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Observation of even a single massive cluster, especially at high redshift, can falsify the standard
cosmological framework consisting of a cosmological constant and cold dark matter (ΛCDM) with
Gaussian initial conditions by exposing an inconsistency between the well-measured expansion his-
tory and the growth of structure it predicts. Through a likelihood analysis of current cosmological
data that constrain the expansion history, we show that the ΛCDM upper limits on the expected
number of massive, distant clusters are nearly identical to limits predicted by all quintessence mod-
els where dark energy is a minimally coupled scalar field with a canonical kinetic term. We provide
convenient fitting formulas for the confidence level at which the observation of a cluster of mass
M at redshift z can falsify ΛCDM and quintessence given cosmological parameter uncertainties
and sample variance, as well as for the expected number of such clusters in the light cone and the
Eddington bias factor that must be applied to observed masses. By our conservative confidence
criteria, which equivalently require masses 3 times larger than typically expected in surveys of a
few hundred square degrees, none of the presently known clusters falsify these models. Various
systematic errors, including uncertainties in the form of the mass function and differences between
supernova light curve fitters, typically shift the exclusion curves by less than 10% in mass, making
current statistical and systematic uncertainties in cluster mass determination the most critical factor
in assessing falsification of ΛCDM and quintessence.

I. INTRODUCTION

It is well known that the presence of even a single high
redshift cluster with sufficient mass can falsify the stan-
dard cosmological model where such objects grow from
Gaussian initial conditions under the gravitational insta-
bility of cold dark matter in a cosmological constant dom-
inated universe (ΛCDM) [1–5]. Robust upper bounds on
the number of high mass clusters in ΛCDM arise from
the exponential suppression of the dark matter halo num-
ber density with mass and the fact that, in the ΛCDM
paradigm, geometric constraints on the expansion his-
tory determine the growth of structure. Indeed, recently
detected massive clusters at high redshift [6–8] have led
to claims of tension with ΛCDM [5, 9–11].

More generally, for any given paradigm for dark en-
ergy, geometric constraints in combination with CMB
constraints on the initial amplitude of fluctuations can be
translated into upper bounds on the abundance of high
mass clusters. Observational violation of these upper
bounds would therefore falsify all models of that given
paradigm. In particular, in previous work [12] we estab-
lished that the linear growth function of all quintessence
models, where dark energy is a canonical, minimally cou-
pled scalar field, is bounded above to be within a few per-
cent of the ΛCDM values. Here we translate these upper
bounds on the linear growth rate to upper bounds on
the number of clusters above a given mass and redshift.
In particular, we make a conservative assessment of the
limiting mass and redshift of a cluster that would rule
out all quintessence models that is robust to our present
knowledge of cosmological parameters, supernova light

curve fitters, sample variance, and simulation-based cal-
ibration of the cluster abundance.

The predictions we present here incorporate cosmolog-
ical constraints from several recent data sets. In addition
to placing limits on the expansion history of the universe,
these data also provide important information about the
amplitude of matter density fluctuations which directly
feeds into cluster predictions. In particular, observations
of cosmic microwave background (CMB) anisotropy con-
strain the amplitude of perturbations at the epoch of
last scattering, z = 1090. In contrast to many previous
studies of the effects of dark energy on the growth of
structure, we do not take this constraint on the density
fluctuations at early times to mean that the amplitude
of perturbations at z = 0, often characterized by the
parameter σ8, is also well constrained. Instead, we com-
bine CMB constraints with the linear growth functions
of quintessence models to set σ8 so that these models are
fully consistent with present CMB data.

We begin in §II by developing methodology to ex-
tract cluster abundance probability distributions from
expansion history measurements in the context of a given
dark energy paradigm. In §III we show how to convert
these distributions into confidence levels at which a clus-
ter of a given mass and redshift excludes ΛCDM and
quintessence. We consider statistical errors due to pa-
rameter and sample variance as well as systematic shifts
from uncertainties in observational mass determination,
the form of the mass function, and the analysis of super-
nova data. We discuss these results in §IV.

In Appendix A we provide convenient fitting functions
for the relationships between cluster masses, redshifts,
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numbers, and confidence levels, as well as the slope of the
mass function for bias corrections. In Appendix B we dis-
cuss the impact of the CMB normalization of structure,
especially in the context of early dark energy. Finally,
in Appendix C we discuss two different types of biases
induced by measuring observable proxies for mass in the
presence of a steep mass function.

II. METHODOLOGY

Following Refs. [12, 13], we use current constraints on
the expansion history of the Universe to make falsifi-
able predictions for observables related to the growth of
structure under specific dark energy paradigms. Here we
briefly summarize this technique and highlight changes in
the methodology that enable us to obtain robust predic-
tions for the cluster abundance. We begin with descrip-
tions of the data sets we use to constrain the expansion
history and the initial amplitude of density fluctuations
(§II A), followed by a summary of the likelihood anal-
ysis that determines which models in the ΛCDM and
quintessence paradigms satisfy the observational con-
straints (§II B). Finally, we show how we use the output
of this analysis to compute probabilities for the abun-
dance of massive, distant clusters in the context of vari-
ous dark energy paradigms (§II C).

A. Data Sets

The main observational constraints that inform our
predictions for cluster abundances are relative distance
measures from Type Ia supernovae (SNe), the CMB tem-
perature and polarization power spectra, baryon acoustic
oscillation (BAO) distance measures, and local distance
measures of the Hubble constant (H0).

The Type Ia SN sample we use is the compilation of 288
SNe from Ref. [14], consisting of data from the first sea-
son of the Sloan Digital Sky Survey-II (SDSS-II) Super-
nova Survey, the ESSENCE survey [15], the Supernova
Legacy Survey [16], Hubble Space Telescope SN observa-
tions [17], and a collection of nearby SN data [18]. The
light curves of these SNe have been uniformly analyzed by
[14] using both the MLCS2k2 [18] and SALT2 [19] meth-
ods. We use the MLCS2k2-analyzed data for most of
our results since it leads to the more conservative bound
on massive clusters. For example, for flat ΛCDM using
MLCS2k2 SN data increases σ8Ω0.5

m by ∼ 7% relative to
SALT2. In § III C we address the impact of the choice of
SN analysis method and also compare with constraints
from the Union2 compilation [20] of 557 SNe, which in-
cludes the CfA3 sample [21] and a number of SN data
sets previously combined in the first Union compilation
[22].

For the CMB, we use the most recent, 7-year release
of data from the WMAP satellite (WMAP7) [23] em-
ploying a modified version of the likelihood code avail-

able at the LAMBDA web site [24] which is substantially
faster than the standard version while remaining suffi-
ciently accurate [25, 26]. We compute the CMB angular
power spectra using the code CAMB [27, 28] modified
with the parametrized post-Friedmann (PPF) dark en-
ergy module [29, 30] to include models with general dark
energy equation of state evolution where w(z) may cross
w = −1.

We use the BAO constraints from Ref. [31], which com-
bines data from SDSS and the 2-degree Field Galaxy
Redshift Survey that determine the ratio of the sound
horizon at last scattering to the quantity DV (z) ≡
[zD2(z)/H(z)]1/3 at redshifts z = 0.2 and z = 0.35.
Since these constraints actually come from galaxies
spread over a range of redshifts, and our most general
dark energy model classes allow the possibility of sig-
nificant variations in H(z) and D(z) across this range,
we implement the constraints by taking the volume av-
erage of DV over 0.1 < z < 0.26 (for z = 0.2) and
0.2 < z < 0.45 (for z = 0.35). The effect of this vol-
ume averaging on the final combined constraints from
current data is relatively small.

Finally, we include the recent Hubble constant mea-
surement from the SHOES team [32], based on SN dis-
tances at 0.023 < z < 0.1 that are linked to a maser-
determined absolute distance using Cepheids observed
in both the maser galaxy and nearby galaxies hosting
Type Ia SNe. The SHOES measurement determines the
absolute distance to a mean SN redshift of z = 0.04
which we implement as D(z = 0.04) = 0.04c/(74.2 ±
3.6 km s−1 Mpc−1).

