On the conjugacy of pure imaginary elements of quaternion algebras and Cayley algebras

Takashi Miyasaka

Abstract

In the algebras $\boldsymbol{H}, \boldsymbol{H}^{\prime}, \boldsymbol{H}^{C}, \mathfrak{C}, \mathfrak{C}^{\prime}$ and \mathfrak{C}^{C}, we show some results on the conjugacy of two pure imaginary non-zero elements with same norm.

Introduction

It is known that any automorphism α of the field \boldsymbol{H} of quaternions is an inner automorphism and any two pure imaginary quaternions a, b with the same norm are conjugate, that is, there exists a pure imaginary non-zero element $p \in \boldsymbol{H}$ such that $b=\operatorname{pap}^{-1}$ (Theorem 6.(1)). In the case of the split quaternion algebra \boldsymbol{H}^{\prime} (resp. the complex quaternion algebra \boldsymbol{H}^{C}), any two pure imaginary nonzero elements a, b with the same norm are conjugate, that is, there exists an invertible element $p \in \boldsymbol{H}^{\prime}$ (resp. \boldsymbol{H}^{C}) such that $b=p a p^{-1}$ (Theorem 6.(2)). In the case of the division Cayley algebra \mathfrak{C}, any two pure imaginary elements a, b with the same norm are conjugate, that is, there exists a pure imaginary non-zero element $p \in \mathfrak{C}$ such that $b=\operatorname{pap}^{-1}$ (Theorem 3.(1)). In the case of the split Cayley algebra \mathfrak{C}^{\prime} (resp. the complex Cayley algebra \mathfrak{C}^{C}), we need twice conjugate operations, that is, for any two pure imaginary non-zero elements a, b with the same norm, there exist invertible pure imaginary elements $p, q \in \mathfrak{C}^{\prime}$ (resp. \mathfrak{C}^{C}) such that $b=q\left(\right.$ pap $\left.^{-1}\right) q^{-1}$ (Theorem 3.(2)). We obtain the above results in the constructive manner, by using concrete elements.

Finally, the author would like to thank Takae Sato, Osamu Shukuzawa and Ichiro Yokota for their earnest guidance, useful advice and constant encouragement.

0. Preliminaries

Let \boldsymbol{H} be the field of quaternions with the canonical \boldsymbol{R}-basis $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ with the usual multiplication defined by

$$
\begin{gathered}
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1 \\
e_{1} e_{2}=e_{3}=-e_{2} e_{1}, \quad e_{2} e_{3}=e_{1}=-e_{3} e_{2}, \quad e_{3} e_{1}=e_{2}=-e_{1} e_{3}
\end{gathered}
$$

and let \boldsymbol{H}^{C} be the complexfication algebra of $\boldsymbol{H}: \boldsymbol{H}^{C}=\boldsymbol{H} \oplus i \boldsymbol{H}$. The algebra \boldsymbol{H}^{\prime} of split quaternions is defined as follows. \boldsymbol{H}^{\prime} is the algebra with \boldsymbol{R}-basis
$\left\{1, e_{1}{ }^{\prime}, e_{2}, e_{3}{ }^{\prime}\right\}$ with the multiplication defined by

$$
\begin{gathered}
e_{1}^{\prime 2}=e_{3}^{\prime 2}=1, e_{2}^{2}=-1 \\
e_{1}^{\prime} e_{2}=e_{3}^{\prime}=-e_{2} e_{1}^{\prime}, \quad e_{2} e_{3}^{\prime}=e_{1}^{\prime}=-e_{3} e_{2}, \quad e_{3}{ }^{\prime} e_{1}^{\prime}=-e_{2}=-e_{1}{ }^{\prime} e_{3}{ }^{\prime} .
\end{gathered}
$$

