,

|ψ〉 = √
p|0〉A|ẑ〉B +

√

1− p|1〉A| − ẑ〉B . (3)

Here |0〉 and |1〉 are two orthogonal state of a qubit, A
and B denote Alice and Bob. If Alice performs a mea-
surement in {|0〉, |1〉} basis, therefore, Bob is given a
mixture of |ẑ〉〈ẑ| and |− ẑ〉〈−ẑ| with respective probabil-
ities p and 1 − p. Then Bob’s density operator is given
by,

ρB = p|ẑ〉〈ẑ|+ (1− p)| − ẑ〉〈−ẑ| = 1

2
{11 + ~rB · ~σ}, (4)

where ~rB = pẑ+(1−p)(−ẑ) (see Fig.1). Note that Bloch
vector of a mixture is given by sum of Bloch vectors of
pure states constituting the mixture with the correspond-
ing probabilities as weighting factors. Let us consider
Bob’s Bloch vector, ~rB = pẑ+(1−p)(−ẑ). Then consider

a different decomposition of ~rB , ~rB = (1/2)θ̂+(1/2)(θ̂′).

Here θ̂ = (0, sin θ, cos θ), θ̂′ = (0,− sin θ, cos θ), and

cos θ = p− (1− p) = 2p− 1. (5)

This means that

ρB =
1

2
|θ̂〉〈θ̂|+ 1

2
|θ̂′〉〈θ̂′| = 1

2
{11 + ~rB · ~σ}. (6)

However, according to the Gisin-Hughston-Jozsa-
Wootters theorem [12, 13], Alice can generate any de-
composition of Bob’s mixture by measuring her qubit in
an appropriate basis. Therefore, in our case, either de-
composition of Eq. (4) or that of Eq. (6) can be gener-
ated by Alice. This implies that the entangled state can

be written as

|ψ〉 = 1√
2
|0′〉A|θ̂〉B +

1√
2
|1′〉A|θ̂′〉B, (7)

where {|0′〉, |1′〉} is another orthogonal basis. Therefore,
Alice can generate decomposition of Eq. (4) (that of Eq.
(6)) by performing measurement on her qubit in {|0〉, |1〉}
({|0′〉, |1′〉}) basis.
However, if Bob can discriminate between the two de-

compositions, they can do faster-than-light communica-
tion: If Alice wants to send a message 0 (1), she re-
peatedly performs measurement in {|0〉, |1〉} ({|0′〉, |1′〉})
basis. Then the decomposition of Eq. (4) (that of Eq.
(6)) is generated at Bob’s site. By discriminating the two
decompositions, Bob can read out the message.
Now let us show that the guessing-probability has

unique form by no-signaling principle. As we described
above, in quantum state estimation Bob’s task to make
guesses on the input such that he gets maximal figure
of merit on average. He is allowed to use all possible
means including classical and quantum computers, and
even humans. Let us consider, a ‘black-box’, a ‘(quan-
tum) state estimator’, which include everything needed
for the estimation inside. For an input ρ(r̂) the quantum-
state-estimator gives just an outcome, its optimal guess,
m̂.
What we show is that, unless the guessing-probability

P (m̂|r̂) is of the form A sin2(θ/2) + B cos2(θ/2), where

θ is angle between ẑ and θ̂, faster-than-light communica-
tion is possible: By the fact that the two decompositions
cannot be discriminated, it must be

1

2
P (m̂|θ̂)+ 1

2
P (m̂|θ̂′) = pP (m̂|ẑ)+(1−p)P (m̂|− ẑ). (8)

for all direction m̂.
At this stage, we make a very plausible assumption

that the estimator has an isotropy i.e. the guessing-
probability P (m̂|r̂) is dependent only on angle between
m̂ and r̂.
To get the functional form of P (m̂|θ̂) most simply, we

consider m̂ = ẑ case

1

2
P (ẑ|θ̂) + 1

2
P (ẑ|θ̂′) = pP (ẑ|ẑ) + (1− p)P (ẑ| − ẑ). (9)

If this Eq. (9) were not satisfied, Bob can discriminate
the two decompositions by only observing how frequently
the state estimator gives the outcome ẑ: More precisely,
Bob counts frequency that the state estimator gives out-
comes ρ(r̂′) with unit vector r̂′ around ẑ within solid an-
gle dΩ. In the case of decomposition of Eq. (4), we can
see that the frequency is {pP (ẑ|ẑ)+ (1−p)P (ẑ|− ẑ)}dΩ.
In the case of decomposition of Eq.(6), the frequency is

{(1/2)P (ẑ|θ̂) + (1/2)P (ẑ|θ̂′)}dΩ.
However, by isotropy assumed in the above, we have

P (ẑ|θ̂) = P (ẑ|θ̂′). (10)
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By Eqs. (5), (9) and (10), and setting P (ẑ|ẑ) ≡ A, P (ẑ|−
ẑ) ≡ B, we obtain

P (ẑ|θ̂) = A cos2
θ

2
+B sin2

θ

2
, (11)

where θ is angle between ẑ and θ̂.
We can also rewrite it as

P (ẑ|θ̂) = α+ β cos θ = α+ βẑ · θ̂. (12)

By isotropy assumed above, we can generalize this result

for any directions m̂ and θ̂,

P (m̂|θ̂) = α+ βm̂ · θ̂. (13)

Now, it is easy to show that this functional form gen-
erally satisfies Eq.(8). Therefore, we obtain general form

of guessing-probability for state ρ(θ̂) as

P (m̂|θ̂) = A cos2
θ

2
+B sin2

θ

2
, (14)

where θ is angle between m̂ and θ̂.
It is interesting that guessing-probability has a unique

form regardless of figure of merit. If there is only a single
guessing-probability, there is nothing to optimize. How-
ever, there are still infinitely many guessing-probabilitys
depending on the constants A and B. Thus we should
optimize it. When figure of merit is fidelity, it is easy
to see that it is optimized when B = 0, obtaining

P (m̂|θ̂) = A cos2(θ/2). The actual measurement strat-
egy which achieves the optimal one is the simple strat-
egy described in section II. Using isotropy in our prob-
lem, we recover Eq. (2) after normalization. When the
figure of merit is information-gain, it is optimized when
either B = 0 or A = 0. guessing-probability in the for-
mer case is the same as the one when figure of merit is
fidelity. Thus the optimal measurements are the same
in this case. However, guessing-probability in the latter
case is reversed, that is, ‘a constant minus the guessing-
probability of the former case’. However, the reversed one

can be realized by the state estimator used in the former
case. That is, when an outcome r̂ is given, we adopt −r̂
as true outcome. Thus, in the latter case, the optimal
measurement is not different, too. It can be expected
that optimal guessing-probability is the same for other
figure of merits. In fact, we can see the followings. Al-
most all figures of merit have a property that the smaller
the θ is, the higher the figure of merit is. As long as the
property is satisfied, the optimal guessing-probability is
obtained when B = 0. If guessing-probability are the
same, clearly optimal measurement are also the same.

IV. CONCLUSION

We obtained a simple derivation of the optimal quan-
tum state estimation of a two-level system using the no-
signaling principle. In particular, we showed that the
no-signaling principle determines the unique form of the
guessing probability, independently to a given figure of
merit such as the fidelity or the information gain. An op-
timal guessing-probability within the unique form can be
realized by a simple actual measurement strategy. This
proves that optimal measurements for a two-level quan-
tum system is the same for all figures of merit, as long as
the figure of merit satisfies a property that the smaller
the θ is the higher the figure of merit is.
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