B. MCMC Analysis

To predict the cluster abundance using constraints
from current data, we use a Markov Chain Monte Carlo
(MCMC) likelihood analysis. We take a set of param-
eters θ that completely describes a given dark energy
class and use a modified version of the code CosmoMC
[33, 34] to sample from the joint posterior distribution of
the parameters,

P(θ|x) =
L(x|θ)P(θ)∫
dθ L(x|θ)P(θ)

, (1)

where L(x|θ) is the likelihood of the data x given the
model parameters θ and P(θ) is the prior probability
density. We test convergence of the samples to a sta-
tionary distribution by applying a conservative Gelman-
Rubin criterion [35] of R−1 <∼ 0.01 across a minimum of
four chains for each model class.

For the ΛCDM class we take the parameters

θΛ = {Ωm,ΩK,Ωmh
2,Ωbh

2, ns, lnAs, τ} . (2)

We will mainly consider the flat ΛCDM class here where
ΩK = 0. Additional parameters such as H0 and ΩDE

are derived from this fundamental set. In particular, the
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present amplitude of the linear power spectrum σ8 is a
derived parameter (see Appendix B). Our normalization
parameter is As, the amplitude of the initial curvature
power spectrum at k = 0.05 Mpc−1. For all parameters
in Eq. (2) we take flat priors that are wide enough that
they do not limit the MCMC constraints from current
data.

For quintessence we extend the parameter set of Eq. (2)
by taking a principal component (PC) decomposition of
the dark energy equation of state for z < 1.7,

w(z) + 1 =

Nmax∑
i=1

αiei(z) , (3)

where αi are the PC amplitudes, Nmax = 10 is the num-
ber of components required to form a complete basis with
respect to growth and distance measures [12]. These
principal components are constructed from the eigen-
vectors of a projection for the Planck CMB and Super-
Nova Acceleration Probe SN covariance matrix for w(z)
in sufficiently fine redshift bins to approximate continu-
ous equation of state variations, as described in detail in
Ref. [13].

We parametrize the dark energy equation of state at
z > 1.7 by a constant,

w(z > 1.7) = w∞ . (4)

While this parametrization does not completely describe
all possible behaviors for the equation of state, it does
allow for dark energy that is a non-negligible fraction of
the total at high redshift or “early dark energy” (EDE).
For more restricted model classes without EDE, we fix
w∞ = −1 since a constant dark energy density rapidly
becomes negligible relative to the matter density at in-
creasing redshift.

In summary, our quintessence parameters are

θQ = {θΛ, α1, . . . , α10, w∞} . (5)

Note that flat ΛCDM is a special case of quintessence
with {αi, 1 + w∞,ΩK} = 0. We also consider a re-
stricted quintessence class of models which are flat and
do not have significant EDE, corresponding to {1 +
w∞,ΩK} = 0. Quintessence models describe dark en-
ergy as a scalar field with kinetic and potential contri-
butions to energy and pressure. Barring models where
large kinetic and (negative) potential contributions can-
cel (e.g. [36]), quintessence equations of state are re-
stricted to −1 ≤ w(z) ≤ 1. Following [13], this bound
is conservatively implemented with independent top-hat
priors on the PC amplitudes αi. Any combination of PC
amplitudes that is rejected by these priors must arise
from an equation of state that violates the bound on
w(z), but not all models that are allowed by the priors
strictly satisfy this bound. This prior is thus appropriate
for making conservative statements on the falsifiability of
quintessence. For EDE, quintessence requires w∞ ≥ −1,
and we additionally impose w∞ ≤ 0 to maintain the usual

matter and radiation dominated epochs at high redshift.
We adopt a flat prior on exp(w∞) which gives greater
weight to models with w∞ near 0.

C. Cluster Abundance

As described in [13], the MCMC approach allows us
to straightforwardly calculate confidence regions for ob-
servable quantities determined by the evolution of large-
scale structure. The first step is to compute the posterior
probability of the linear growth function G(z) from the
joint posterior of the dark energy parameters. Note that
the growth function we use here scales out the growth of
density perturbations during matter domination, δ ∝ a,
so G(z) ∝ (1 + z)δ with normalization G(z = 103) = 1.

Given the predicted growth function, we compute the
abundance of clusters by integrating the product of the
halo mass function dn/d lnM and the comoving volume
element over cluster mass and redshift. Since we are in-
terested in the most massive and most distant clusters,
we integrate above thresholds in mass and redshift to ob-
tain the expected number of clusters in the full sky with
mass > M and redshift > z,

N̄(M, z) =

∫ ∞
z

dz′
4πD2(z′)

H(z′)

∫ ∞
M

dM ′

M ′
dn

d lnM
(M ′, z′) ,

(6)
where 4πD2/H is the comoving volume element for the
full sky written in terms of the comoving angular diam-
eter distance D(z) and the Hubble expansion rate H(z).
Note that since the high mass, high redshift mass func-
tion falls off rapidly with increasing mass and redshift,
N̄(M, z) is typically dominated by the abundance near
the threshold values of M and z.

The form of the mass function can be inferred by fit-
ting to the abundance of dark matter halos identified in
numerical simulations. The cosmological dependence of
the mass function is typically expressed as

dn

d lnM
=
ρm,0

M

∣∣∣∣ d lnσ

d lnM

∣∣∣∣ f(σ, z) , (7)

where σ(M, z) is the rms of linear density fluctua-
tions smoothed over spheres of comoving radius R =
(3M/4πρm,0)1/3 and ρm,0 = 3ΩmH

2
0/(8πG) is the

present matter density. Here f(σ, z) is a function deter-
mined by the fit to simulations that depends primarily on
σ(M, z), but is also weakly dependent on redshift [37, 38].

We study the dependence of our predictions on the
specific choice of mass function and describe those tests
in the next section, but for definiteness we adopt the
Tinker et al. [37] mass function for our main results,

f(σ, z) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

, (8)

with A = 0.186(1 + z)−0.14, a = 1.47(1 + z)−0.06, b =
2.57(1 + z)−0.011, c = 1.19. This fit assumes M = M200,
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defined as the mass within a spherical region around the
halo center enclosing an average density equal to 200
times the mean matter density, ρm,0(1 + z)3. We do not
adjust the fit parameters for variations in the dark en-
ergy model but do test the sensitivity to the fidelity of
the fit in §III C.

For the dark energy models and range of scales and red-
shift that we consider here, the linear growth function is
approximately scale-independent, so we can separate the
mass and redshift dependence of the density fluctuation
rms as

σ(M, z) = σ(M, 0)
G(z)

(1 + z)G(0)
. (9)

We obtain σ(M, 0) for each cosmological model using the
modified version of CAMB, and compute G(z) by in-
tegrating the differential equation for the linear growth
function as described in [13]. By using the growth func-
tion only to scale backwards from the present epoch, this
method includes all high redshift modifications to the
transfer function and the CMB normalization of σ(M, 0)
through As. We only assume that at the low redshifts of
interest 0 < z < 2 the growth function is independent of
scale (see Appendix B for discussion of EDE clustering
at early times).

III. CLUSTER PREDICTIONS

From the complete parametrization of the ΛCDM and
quintessence model classes and the MCMC posterior
probability of the mean number of clusters N̄ across the
full sky above a given mass and redshift, we can assess
the confidence with which the observation of a cluster
with that mass and redshift can falsify the model class.
We first consider the impact of parameter and statistical
uncertainties on the predicted number of massive, high
redshift clusters in §III A. In §III B we combine these into
exclusion curves in mass and redshift and evaluate the
significance of the most massive clusters in the present
high redshift sample. Finally, in §III C we illustrate how
various systematic errors would shift the upper limits on
massive cluster abundances.

A. Parameter and Sample Confidence

We quantify two types of confidence limits for statisti-
cal uncertainties. The first is associated with parameter
uncertainties on the mean number N̄ within the dark en-
ergy model class. We call this parameter variance and
take the one-tailed 100p% confidence level (CL) upper
limits on the mean number, N̄Pp(M, z); for example,
given the CMB, SN, BAO, and H0 constraints, there is a
95% probability that the mean number of clusters > M
and > z in the full sky is less than N̄P.95. To a good ap-
proximation, the parameter variance in our cluster abun-
dance predictions corresponds to variance in σ(M, z) or,

in particular, σ8. For example, flat ΛCDM models at the
95% parameter CL have a larger amplitude of fluctua-
tions, σ8 ≈ 0.87, than the median models with σ8 ≈ 0.83.