Next, let $\mathfrak{C}=\boldsymbol{H} \oplus \boldsymbol{H} e_{4}$ (resp. $\mathfrak{C}^{\prime}=\boldsymbol{H}^{\prime} \oplus \boldsymbol{H}^{\prime} e_{4}$) be the division Cayley algebra (resp. the split Cayley algebra) over \boldsymbol{R} with the multiplication

$$
\left(m_{1}+n_{1} e_{4}\right)\left(m_{2}+n_{2} e_{4}\right)=\left(m_{1} m_{2}-\overline{n_{2}} n_{1}\right)+\left(n_{1} \overline{m_{2}}+n_{2} m_{1}\right) e_{4}
$$

for $m_{1}+n_{1} e_{4}, m_{2}+n_{2} e_{4} \in \mathfrak{C}$ (resp. \mathfrak{C}^{\prime}), where \bar{m} is the conjugate element of $m \in \boldsymbol{H}$ (resp. \boldsymbol{H}^{\prime}), and let $e_{5}=e_{1} e_{4}, e_{6}=-e_{2} e_{4}, e_{7}=e_{3} e_{4}$ (resp. $e_{5}{ }^{\prime}=$ $\left.e_{1}{ }^{\prime} e_{4}, e_{6}=-e_{2} e_{4}, e_{7}^{\prime}=e_{3}{ }^{\prime} e_{4}\right)$. The complex Cayley algebra \mathfrak{C}^{C} is defined as the complexification of $\mathfrak{C}: \mathfrak{C}^{C}=\mathfrak{C} \oplus i \mathfrak{C}$. In $\mathfrak{C}, \mathfrak{C}^{\prime}$ and \mathfrak{C}^{C}, the conjugation is defined by $\overline{m+n e_{4}}=\bar{m}-n e_{4}$. In the algebras $K=\boldsymbol{H}, \boldsymbol{H}^{\prime}, \boldsymbol{H}^{C}, \mathfrak{C}, \mathfrak{C}^{\prime}$ and \mathfrak{C}^{C} above, the inner product (a, b) and the norm $\boldsymbol{N}(a)$ by

$$
(a, b)=\frac{1}{2}(a \bar{b}+b \bar{a}), \quad \boldsymbol{N}(a)=(a, a)=a \bar{a}
$$

Note that if $a \in K$ satisfies $\boldsymbol{N}(a) \neq 0$, then a is invertible and the inverse element a^{-1} of a is given by $a^{-1}=\bar{a} / \boldsymbol{N}(a)$. Finally, we use the following notation

$$
\begin{array}{ll}
K_{0}=\{a \in K \mid \bar{a}=-a\}, & K_{0}^{*}=\left\{a \in K_{0} \mid a \neq 0\right\} \\
K^{\times}=\{a \in K \mid \boldsymbol{N}(a) \neq 0\}, & K_{0} \times=\left\{a \in K_{0} \mid \boldsymbol{N}(a) \neq 0\right\}
\end{array}
$$

For $a \in K_{0}, \boldsymbol{N}(a)$ is nothing but $-a^{2}$.

1. Cases of Cayley algebras

Lemma 1. (1) For any $a \in(\mathfrak{C})_{0}$, there exists $p \in(\mathfrak{C})_{0}{ }^{*}$ such that pap ${ }^{-1}=$ $-a$.
(2) Let $K=\mathfrak{C}^{\prime}, \mathfrak{C}^{C}$. For any $a \in K_{0}$, there exists $p \in K_{0}{ }^{\times}$such that pap ${ }^{-1}=$ $-a$.

Proof. We may assume that $a \neq 0$.
(1) Case $a \in(\mathfrak{C})_{0}$. Express $a=a_{1} e_{1}+\cdots+a_{7} e_{7}, a_{k} \in \boldsymbol{R}$. Then, at least one element p of the following elements

$$
a_{2} e_{1}-a_{1} e_{2}, \quad a_{3} e_{2}-a_{2} e_{3}, \quad a_{5} e_{4}-a_{4} e_{5}, \quad a_{7} e_{6}-a_{6} e_{7}
$$

satisfies $p a p^{-1}=-a$. Indeed, each element p above satisfies $p a=-a p$, and the norm $\boldsymbol{N}(p)$ are

$$
a_{2}^{2}+a_{1}^{2}, \quad a_{3}^{2}+a_{2}^{2}, \quad a_{5}^{2}+a_{4}^{2}, \quad a_{7}^{2}+a_{6}^{2} .
$$

If $\boldsymbol{N}(p)=0$ for all p, then we have $a_{1}=\cdots=a_{7}=0$, that is, $a=0$, which contradicts the assumption $a \neq 0$.
(2)-(i) Case $a \in\left(\mathfrak{C}^{\prime}\right)_{0}$. Express $a=a_{1} e_{1}^{\prime}+a_{2} e_{2}+a_{3} e_{3}{ }^{\prime}+a_{4} e_{4}+a_{5} e_{5}{ }^{\prime}+a_{6} e_{6}+$ $a_{7} e_{7}{ }^{\prime}, a_{k} \in \boldsymbol{R}$. Then, at least one element p of the following elements

$$
a_{4} e_{2}-a_{2} e_{4}, \quad a_{6} e_{4}-a_{4} e_{6}, \quad a_{3} e_{1}^{\prime}-a_{1} e_{3}^{\prime}, \quad a_{7} e_{5}^{\prime}-a_{5} e_{7}^{\prime}
$$

satisfies $p a p^{-1}=-a$. Indeed, each element p above satisfies $p a=-a p$, and the norm $\boldsymbol{N}(p)$ are

$$
a_{4}^{2}+a_{2}^{2}, \quad a_{6}^{2}+a_{4}^{2}, \quad-a_{3}^{2}-a_{1}^{2}, \quad-a_{7}^{2}-a_{5}^{2} .
$$

If $\boldsymbol{N}(p)=0$ for all p, then we have $a_{1}=\cdots=a_{7}=0$, that is, $a=0$, which contradicts the assumption $a \neq 0$.
(2)-(ii) Case $a \in\left(\mathfrak{C}^{C}\right)_{0}$. Express $a=a_{1} e_{1}+\cdots+a_{7} e_{7}, a_{k} \in C$. Then, at least one element p of the following elements

$$
\begin{gathered}
a_{2} e_{1}-a_{1} e_{2}, \quad a_{3} e_{2}-a_{2} e_{3}, \quad a_{1} e_{3}-a_{3} e_{1}, \\
a_{4} e_{3}-a_{3} e_{4}, \quad a_{5} e_{4}-a_{4} e_{5}, \quad a_{6} e_{5}-a_{5} e_{6}, \quad a_{7} e_{6}-a_{6} e_{7}
\end{gathered}
$$

satisfies $p a p^{-1}=-a$. Indeed, each element p above satisfies $p a=-a p$, and the norm $\boldsymbol{N}(p)$ are

$$
\begin{gathered}
a_{2}^{2}+a_{1}^{2}, \quad a_{3}^{2}+a_{2}^{2}, \quad a_{1}^{2}+a_{3}^{2}, \\
a_{4}^{2}+a_{3}^{2}, \quad a_{5}^{2}+a_{4}^{2}, \quad a_{6}^{2}+a_{5}^{2}, \quad a_{7}^{2}+a_{6}^{2} .
\end{gathered}
$$

If $\boldsymbol{N}(p)=0$ for all p, then we have $a_{1}=\cdots=a_{7}=0$, that is, $a=0$, which contradicts the assumption $a \neq 0$.

Lemma 2. Let $K=\mathfrak{C}^{\prime}, \mathfrak{C}^{C}$. For any $a, b \in K_{0}{ }^{*}$ such that $(a, b)=0$ and $\boldsymbol{N}(a)+\boldsymbol{N}(b)=0$, there exists $p \in K_{0}{ }^{\times}$(which depends on a and b) such that $N\left(p^{2} p^{-1}+b\right) \neq 0$.