The second confidence limit we define is associated
with sample variance, under the assumption that the
number of clusters in the sample is Poisson distributed
with mean N̄ across the full sky. This assumption ignores
the clustering of clusters and should be a good approx-
imation in the rare object limit [39]. In particular, the
probability to have zero clusters in a random sample of
a fraction of sky fsky is s ≡ e−N̄fsky . We therefore define
the sample variance 100s% CL for models with a mean
number of clusters in the full sky as

N̄Ss(fsky) ≡ −f−1
sky ln s . (10)

That is, if the mean number of clusters above M and z
expected in the full sky is N̄Ss for a particular model,
then that model would be excluded at the 100s% CL by
one or more such observed clusters in a survey covering
fsky of the full sky. For example, the observation of one
or more clusters at redshift z with mass M observed in
300 deg2 (fsky ≈ 0.0073) would exclude models that pre-
dict a mean number of clusters in the full sky N̄(M, z)
less than N̄S.95 ≈ 7.1 at the 95% sample CL.

Some care must be taken to define the appropriate fsky

for a given cluster. For example, if out of many similar
surveys only one reported a high mass cluster, then the
appropriate sky area is the total area of the surveys, not
just the individual survey area selected to have the cluster
a posteriori. The most conservative limits are obtained
by taking fsky = 1 when interpreting any observation, i.e.
assuming that all unobserved regions of the sky do not
host clusters with anomalously high masses and redshifts.
In this case N̄S.95 ≈ 0.051. Compared with, say, the
median prediction N̄S.50 = 95 at 300 deg2, these criteria
are a factor of ∼ 1900 more conservative in predicted
number.

We combine these two types of uncertainties to com-
pute the maximum cluster mass and redshift within some
area of the sky predicted by a particular model class. The
mass and redshift limits corresponding to 100s% sample
CL and 100p% parameter CL can be found by taking
N̄Ss(fsky) = N̄Pp(M, z) to get

∫ log(−f−1
sky ln s)

−∞
d log N̄ P (log N̄ |M, z) = p , (11)

where P (log N̄ |M, z) is the posterior density in the ex-
pected number of clusters above M and z for the given
class of dark energy models. For simplicity, we will often
consider the case s = p and refer to this as the “100s%
joint CL” for sample and parameter variance. Note that
in this approach observational uncertainty in determin-
ing the mass, which varies from cluster to cluster, is not
directly included so that the cluster mass errors must be
included when comparing with the M(z) exclusion curves
presented in §III B (see also Appendix C).
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Finally, one can also test whether the N rarest clusters
together place a substantially stronger bound on the dark
energy paradigm than the single rarest object detected
so far. To do this, one computes the Poisson probability
using the mass and redshift threshold that includes all of
those N clusters. For example, for the two rarest clusters

the mean number N̄
(2)
Ss corresponding to exclusion at the

100s% sample CL can be found from

s =
(

1 + fskyN̄
(2)
Ss

)
e−fskyN̄

(2)
Ss (12)

to be

N̄
(2)
Ss = −f−1

sky[1 +W−1(s)] , (13)

where W−1 is the lower branch of the Lambert W func-

tion. If fskyN̄
(2)
Ss � 1, N̄

(2)
Ss ≈ f−1

sky

√
2(1− s). The

expected number for the 95% joint CL at fsky = 1 is

N̄
(2)
S.95 = 0.355, compared with N̄S.95 = 0.051 for the sin-

gle most extreme cluster; therefore, the model is required
to predict a mean abundance 7 times larger to explain two
clusters above a given mass and redshift rather than one.
This statistic is conservative in the sense that the rarest
cluster is typically treated as if it were only as rare as the
second rarest cluster (more specifically both clusters are
assigned the lowest M, z of the pair). Thus the N = 2
test can actually be weaker than the N = 1 rarest clus-
ter test. It can be applied sequentially to the N rarest

clusters by defining N̄
(N)
Ss as the solution to

s =

N−1∑
i=0

(fskyN̄
(N)
Ss )i

i!
e−fskyN̄

(N)
Ss . (14)

Again if fskyN̄
(N)
Ss � 1, N̄

(N)
Ss ≈ f

−1
sky[N !(1−s)]1/N . In the

confidence level fitting formula of Eq. (A10) one simply
replaces

− f−1
sky ln s = N̄Ss → N̄

(N)
Ss . (15)

Note however that the number of trials taken before find-
ing an anomaly must be considered in interpreting the
exclusion.

B. Model Exclusion

We begin with the flat ΛCDM predictions. In Fig. 1
we show the posterior distributions of log N̄ for represen-
tative choices of M and z. As either increases, the mean
number drops below unity and the observation of even a
single cluster at that mass and redshift becomes unlikely.
The dotted vertical line represents the 95% sample CL
threshold N̄S.95(fsky = 1). When M and z are large
enough that 95% of the parameter probability distribu-
tion P (log N̄) lies below this line, we consider the flat
ΛCDM class ruled out at the 95% joint CL by an obser-
vation of even a single cluster of mass M at redshift z.

FIG. 1. Predicted mean, full-sky abundance N̄(M, z) of clusters
above mass and redshift thresholds M and z, respectively, for flat
ΛCDM models that fit current CMB+SN+BAO+H0 data. Verti-
cal dotted lines are plotted at N̄S.95(fsky = 1), the 95% CL sample
variance limit for a full-sky survey. For M = 2 × 1015 h−1M�,
we shade the lower 95% of each distribution; exclusion at the 95%
joint CL for a cluster of this mass in the full sky occurs at the
redshift for which all of the shaded area lies to the left of the
vertical N̄S.95(fsky = 1) line (in this case, z ≈ 0.9). Probabil-
ity distributions here and in later figures are normalized so that
max[P (log N̄)] = 1.

In Appendix A, we provide a convenient fitting formula
for the dependence of these flat ΛCDM exclusion masses
on redshift, fsky and the sample and parameter variance
confidence level parameters s and p (see Eq. A9). Fig-
ure 2 uses these fitting formulas to illustrate how the
sample and parameter variance limits change relative to
our default 95% joint CL full sky limit with variations in
fsky, s, and p.

Next we generalize these results to different dark en-
ergy model classes. Figure 3 shows the predictions for
M = 1015 h−1M� and z = 1.48 which is at the 95%
joint CL for flat ΛCDM. With nonzero curvature, the
confidence level for this choice of M and z remains nearly
unchanged at 93% parameter CL, reflecting the fact that
curvature is well constrained in the ΛCDM context. On
the other hand, the parameter confidence level at which
models are excluded with 95% sample CL actually in-
creases as the model class widens to flat quintessence
without EDE (98.8%) and to nonflat quintessence with
EDE (99.7%) (see shading in Fig. 3). This is in spite of
the fact that flat ΛCDM is included as a special case of
each of these classes. In the quintessence classes there
are simply more ways of reducing the growth function at
the relevant redshifts through parameter variations than
increasing it. Hence the low-N̄ tail of the distribution is
highly dependent on the prior placed on the parameters.
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FIG. 2. Dependence of the flat ΛCDM mass threshold at z = 1 on
sample variance s and parameter variance p confidence levels and
on the sky fraction fsky. Individual variations are computed using
the fitting functions of Appendix A with one parameter varied at
a time and the remaining parameters fixed to the fiducial values of
s = 0.95, p = 0.95, and fsky = 1.