Proof. (1) Case $K=\mathfrak{C}^{C}$. Express $a=a_{1} e_{1}+\cdots+a_{7} e_{7}, b=b_{1} e_{1}+\cdots+$ $b_{7} e_{7}, a_{k}, b_{k} \in C$. (1)-(i) When $a_{k} b_{k} \neq 0$ for some k. Let $p=e_{k}$. It holds $\boldsymbol{N}(p)=1 \neq 0$ and

$$
\begin{aligned}
& \boldsymbol{N}\left(\text { pap }^{-1}+b\right)=\boldsymbol{N}(a)+\boldsymbol{N}(b)+2\left(p a p^{-1}, b\right) \\
& =0-2\left(a_{1} b_{1}+\cdots+a_{k-1} b_{k-1}-a_{k} b_{k}+a_{k+1} b_{k+1}+\cdots+\boldsymbol{a}_{7} b_{7}\right) \\
& =4 a_{k} b_{k}+2(a, b)=4 a_{k} b_{k} \neq 0
\end{aligned}
$$

(1)-(ii) When $a_{k} b_{k}=0$ for all $k=1,2, \cdots, 7$. There exist k, l such that $k \neq l$, $a_{k} \neq 0, b_{l} \neq 0$. In this case, note that $a_{l}=b_{k}=0$. Now, let $p=e_{k}+e_{l}$. Then, $\boldsymbol{N}(p)=2$ and $\boldsymbol{N}\left(p a p^{-1}+b\right)=\boldsymbol{N}(a)+\boldsymbol{N}(b)+2\left(a_{k} b_{l}-(a, b)\right)=0+2\left(a_{k} b_{l}-0\right)=$ $2 a_{k} b_{l} \neq 0$.
(2) Case $K=\mathfrak{C}^{\prime}$. Express $a=a_{1} e_{1}{ }^{\prime}+a_{2} e_{2}+a_{3} e_{3}{ }^{\prime}+a_{4} e_{4}+a_{5} e_{5}{ }^{\prime}+a_{6} e_{6}+$ $a_{7} e_{7}^{\prime}, b=b_{1} e_{1}^{\prime}+b_{2} e_{2}+b_{3} e_{3}{ }^{\prime}+b_{4} e_{4}+b_{5} e_{5}^{\prime}+b_{6} e_{6}+b_{7} e_{7}^{\prime}, a_{k}, b_{k} \in \boldsymbol{R}$.
(2)-(i) When $a_{k} b_{k} \neq 0$ for some k. If $k \in\{2,4,6\}$ (resp. $k \in\{1,3,5,7\}$), then let $p=e_{k}\left(\right.$ resp. e_{k}). Then $\boldsymbol{N}(p)=1($ resp. -1$) \neq 0$ and $\boldsymbol{N}\left(p a p^{-1}+b\right)=4 a_{k} b_{k}$ (resp. $\left.-4 a_{k} b_{k}\right) \neq 0$ in the same way as 1-(i).
(2)-(ii) When $a_{k} b_{k}=0$ for all $k=1,2, \cdots, 7$. There exist $k, l \in\{2,4,6\}$ such that $k \neq l, a_{k} \neq 0, b_{l} \neq 0$. In this case, note that $a_{l}=b_{k}=0$. Now, let $p=e_{k}+e_{l}$. Then, $\boldsymbol{N}(p)=2$ and $\boldsymbol{N}\left(\right.$ pap $\left.^{-1}+b\right)=\boldsymbol{N}(a)+\boldsymbol{N}(b)+2\left(a_{k} b_{l}-(a, b)\right)=$ $0+2\left(a_{k} b_{l}-0\right)=2 a_{k} b_{l} \neq 0$.

Theorem 3. (1) For any $a, b \in(\mathfrak{C})_{0}{ }^{*}$ such that $\boldsymbol{N}(a)=\boldsymbol{N}(b)$, there exists $p \in(\mathfrak{C})_{0}{ }^{*}$ such that pap ${ }^{-1}=b$.
(2) Let $K=\mathfrak{C}^{\prime}, \mathfrak{C}^{C}$. For any $a, b \in K_{0}{ }^{*}$ such that $\boldsymbol{N}(a)=\boldsymbol{N}(b)$, there exist $p, q \in K_{0}{ }^{\times}$such that $q\left(p a p^{-1}\right) q^{-1}=b$.