One might therefore worry that the exclusion of
quintessence models at the high-N̄ tail of the distribu-
tion might also depend strongly on the prior. Param-
eter choices in the tail of the distribution would then
have likelihoods as good as or better than at the me-
dian. This pathology does not occur here. For exam-
ple, among the 5% of flat ΛCDM models in Fig. 3 with
N̄ > 0.051 the best fit model has a likelihood that is
worse than the global maximum likelihood (for all N̄)
by −2∆ lnL = 3.3, consistent with a one-tailed 95% CL.
The best fit quintessence model (nonflat, with EDE) with
N̄ > 0.051 fits the data worse than the global maxi-
mum likelihood for quintessence by −2∆ lnL = 7.5, also
consistent with the higher confidence for exclusion of
quintessence models.1

For values of M and z other than those used in Fig. 3,
the dependence of P (log N̄) on the dark energy model
class is similar. A massive, high z cluster that convinc-
ingly falsified ΛCDM would also falsify all quintessence
models. This robustness is a consequence of the firm
upper limit that flat ΛCDM places on the quintessence
growth function noted in [12] and is essentially due to

1 Quintessence models in the tail of the distribution can actually
have a better absolute likelihood than ΛCDM models in the tail
or even the median ΛCDM model due to the better fit of w ≈
−0.8 models to the MLCS2k2-analyzed SN data [14], while still
being strongly disfavored due to a large amplitude of structure
As (or σ8).

FIG. 3. Predicted mean, full-sky abundance of clusters with
M > 1015 h−1M� and z > 1.48, for flat and nonflat
ΛCDM, flat quintessence without early dark energy, and nonflat
quintessence with early dark energy. The vertical dotted line marks
N̄S.95(fsky = 1), i.e. a 1015 h−1M� cluster at z = 1.48 observed
anywhere in the sky would exclude all models in P (log N̄) to the
left of the dotted line with a significance of at least 95% sample
CL. The lowest-N̄ 95% of each distribution is shaded.

the quintessence requirement that w(z) ≥ −1. Hereafter
we adopt the parameter confidence level of flat ΛCDM
for all quintessence cases to avoid the semantic problem
of ruling out quintessence at a higher parameter confi-
dence than ΛCDM even though ΛCDM is a subset of
quintessence.

In Fig. 4 we show the 95% joint CL upper limit in
the mass-redshift plane for flat ΛCDM. An observation
of one or more clusters at M and z that lie anywhere
above the limit corresponding to a given fsky would rule
out both ΛCDM and quintessence. We further find that
the typical realization of the typical ΛCDM model, cor-
responding to the 50% joint CL, would move the limiting
curve down by a factor of approximately 1.6 in mass (for
fsky = 1). If we keep the 50% joint CL and also reduce
fsky to correspond to a 300 deg2 area, the mass threshold
differs from our fiducial fsky = 1 and 95% joint CL by
a factor of ∼ 3.2 in mass. Therefore, to rule out ΛCDM
and quintessence by our fiducial criteria, the mass of the
cluster must be at least 3.2 times the typical ΛCDM pre-
diction for the largest cluster in a 300 deg2 survey, and 1.6
times the prediction for the most massive cluster across
the whole sky.

With these conservative criteria none of the reported
high mass, high z clusters falsify ΛCDM or quintessence.
The two that provide the most tension with these model
classes are SPT-CL J0546-5345 [8, 40] at z = 1.07 which
has an X-ray YX -determined mass of M200 = (8.23 ±
1.21) × 1014M� and XMMU J2235.3-2557 [6, 9, 41] at
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z = 1.39 with an X-ray (TX) mass of 7.7+4.4
−3.1 × 1014M�.

These X-ray mass estimates are consistent with masses
obtained by other means such as weak lensing, and our
most conservative conclusions requiring 95% joint CL sig-
nificance in the full sky would not be greatly changed by
using alternate mass proxies.

For a more aggressive interpretation of the data, one
can estimate the effective fsky values for these measure-
ments. They are somewhat subjective in that the clusters
are the most massive ones found in all high z Sunyaev-
Zel’dovich (SZ) and X-ray surveys respectively. The first
release of the South Pole Telescope (SPT) SZ cluster
survey covered 178 deg2, whereas the Atacama Cosmol-
ogy Telescope SZ survey covered 455 deg2 [42] of which
∼ 50 deg2 overlap with the first-release SPT fields. On
the other hand X-ray surveys have covered some 283 deg2

for 1.0 < z < 2.2 [11]. We therefore plot these clusters
in Fig. 4 (lower panel) against an exclusion curve for
95% joint CL at 300 deg2, using h = 0.70 as assumed in
Refs. [40, 41] to convert the masses to units of h−1M�.2

Note that the M(z) level is only weakly dependent on
fsky for order unity rescalings (see Fig. 2).

Even under this more aggressive interpretation of the
exclusion limit, these two clusters do not convincingly
rule out ΛCDM or quintessence. Although their redshifts
and mean masses are somewhat atypical in that they ex-
ceed the 50% joint CL exclusion curve, neither cluster
is more significant than the 95% joint CL. For example,
taking the mean reported masses and fixing the parame-
ter variance confidence level at 95%, SPT-CL J0546-5345
is only at 44% sample CL (using the fitting formula of
Appendix A), i.e. it is a typical result for flat ΛCDM. The
mean for XMMU J2235.3-2557 yields a higher 89% sam-
ple CL, but taking the 1 σ lower limit on the mass brings
the confidence all the way down to 8%. Even combining
the two using Eq. (12) and a joint sky area of 600 deg2

does not improve the confidence. In fact in this conser-
vative test where thresholds are set to the lowest mass
and redshift of the pair, the joint sample confidence level
using the mean masses actually decreases to 30%.

C. Systematic Shifts

Systematic shifts in the observational mass determina-
tion, the theoretical mass function, and SN data analysis
techniques can strongly affect the confidence with which
ΛCDM and quintessence can be excluded. Here we quan-
tify the impact of each of these systematic effects on the
predicted abundance of high mass, high redshift clusters.

2 Specifying M values in units of M� instead of h−1M� has little
effect on the widths of the P (log N̄) distributions even in the
quintessence class, suggesting that the impact of uncertainties in
the Hubble constant due to variations in the equation of state
near z ≈ 0 is small [36].

FIG. 4. M(z) exclusion curves. Even a single cluster with (M, z)
lying above the relevant curve would rule out both ΛCDM and
quintessence. Upper panel: flat ΛCDM 95% joint CL for both
sample variance and parameter variance for various choices of sky
fraction fsky from the MCMC analysis (thin solid curves) and using
the fitting formula from Appendix A (thick dashed curves; accu-
rate to <∼ 5% in mass). Lower panel: Two of the most anomalous
clusters detected to date, compared with the 95% joint CL exclu-
sion curve for 300 deg2 which approximates the total survey area
for each cluster. We show the X-ray determined masses with and
without Eddington bias correction (black solid points with thick
error bars and red open points with thin error bars, respectively,
offset in redshift by ±0.01 for clarity).

Despite numerous recent advances in mass estimation
methods, the determination of cluster masses is still quite
uncertain. Different methods do not always yield consis-
tent results, and in some cases the mass may be sys-
tematically over- or underestimated. Since cluster abun-
dances fall off exponentially with mass at high masses,
even small errors in the estimated masses correspond to
large shifts in the expected number of clusters.

In the upper panel of Fig. 5, we show the impact on N̄
of changing cluster masses by ±10% or ±30%; these off-
sets are representative of the range in systematic uncer-
tainty in current determinations of cluster masses. Sys-
tematic errors in mass are most important for the rarest
clusters due to the increasing steepness of the mass func-
tion. For M = 1014 h−1M� and z = 0, a 30% offset in
mass shifts N̄ by a factor of ∼ 2, but for the 1015 h−1M�,
z = 1.5 case shown in Fig. 5 systematic shifts in mass can
change the expected abundance by orders of magnitude,
making an ordinary cluster appear to be exceedingly un-
likely in the context of a given cosmology or vice versa.
In the M(z) exclusion plane of Fig. 4, these systematic
offsets can be incorporated as simple shifts in the data
points.

Estimation of the rarest cluster masses is also subject
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FIG. 5. Impact of systematic errors in cluster mass determination
and mass function amplitude on the mean number of clusters in
the full sky with M > 1015 h−1M� and z > 1.5 for flat ΛCDM. A
fractional change in mass determination can change the number of
clusters by orders of magnitude. Conversely, a factor of two change
in the mass function amplitude near this mass and redshift changes
the mass limits by only a few percent.

to Eddington bias, where selection effects shift the de-
termined masses in a manner that depends on the cos-
mology. If a cluster is selected as anomalous due to the
high value of some observable quantity, e.g. X-ray flux
and temperature, optical richness, or SZ decrement, the
steep mass function makes scattering from low masses to
high observables more likely than scattering from high
masses to low observables [43]. In Appendix C we dis-
cuss two sorts of mass biases associated with this effect
that should not be confused. For the purposes of com-
paring to M(z) exclusion curves and for an observable
mass Mobs that is lognormally distributed around the
true mass, one should correct Mobs for bias by [44, 45]

∆ lnM =
γ

2
σ2

lnM . (16)

Here γ is the local logarithmic slope of the mass function
dn/d lnM ∝Mγ . In Appendix A we provide an approx-
imate expression for γ(N̄ , z) in Eq. (A6). Note that for
our default 95% joint CL constraint with N̄ = 0.051 and
z ∼ 1, γ ≈ −8. For σlnM = 0.3 this bias is ∆ lnM ≈ 0.36
and can have a substantial impact on the CL level of ex-
clusion should such a high mass cluster ever be found
(see Fig. 4). The logarithmic slope is much steeper at
this high level of exclusion than the typical expectation
for the most massive cluster in 300 deg2 of N̄ = 95 where
γ ≈ −5 at z ∼ 1.

Specifically, to correct for Eddington bias in placing
an observed cluster whose mass-observable relation im-
plies lnM = lnMobs±σlnM on the M(z) exclusion plots,

one does the following. Take the implied γ for the Mobs,
redshift, and parameter confidence level p using Eq. (A8)
and Eq. (A6), and evaluate the shift in mass due to num-
ber bias using Eq. (16). Then take the mean mass and
confidence limits and shift them down by this bias factor.
If the cluster still lies in the excluded region of the M(z)
plane, then it falsifies ΛCDM and quintessence at the
chosen confidence level. This procedure assumes that the
mass function slope is approximately the same at Mobs

as it is for the true cluster mass, which holds as long as
the scatter σlnM is not too large.

In Fig. 4 we show examples of the Eddington bias cor-
rection assuming flat ΛCDM for SPT-CL J0546-5345 and
XMMU J2235.3-2557 where we take the reported mass
errors as a proxy for σlnM . These examples should only
be taken as illustrative since not all of the sources of mass
error are lognormally distributed or random. Note that
the large mass errors for the higher redshift cluster and
the steeper slope of the mass function both contribute to
a bias that is as large as the statistical errors, although
the bias correction from Eq. (16) may be somewhat over-
estimated given the large σlnM as noted above. Tak-
ing this bias estimate at face value, the sample variance
CL is reduced drastically for the corrected mean mass
to < 1% for 95% parameter confidence and 300 deg2,
whereas the significance of the SPT cluster only falls
to 33% given its smaller reported mass error. Relative
to ΛCDM, quintessence models on average predict that
massive, high redshift clusters are rarer, resulting in a
steeper logarithmic slope γ and a larger bias correction.

Finally, the mass definition used in the theoretical pre-
dictions must be chosen to correspond to a quantity that
is tightly correlated with the observables and consistent
with the simulation-calibrated mass function. In particu-
lar, the scatter between halo masses in simulations using
spherical overdensity and friends-of-friends halo defini-
tions is large and asymmetric, and the difference in mass
definitions for a single halo can be a factor of two or more
[37, 46].

Compared with systematic errors in cluster masses, the
impact of systematic errors in the amplitude of the mass
function near the relevant mass and redshift thresholds
is far less severe. In particular, although the effect on
the mass function of generalizing to dynamical dark en-
ergy models is still largely untested by simulations, even
a factor of 2 change in the mass function normalization
[i.e. A in Eq. (8)] has less impact than a 10% offset in
mass (Fig. 5, lower panel). For reference, neglecting
the redshift dependence of the mass function parame-
ters {A, a, b} decreases the amplitude by a smaller 40%
shift for ΛCDM (equivalent to a 3% mass offset) near
M = 1015 h−1M� and z = 1.5. Following the suggestion
of Ref. [37], we also test the impact of replacing the red-
shift dependence of the mass function parameters with
dependence on the growth function. Specifically, for a
redshift threshold z we evaluate the parameters {A, a, b}
in Eq. (8) at a different redshift z̃ satisfying

(1 + z̃)−1GΛ(z̃) = (1 + z)−1G(z) , (17)
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where (1 + z)−1GΛ(z) is the density growth function for
a fiducial flat ΛCDM model. This modification has a
negligible effect on P (log N̄) and changes the abundance
predicted for individual models by < 10% even in the
most general class of nonflat quintessence models with
EDE.

Likewise, extrapolation of the mass function to masses
and redshifts outside the range calibrated to simula-
tions should have a subdominant effect on the overall
systematic errors. For the mass function we use here,
the simulations of [37] probe the range 0.4 <∼ σ <∼ 4
at z <∼ 2 to better than ∼ 5% accuracy. For the me-
dian ΛCDM model, the lower limit of this range cor-
responds to a maximum mass M ≈ 3.1 × 1015 h−1M�
at z = 0, and M ≈ 1.0 × 1014 h−1M� at z = 2.
For the 95% parameter CL ΛCDM models used to con-
struct the exclusion curve in Fig. 4 these masses are
slightly higher: M ≈ 3.7 × 1015 h−1M� at z = 0 and
M ≈ 1.2 × 1014 h−1M� at z = 2. Thus at high redshift
the 95% joint confidence exclusion curves in Fig. 4 re-
quire an extrapolation of up to a factor of ∼ 4 in mass
for fsky = 1 and a factor of ∼ 2 for 300 deg2. On the
other hand, Hubble volume light cone simulations show
no strong deviations from this mass function [47] from
which one can infer that the scaling holds at least to or-
der unity down to N̄ ∼ 1; this includes the 95% sample
CL rarity for survey areas up to ∼ 2000 deg2.

Systematic errors in the data analysis that propagate
into the posterior distributions P (log N̄) can also change
the confidence at which models can be excluded. The
largest systematic effects from these data sets at present
appear to come from the analysis of the SN data; in par-
ticular, the choice of method for fitting SN light curves
(specifically, MLCS2k2 or SALT2) has been shown to af-
fect constraints on a constant dark energy equation of
state at the level of ∆w ∼ 0.2 [14]. While this spe-
cific systematic error will likely be reduced as its causes
are better understood (e.g. [48]), we have adopted the
MLCS2k2 technique for our main results since it provides
the more conservative constraints for assessing exclusion
of ΛCDM and quintessence.

Even for flat ΛCDM, the choice of SN methodology
affects cluster abundance predictions. Figure 6 (top
panel) shows a factor of 2 difference in abundance for
M = 1015 h−1M� and z = 1.5. The offset between
MLCS2k2 and SALT2 varies with the mass and red-
shift thresholds, but corresponds to an approximately
constant shift of 10% in the effective mass threshold for
all z < 2. In Appendix A we describe how to account
for this 10% shift in our fitting formulas. For ΛCDM,
this difference is mainly due to the preference for lower
Ωm when using the SALT2 light curve fitter in place of
the MLCS2k2 method. The lower Ωm also drives down
the present day normalization for fixed initial curvature
As. The best fit values of (Ωm, σ8) are (0.29, 0.83) with
MLCS2k2 and (0.27, 0.81) with SALT2 (including the
CMB, BAO, and H0 constraints as well as SN data).
Using the SALT2 analysis in fact alleviates some tension

FIG. 6. Effect of SN systematics on P (log N̄) at M =
1015 h−1M�, z = 1.5 for flat ΛCDM (top) and flat quintessence
without early dark energy (bottom). The choice of light curve fit-
ter when analyzing the SDSS compilation of SN data affects the
predicted growth history, which leads to a systematic shift in the
predicted cluster abundance. Switching from MLCS2k2 to SALT2
has an effect comparable to increasing the mass threshold by 10%
(see Fig. 5). The bottom panel also shows quintessence predictions
using the Union2 compilation of SN data, analyzed with the SALT2
method, which are almost identical to the SALT2 predictions with
the SDSS SN compilation.

between the CMB and SN data in flat ΛCDM.