Proof. (1)-(i) Case $\boldsymbol{N}(a+b) \neq 0$. Let $p=a+b$, then we have

$$
\begin{aligned}
p a p^{-1} & =(a+b) a(a+b)^{-1}=\left(a^{2}+b a\right)(a+b)^{-1} \\
& =\left(b^{2}+b a\right)(a+b)^{-1}=b(b+a)(a+b)^{-1}=b
\end{aligned}
$$

(1)-(ii)Case $\boldsymbol{N}(a+b)=0$. This implies $b=-a$. Then, there exists $p \in(\mathfrak{C})_{0}{ }^{*}$ such that pap ${ }^{-1}=-a=b$, by Lemma 1(1).
(2)-(i) Case $\boldsymbol{N}(a+b) \neq 0$. Let $p=a+b$. Then we have $p a p^{-1}=b$ in the same way as (1)-(i).
(2)-(ii) Case $\boldsymbol{N}(a-b) \neq 0$. For given b, there exists $q \in K_{0}{ }^{\times}$such that $q b q^{-1}=-b$ (Lemma 1.(2)). Now, let $p=a-b$, then we have

$$
\begin{aligned}
q\left(p a p^{-1}\right) q^{-1} & =q\left((a-b) a(a-b)^{-1}\right) q^{-1}=q\left(\left(a^{2}-b a\right)(a-b)^{-1}\right) q^{-1} \\
& =q\left(\left(b^{2}-b a\right)(a-b)^{-1}\right) q^{-1}=q\left(b(b-a)(a-b)^{-1}\right) q^{-1} \\
& =q(-b) q^{-1}=b .
\end{aligned}
$$

(2)-(iii) Case $\boldsymbol{N}(a+b)=\boldsymbol{N}(a-b)=0$. This implies $(a, b)=0$ and $\boldsymbol{N}(a)+$ $\boldsymbol{N}(b)=0$. Then we get $\boldsymbol{N}(a)=\boldsymbol{N}(b)=0$, that is, $a^{2}=b^{2}=0$. For $a, b \in K_{0}{ }^{*}$, we can choose $p \in K_{0}{ }^{\times}$such that $\boldsymbol{N}\left(\right.$ pap $\left.^{-1}+b\right) \neq 0$, by Lemma 2 . Let $q=p a p^{-1}+b$. Then, noting that $\left(p a p^{-1}\right)^{2}=-\boldsymbol{N}\left(p a p^{-1}\right)=0$, we have

$$
\begin{aligned}
q\left(p a p^{-1}\right) q^{-1} & =\left(p a p^{-1}+b\right)\left(p a p^{-1}\right)\left(p a p^{-1}+b\right)^{-1} \\
& =\left(\left(p a p^{-1}\right)^{2}+b\left(p a p^{-1}\right)\right)\left(p a p^{-1}+b\right)^{-1} \\
& =\left(b^{2}+b\left(p a p^{-1}\right)\right)\left(p a p^{-1}+b\right)^{-1} \\
& =\left(b\left(b+p a p^{-1}\right)\right)\left(p a p^{-1}+b\right)^{-1}=b
\end{aligned}
$$

Remark. In the split Cayley algebra \mathfrak{C}^{\prime} (resp. the complex Cayley algebra \mathfrak{C}^{C}), there exist two elements $a, b \in\left(\mathfrak{C}^{\prime}\right)_{0^{*}}$ (resp. $\left.\left(\mathfrak{C}^{C}\right)_{0}{ }^{*}\right)$ with the same norm $\boldsymbol{N}(a)=\boldsymbol{N}(b)$ such that b can not be expressed by pap ${ }^{-1}$ for any $p \in \mathfrak{C}^{\prime}$ (resp. $\left.\mathfrak{C}^{C}\right)$.