The SN distances estimated using the SALT2 method,
unlike MLCS2k2, depend on an assumed cosmological
model and so compiled data sets analyzed assuming
ΛCDM formally should not be applied to quintessence
[14]. However it is both instructive and common prac-
tice to do so to approximate the impact on dark energy
constraints. As in flat ΛCDM, using the SALT2 method
for flat quintessence with no EDE on the same data set
lowers the predicted number of clusters (see Fig. 6 bot-
tom panel) by a factor of 2 for M = 1015 h−1M� and
z = 1.5, corresponding to a ∼ 10% shift in mass. How-
ever, for quintessence models this offset is due to differ-
ences in the preferred dark energy parameters as well as
in Ωm. We also show in Fig. 6 the impact of switching the
SN data to the Union2 compilation, which also used the
SALT2 method [20]. Note that the cluster predictions for
the two SALT2 cases are nearly identical, despite using
different sets of SNe.

We thus have good evidence that flat ΛCDM exclu-
sion curves with either SN light curve fitter provide the
same implications for quintessence. The main difference
is a shift in the median ΛCDM prediction. Using the
MLCS2k2 light curve fitter predicts higher numbers and
hence is more conservative for our exclusion analysis.
Translated into masses, the switch to SALT2 corresponds
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to a 10% decrease in the mass of the M(z) exclusion lim-
its of Fig. 4. This 10% shift moderately increases the
significance of observed clusters. Using the mean X-ray
masses without Eddington bias correction, and taking
the 95% parameter CL for a 300 deg2 area, the sample
variance significance shifts from 44% to 62% for SPT-CL
J0546-5345 and from 89% to 94% for XMMU J2235.3-
2557.

IV. DISCUSSION

In this paper we have analyzed predictions for the
abundance of massive, distant clusters using an obser-
vationally complete basis for the quintessence paradigm.
Physically, this paradigm assumes that dark energy is
a non-interacting canonical scalar field. Phenomenolog-
ically, quintessence is a spatially smooth component of
energy density compared with dark matter below the
horizon scale with an equation of state −1 ≤ w(z) ≤ 1.

We have shown that any observation that purports
to rule out ΛCDM from the existence of massive clus-
ters at any redshift also rules out quintessence, since
quintessence models can suppress but not enhance the
abundance of rare clusters compared to ΛCDM. This con-
clusion still holds if dark energy is a non-negligible frac-
tion of the total density at high redshift. Once normal-
ized to the CMB, quintessence models can only reduce
the number of clusters (cf. [49–54]).

We have provided convenient fitting functions that can
be used to evaluate the confidence level of exclusion of a
class of dark energy models due to the observation of a
cluster of a given mass at a given redshift. In doing so,
we have accounted for two sources of variance: parameter
variance, that current data allow cosmological parame-
ters to take a range of values, and sample variance, the
Poisson noise in counting rare objects in a finite volume.
Our formulas can also be used to quickly evaluate the
expected number of clusters in ΛCDM.

The single most important element of any claim of
model exclusion due to observation of a massive, high
redshift cluster is the robustness and accuracy of the mass
measurement. In particular, it is important to account
for Eddington bias, the fact that the steep mass function
will cause lower mass objects to scatter into a sample de-
fined by thresholds in observable proxies for mass. We
include corrections for Eddington bias in our analysis,
and clarify the difference between the two types of mass
shifts found in the literature under this name.

When phrased in terms of shifts in the limiting mass,
other systematic effects are relatively minor in compar-
ison. For example, order unity variations in the mass
function amplitude correspond to < 10% changes in the
exclusion mass. Likewise the difference between predic-
tions from SN data fit with the SALT2 and MLCS2k2
methods, which produces a systematic shift of ∆w ∼ 0.2,
also corresponds to a 10% effect in mass.

Finally, we have seen that the interpretation of clus-

ter limits depends strongly on the effective survey area
in which the clusters were selected, whereas the actual
sky area of the data is often much smaller. The most
conservative interpretation of the most massive cluster
in a survey is that there is at least one such object in
the whole sky. Interpreted in this fashion, none of the
clusters reported in the literature can be deemed to fal-
sify ΛCDM or quintessence. Even when interpreted at
an estimated few hundred square degrees for the effec-
tive area, these clusters fail to convincingly falsify either
paradigm.

Our results differ qualitatively from those in Refs. [5,
9–11] which claim that the observed massive, high red-
shift clusters rule out the ΛCDM paradigm at ∼ 2–4 σ.
The different conclusions can be explained by the fact
that these works do not undertake a full treatment of pa-
rameter variance and do not correct the observed masses
for Eddington bias and/or interpret mass measurements
to have smaller errors. Moreover, for single cluster analy-
ses Refs. [5, 9, 10] take an inappropriately small effective
sky area. For XMMU J2235.3-2557, a shift in the effec-
tive sky area from 11 deg2 to 300 deg2 alone accounts for
a factor of 1.7 in the exclusion mass [11]. On the other
hand, we do not consider the implications of the full high
redshift cluster catalog here (cf. [11]).

If in the future a robust case can be made that a mas-
sive cluster falsifies both the ΛCDM and quintessence
classes of models, then at least one cornerstone of modern
cosmology must be incorrect: either the initial conditions
are non-Gaussian, dark energy has non-canonical phan-
tom behavior with w < −1, dark energy is not smooth
even below the horizon, or dark energy interacts with the
other components of the universe. The latter possibil-
ity includes both modified gravity scenarios and models
where the scalar field responsible for the accelerating uni-
verse interacts with dark matter (e.g. [55–58]). Note that
while changing the collisionless cold dark matter aspect
of the cosmological paradigm can also change the cluster
abundance, adding a massive neutrino component can
only further suppress the cluster abundance.

Primordial non-Gaussianity, which typically skews the
initial distribution of density fluctuations, can also in
principle explain the existence of rare, massive, high red-
shift clusters [59]. For example, in the best-studied lo-
cal model of primordial non-Gaussianity described by the
parameter fNL [60], positive fNL would increase the num-
ber of clusters relative to fNL = 0 (e.g. [61]). However,
to substantially change the abundance of high z clus-
ters, a large positive value of fNL (∼ 400) seems to be
required [10, 11, 62, 63], which, unless one resorts to pos-
tulating more complicated models with scale-dependent
non-Gaussianity, is firmly ruled out by the combination
of CMB [64, 65] and large scale structure [66–68] con-
straints.

Solutions involving dark energy also run into difficul-
ties if the anomalous clusters appear only at high redshift.
Typical solutions such as phantom (i.e. w(z) < −1 at any
redshift) or clustered dark energy (e.g. [55, 69–71]) affect
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cluster abundances at low redshift as much as or more
than at high redshift given that the universe has only
begun accelerating at z ' 0.5. The same is true of inter-
acting dark energy or modified gravity scenarios where
dark energy effectively mediates an enhanced attractive
gravitational force (e.g. [72]). Thus models constructed
to explain anomalous high redshift clusters while satisfy-
ing the CMB and expansion history constraints may still
be ruled out by the local X-ray cluster sample [73, 74] or
intermediate redshift samples (e.g. [75, 76]).

The standard cosmological paradigm has passed in-
creasingly stringent tests over the last two decades. Cur-
rent measurements of the expansion history are precise
enough to make sharp predictions for cosmological struc-
ture formation. These predictions enable qualitatively
new tests with which the standard paradigm and its
extensions can be potentially falsified. Specifically, the
masses of distant clusters must not be greater than a well-
determined number set by the standard ΛCDM model
if dark energy is a non-interacting canonical scalar field
with equation of state w ≥ −1, and if the initial con-
ditions are Gaussian. Thus if increased survey coverage
and improved cluster mass determination are found to
strengthen claims of clusters that are substantially more
massive or more distant than predicted in ΛCDM, then
not only specific dark energy model incarnations but the
whole quintessence paradigm would be falsified.
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Appendix A: Fitting formulas

Here we provide a fitting formula to approximate the
M(z) exclusion curves of Fig. 4 and their dependence on
the sky fraction and confidence levels for both sample
and parameter variance. As an intermediate result, we
also provide a fit to the median number of clusters ex-
pected above a given mass and redshift for flat ΛCDM,
N̄P.50(M, z) as well as its inverse M(N̄P.50, z). These fits
generalize the expressions provided in Ref. [5], which ap-
proximatedM(N̄ , z) for a single ΛCDM cosmology across
a more limited range in masses and for disjoint sets of
redshifts. We also give an approximate expression for
the mass function logarithmic slope γ which can be used
to estimate corrections for Eddington bias as described

FIG. 7. Accuracy of our fitting formulas for N̄P.50, the median
ΛCDM number of clusters in the whole sky above a given mass M
and redshift z. Upper panel: numerical results from the MCMC
analysis (points) compared with the approximate fitting formula of
Eq. (A3) (curves). Several redshifts are shown, with equal spacing
in ln(1 + z) over 0 ≤ z ≤ 2. Lower panel: fitting formula residuals.
Dotted lines mark ±5% errors.

in § III C (see also Appendix C).
We begin by fitting an approximate formula for the

median N̄P.50(M, z) extracted from the flat ΛCDM pos-
terior distributions. In order to ensure that the fitting
function does not behave unphysically beyond the cases
tested, we choose a functional form that is motivated by
the mass function in Eqs. (7) and (8),

N̄P.50 ∝ e−C(M/M∗)A , (A1)

where A, C, and M∗ are possibly redshift dependent
quantities. This form follows by assuming that all terms
in the mass function vary slowly with M except for the

exponential, e−c/σ
2

, and that the dependence of 1/σ2 on
M is well approximated by a power law. Hence we expect
the fit to apply to rare objects such as clusters.

For notational simplicity let us define

m ≡ log[M/(h−1M�)] ,

n ≡ log N̄P.50 . (A2)

Figure 7 shows that the following expressions are accu-
rate to within 5% in mass over the ranges 14 < m < 16,
0 < z < 2, and −5 < n < 5:

n(m, z) = 7.65
[
1− eα(z)(m−β(z))

]
, (A3)

α(z) = 1.06− 0.17e−1.3z ,

β(z) = 15.565− 0.1 log
(
7.1 + 105.25z

)
.

In terms of the motivating form of Eq. (A1),
C = 7.65 ln 10, A(z) = α(z)/ ln 10 and M∗(z) =
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10β(z) h−1M�. The approximate linearity of logM∗(z) ∝
β(z) with z at high redshift was noted by Ref. [5] and
indeed equating the scaling of M∗ with a criterion like
σ(M∗) = const. implies that linearity extends to z > 2.
This scaling is broken at low redshift mainly because the
volume saturates and the number above a given z is de-
termined not by the mass function around z but at a
higher effective redshift.

Inverting Eq. (A3) gives the cluster mass as a function
of redshift and n,

m(n, z) = β(z) +
1

α(z)
ln
(

1− n

7.65

)
, (A4)

where α(z) and β(z) are the same as in Eq. (A3).
The above formulas apply to our predicted cluster

abundances using MLCS2k2-fit SN data in addition to
CMB, BAO, and H0 constraints. The effective 10% shift
in mass when using the SN data fit with the SALT2
method instead (see § III C) can be simply accounted
for by replacing 15.565 with 15.525 in β(z) in Eq. (A3):

β(z) = 15.525−0.1 log
(
7.1 + 105.25z

)
(SALT2). (A5)

With this change, the accuracy of the fitting formulas
is the same regardless of the method used for fitting SN
light curves.

The residuals increase at n > 5 independent of redshift
since we only model the exponential part of the mass
function where halos are rare. The fitting formulas agree
with those of Ref. [5] to better than ∼ 10% in mass for
−2 ≤ n ≤ 4 while avoiding unphysical behavior at n ≤
−2.

These relations imply that the logarithmic slope of the
mass function for the median ΛCDM model can be ex-
pressed in terms of log N̄ rather than M . Such a relation
has the advantage that the logarithmic slope is a weak
function of redshift at fixed number. Fitting to numerical
results in Fig. 8 we obtain

γ(N̄ , z) = − ln
[
2.6 + 1.5z2 + e7.1−1.5 exp(−3z)−1.1 log N̄

]
.

(A6)
Given the relationship between the median log N̄ = n
and m in Eq. (A3), this expression gives the Edding-
ton bias correction as a function of mass and redshift
assuming the median ΛCDM predicted number. The fit
to γ(N̄ , z) is equally valid for predictions using both the
MLCS2k2 and SALT2 SN analyses, although the relation
between log N̄ and M differs as described above.

Changing the parameter variance exclusion level p
changes the relationship between N̄ and m (see Fig. 1).
For a higher confidence level than the median p = 0.5
the predicted number at a fixed mass increases. Thus in
order to find the mass m as a function of log N̄ for either
exclusion curves or evaluating the logarithmic slope of
the mass function, we need to shift the effective number
density at which we evaluate Eqs. (A4) and (A6). We ap-
proximate P (log N̄) as a lognormal distribution for the

FIG. 8. Fit and residuals for the logarithmic slope of the mass
function γ as a function of median cluster abundance and redshift.
The fit uses the same points from the numerical calculation as in
Fig. 7.

flat ΛCDM model class (see Fig. 1) with mean n and
width

σlog N̄ = 0.29− 0.035n , (A7)

independent of redshift (fit to the distributions in Fig. 1
over −8 < n < 6). Then the relation between N̄ and m
and z at some parameter confidence p is given by

log N̄Pp(m, z) = [1− 0.035
√

2 erf−1(2p− 1)]n(m, z)

+0.29
√

2 erf−1(2p− 1). (A8)

The inverse relationship between n and m of Eq. (A4),

log
M(z; s, p, fsky)

h−1M�
= m(n(s, p, fsky), z) , (A9)

can then be evaluated at

n =
log(−f−1

sky ln s)− 0.29
√

2 erf−1(2p− 1)

1− 0.035
√

2 erf−1(2p− 1)
, (A10)

which comes from Eq. (A8) using the criterion that the
100s% CL sets N̄Pp = N̄Ss = −f−1

sky ln s. Equation (A9)
therefore gives the desired exclusion curves at a given
sample variance CL, parameter variance CL, and sky
fraction. The Eddington bias at a given parameter vari-
ance confidence, mass, and redshift can also be evaluated
by using Eqs. (A8) and (A3) in Eq. (A6).

These formulas also provide a convenient way to esti-
mate the significance of an observed cluster: given the
cluster mass and redshift, Eq. (A3) approximates the
median expected cluster abundance in the full sky, and
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FIG. 9. Combinations of 100s% CL and 100p% CL limits for
sample variance and parameter variance, respectively, given various
mass and redshift thresholds. In the limit of high significance for
sample variance (1− s � 1), −f−1

sky ln s ≈ f−1
sky(1− s). The curves

are computed using the fitting formulas of Eqs. (A3) and (A10).
The 95% joint CL values used in § III A and the 50% joint CL values
for fsky = 1 are marked with a cross and a square, respectively.

Eq. (A10) then determines the corresponding combina-
tions of sample variance and parameter variance con-
fidence limits for flat ΛCDM. Note in particular that
−f−1

sky ln[s(m, z; p)] can be extracted as a closed form ex-
pression. Figure 9 shows examples of these s–p rela-
tions for clusters with M ≈ 1015 h−1M� at redshifts
z = 1.15 and 1.5, for which the significance of exclud-
ing flat ΛCDM is near the 50% joint CL and 95% joint
CL, respectively. For high significance clusters, a 10%
change in mass shifts the exclusion curves by a factor
of a few in (1 − s)/fsky and over an order of magnitude
in (1− p), highlighting again the importance of accurate
mass determination.

Appendix B: Normalization and Early Dark Energy

High redshift cluster abundance constraints are often
phrased relative to the local cluster abundance by fixing
σ8 and Ωm. Despite how well these two parameters are
constrained in flat ΛCDM by the WMAP7 data, this is
not equivalent to normalizing to CMB data.