For example, in \mathfrak{C}^{\prime}, let $a=4 e_{1}^{\prime}+5 e_{2}+3 e_{3}^{\prime}-5 e_{4}+4 e_{5}{ }^{\prime}+3 e_{7}^{\prime}, b=3 e_{2}+$ $4 e_{6}+5 e_{7}^{\prime}$. Then, $\boldsymbol{N}(a)=\boldsymbol{N}(b)=0$. If $p=x_{0}+x_{1} e_{1}{ }^{\prime}+x_{2} e_{2}+x_{3} e_{3}{ }^{\prime}+x_{4} e_{4}+$
$x_{5} e_{5}{ }^{\prime}+x_{6} e_{6}+x_{7} e_{7}{ }^{\prime} \in \mathfrak{C}^{\prime}$ satisfies $p a=b p$, then

$$
\left\{\begin{array}{rl}
+4 x_{1}-2 x_{2}+3 x_{3}+5 x_{4}+4 x_{5}+4 x_{6}-2 x_{7} & =0 \\
4 x_{0}+3 x_{2}-8 x_{3}+4 x_{4}+5 x_{5}+8 x_{6}-4 x_{7} & =0 \\
2 x_{0}+3 x_{1}-4 x_{3}-4 x_{4}-8 x_{5}-5 x_{6}+4 x_{7} & =0 \\
3 x_{0}+8 x_{1}-4 x_{2}+8 x_{4}+4 x_{5}-4 x_{6}+5 x_{7} & =0 \\
-5 x_{0}+4 x_{1}+4 x_{2}+8 x_{3}-4 x_{5}-8 x_{6}-3 x_{7} & =0 \\
4 x_{0}-5 x_{1}-8 x_{2}-4 x_{3}-4 x_{4}+3 x_{6}+8 x_{7} & =0 \\
-4 x_{0}+8 x_{1}+5 x_{2}-4 x_{3}+8 x_{4}+3 x_{5}-4 x_{7} & =0 \\
-2 x_{0}+4 x_{1}+4 x_{2}-5 x_{3}-3 x_{4}-8 x_{5}-4 x_{6} & =0
\end{array} .\right.
$$

Hence, p must be

$$
\begin{aligned}
& p=s\left(104 e_{1}^{\prime}+40 e_{2}+3 e_{3}^{\prime}-165 e_{4}+132 e_{5}^{\prime}+24 e_{7}^{\prime}\right) \\
& +t\left(-46 e_{1}^{\prime}-8 e_{2}+3 e_{3}^{\prime}+75 e_{4}-60 e_{5}^{\prime}+6 e_{6}\right)
\end{aligned}
$$

with arbitrary parameters, $s, t \in \boldsymbol{R}$. However, for any $s, t \in \boldsymbol{R}$, it holds $\boldsymbol{N}(p)=$ 0 . Therefore, there does not exist $p \in \mathfrak{C}^{\prime}$ such that $p a p^{-1}=b$.

Next, in \mathfrak{C}^{C}, let $a=4 i e_{1}+5 e_{2}+3 i e_{3}-5 e_{4}+4 i e_{5}+3 i e_{7}, b=3 e_{2}+4 e_{6}+5 i e_{7}$. Then $\boldsymbol{N}(a)=\boldsymbol{N}(b)=0$. If $p=x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+$ $x_{7} e_{7} \in \mathfrak{C}^{C}$ satisfies $p a=b p$, then

$$
\left\{\begin{array}{rl}
-4 i x_{1}-2 x_{2}-3 i x_{3}+5 x_{4}-4 i x_{5}+4 x_{6}+2 i x_{7} & =0 \\
4 i x_{0}+3 i x_{2}-8 x_{3}+4 i x_{4}+5 x_{5}+8 i x_{6}-4 x_{7} & =0 \\
2 x_{0}-3 i x_{1}+4 i x_{3}-4 x_{4}+8 i x_{5}-5 x_{6}-4 i x_{7} & =0 \\
3 i x_{0}+8 x_{1}-4 i x_{2}-8 i x_{4}+4 x_{5}-4 i x_{6}+5 x_{7} & =0 \\
-5 x_{0}-4 i x_{1}+4 x_{2}-8 i x_{3}+4 i x_{5}-8 x_{6}+3 i x_{7} & =0 \\
4 i x_{0}-5 x_{1}-8 i x_{2}-4 x_{3}-4 i x_{4}+3 i x_{6}+8 x_{7} & =0 \\
-4 x_{0}-8 i x_{1}+5 x_{2}+4 i x_{3}+8 x_{4}-3 i x_{5}+4 i x_{7} & =0 \\
-2 i x_{0}+4 x_{1}+4 i x_{2}-5 x_{3}-3 i x_{4}-8 x_{5}-4 i x_{6} & =0
\end{array} .\right.
$$