In particular, the assumption that the value of σ8 is
well known requires extrapolating from the measurement
at z∗ = 1090 to the present using a particular growth
function, and in general changing the dark energy model
results in a different growth function implying a differ-
ent value of σ8 for fixed CMB amplitude. Additionally,
the presence of EDE directly affects CMB fluctuations

FIG. 10. CMB temperature power spectrum of an EDE model cal-
culated exactly from the scalar field equations and in the PPF ap-
proximation, compared with a ΛCDM model with the same matter
density, baryon density, distance to last scattering, and initial cur-
vature power spectrum. The transition from clustered to smooth
EDE boosts the CMB power spectrum around the first peak, and
thus matching the WMAP7 normalization requires small changes
in As and ns from their ΛCDM values.

on the horizon scale at recombination due to its transi-
tion from an adiabatically clustered to relatively smooth
component.

Our normalization parameter is As, the amplitude of
the initial curvature power spectrum at k = 0.05 Mpc−1,
and we use the CAMB PPF module to propagate its
effects jointly with the effects of EDE on the observable
CMB power spectra. The PPF approximation retains
the quintessence property that the sound speed of dark
energy is equal to the speed of light but implements the
transition from a clustered to smooth component in an
approximate manner [29].

In Fig. 10 we compare a ΛCDM model and a
quintessence model with EDE which have the same As,
ns, Ωch

2, Ωbh
2 and D(z∗). Specifically, we choose an

offset exponential for the quintessence potential

V (φ) = V0 +A exp(−φ/φ∗) . (B1)

For this potential, quintessence behaves as a tracking
field at early times with w ≈ 0 during matter domination,
and as a cosmological constant at late times. We first cal-
culate the exact CMB power spectrum for this model and
then compare it with the PPF approximation. The EDE
to matter ratio at z∗ is determined by φ∗ (e.g. [77]) and
we have chosen it to correspond to 3.3% while the ratio
of EDE to the total density is 2.4%. The potential offset
V0 is set by demanding that D(z∗) remain fixed in a flat
universe, and A is set by requiring that the field be in
the tracking regime well before recombination.
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FIG. 11. Illustration of the varying effects of early dark energy
depending on whether the growth history is normalized at z = 0
by fixing σ8 or at z ∼ 103 by fixing As. The ΛCDM and EDE
example models from Fig. 10 are shown by the dashed black and
solid blue curves, respectively; the dotted green curve shows the
same EDE model with σ8 rescaled to match its value in the ΛCDM
model.

Note that to zeroth order the CMB power at the ` ∼
200 first peak remains largely fixed given the same ini-
tial curvature power spectrum, but the small EDE frac-
tion causes a first order correction. The decay of grav-
itational potentials due to the EDE becoming smooth
under the horizon scale leads to a small boost in the am-
plitude. Conversely, at fixed WMAP7 normalization, the
best fit As is slightly reduced, while the best fit ns in-
creases to preserve the amplitude of the first peak where
the EDE is most effective (k ≈ 0.02 Mpc−1 compared
with our pivot scale of 0.05 Mpc−1). Moreover, the boost
widens the first peak and since this effect is not degen-
erate with changes in As and ns or other cosmological
parameters, it provides limits on EDE from the CMB
alone [78]. The PPF approximation captures these ef-
fects to sufficient accuracy for models that satisfy these
observational bounds.

We obtain σ8 and more generally σ(M, z = 0) for each
cosmological model using the PPF version of CAMB.
Even the small EDE fraction of our example can have
a sizable effect on σ(M, z = 0) due to the long lever arm
between z∗ and z = 0 over which the change in the sub-
horizon growth rate can act. To obtain σ(M, z) at z > 0,
we compute G(z) by integrating the differential equation
for the linear growth function as described in [13]. Since
we use the growth function only to scale backwards from
the present epoch, all high redshift modifications to the
transfer function and the CMB normalization of σ(M, 0)
through As are accounted for, including the impact of the
EDE clustering transition. This procedure is illustrated
in Fig. 11 (lowest curve). We then assume that σ(M, z)
determines the halo mass function with no explicit depen-
dence on EDE. Note that this differs from [49, 50] who
took a spherical collapse motivated mass function with a
collapse threshold δc that depended on EDE. The modi-
fied threshold ansatz was later shown to be inconsistent
with both numerical and analytic results [51–54].

The alternate approach of assuming a fixed value of
σ8 leads to very different conclusions about the effects of
EDE. In that case, the similar shapes of the ΛCDM and
EDE growth functions at low redshifts imply that the
effects of EDE on cluster abundances are small (upper
curves in Fig. 11 at low z) [51–54]. However, Fig. 11 com-
bined with Fig. 10 shows that a model with a substan-
tial amount of EDE and σ8 fixed to the best fit ΛCDM
value would change the high redshift normalization As
and hence the CMB power spectrum normalization. In
this example, the shift is more than 10% in amplitude,
whereas the CMB normalization for a given As is de-
termined to an accuracy of ∼ 1.4% corresponding to the
uncertainty in the reionization optical depth. Conversely,
by requiring consistency with the CMB, the effect of EDE
on reducing the cluster abundance can be quite large as
shown in Fig. 3 (see also [79, 80]).

Appendix C: Eddington Bias

For a steep mass function, an observable proxy for clus-
ter massMobs is biased high compared with the true mass
M since it is more likely that one of the numerous low
mass objects scatters to higher Mobs than it is that a
rare high mass object scatters to lower Mobs. There are
two types of mass bias associated with this effect and we
clarify their use here.

Consider first the type relevant to the exclusion anal-
ysis of the main part of the paper. We seek to find the
probability of a given model producing a cluster with ob-
served mass greater than Mobs at the given redshift or
above. The generalization of N̄ , the number of clusters
above a given true mass and redshift, is

N̄obs(Mobs, z) =

∫ ∞
z

dz′
4πD2(z′)

H(z′)

∫ ∞
Mobs

dM ′obs

M ′obs

∫ ∞
0

dM ′

M ′

× dn

d lnM
(M ′, z′)P (lnM ′obs| lnM ′) , (C1)

where P (lnMobs| lnM) is the probability density of ob-
taining an observed mass Mobs given a true mass M . In
order to set the probability of finding a cluster of ob-
served mass > Mobs equal to finding a cluster of true
mass > M we require

N̄obs(Mobs, z) = N̄(MN , z) . (C2)

The difference between MN and Mobs is the number bias
mass shift. By setting the probabilities equal, we there-
fore have the same exclusion confidence as if we had mea-
sured a cluster with true mass MN .

For the case of a lognormal mass observable relation
with rms σlnM that is small compared with the scale
over which the local slope of the mass function changes,
dn/d lnM ∝Mγ and [44, 45]

lnMN = lnMobs +
1

2
γσ2

lnM . (C3)
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This is the appropriate mass to plot on an M(z) exclusion
plot. Note that γ < 0 so MN < Mobs.

There is a second sense of a bias in mass that is com-
monly used in the literature. To place confidence limits
on the mass assuming a mass function and an observed
mass Mobs, one can use Bayes’ theorem [81, 82]

P (lnM | lnMobs) ∝ P (lnM)P (lnMobs| lnM) (C4)

and take P (lnM) ∝ dn/d lnM . For the same lognor-
mal and constant slope assumptions, the posterior mass
distribution is a lognormal of the same width σlnM and

shifted mean

lnMM = lnMobs + γσ2
lnM , (C5)

which is twice the mass shift required to hold probabil-
ities fixed. Note that this mass bias mass shift is the
answer to a statistically different question. Here one as-
sumes that the observation is fixed and the mass function
is a priori correct. One does not account for the prob-
ability of drawing such an Mobs (or greater) from the
mass function and the mass observable relation. In other
words, Eq. (C5) is the appropriate correction for quot-
ing confidence levels for the mass assuming ΛCDM, and
Eq. (C3) is the appropriate correction for quoting confi-
dence levels for how the existence of a given cluster might
exclude ΛCDM. It is the latter that we are interested in
here.
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