Hence, p must be

$$
\begin{aligned}
& p=s\left(104 e_{1}-40 i e_{2}+3 e_{3}+165 i e_{4}+132 e_{5}+24 e_{7}\right) \\
& +t\left(-46 i e_{1}-8 e_{2}+3 i e_{3}+75 e_{4}-60 i e_{5}+6 e_{6}\right)
\end{aligned}
$$

with arbitrary parameters, $s, t \in C$. However, for any $s, t \in C$, it holds $\boldsymbol{N}(p)=$ 0 . Therefore, there does not exist $p \in \mathfrak{C}^{\prime}$ such that $p a p^{-1}=b$.

2. Cases of quaternion algebras

Lemma 4. (1) For any $a \in(\boldsymbol{H})_{0}$, there exists $p \in(\boldsymbol{H})_{0}{ }^{*}$ such that pap ${ }^{-1}=$ $-a$.
(2) Let $K=\boldsymbol{H}^{\prime}, \boldsymbol{H}^{C}$. For any $a \in K_{0}$, there exists $p \in K_{0} \times$ such that pap $p^{-1}=-a$.

Proof. Since Cayley algebras \mathfrak{C}, \mathfrak{C}^{\prime} and \mathfrak{C}^{C} naturally contain quaternion algebras $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ and \boldsymbol{H}^{C} respetively, this lemma has already been shown by Lemma 1.

Lemma 5. Let $K=\boldsymbol{H}^{\prime}, \boldsymbol{H}^{C}$. For any $a, b \in K_{0}{ }^{*}$ such that $(a, b)=0$ and $\boldsymbol{N}(a)+\boldsymbol{N}(b)=0$, there exists $p \in K_{0}{ }^{\times}$(which depends on a and b) such that $N\left(p^{\prime} p^{-1}+b\right) \neq 0$.

Proof. Since Cayley algebras \mathfrak{C}^{\prime} and \mathfrak{C}^{C} naturally contain quaternion algebras \boldsymbol{H}^{\prime} and \boldsymbol{H}^{C} respetively, this lemma has already been shown by Lemma 2.

Theorem 6. (1) For any $a, b \in(\boldsymbol{H})_{0}{ }^{*}$ such that $\boldsymbol{N}(a)=\boldsymbol{N}(b)$, there exists $p \in(\boldsymbol{H})_{0}{ }^{*}$ such that pap $^{-1}=b$.
(2) Let $K=\boldsymbol{H}^{\prime}, \boldsymbol{H}^{C}$. For any $a, b \in K_{0}{ }^{*}$ such that $\boldsymbol{N}(a)=\boldsymbol{N}(b)$, there exists $p \in K^{\times}$such that pap ${ }^{-1}=b$.

Proof. Since Cayley algebras $\mathfrak{C}, \mathfrak{C}^{\prime}$ and \mathfrak{C}^{C} naturally contain quaternion algebras $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ and \boldsymbol{H}^{C} respetively, this is the particular case of Theorem 3. In the case of (2), since the associativity is valid in \boldsymbol{H}^{\prime} and \boldsymbol{H}^{C}, Theorem 3.(2) implies (2).

References

[1] I. Yokota, Realizations of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math., 14(1990), 185-223.
[2] I. Yokota, Simple Lie groups of classical type (in Japanese), GendaiSugakusya, (1990).
[3] I. Yokota, Simple Lie groups of exceptional type (in Japanese), GendaiSugakusya, (1992).

