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Abstract

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colours
needed to colour its edges, so that every pair of vertices is connected by at least one path
in which no two edges are coloured the same. In this note we show that for every bridgeless
graph G with radius r, rc(G) ≤ r(r+2). We demonstrate that this bound is the best possible
for rc(G) as a function of r, not just for bridgeless graphs, but also for graphs of any stronger
connectivity. It may be noted that, for a general 1-connected graph G, rc(G) can be arbitrarily
larger than its radius (K1,n for instance). We further show that for every bridgeless graph G
with radius r and chordality (size of a largest induced cycle) k, rc(G) ≤ rk. Hitherto, the only
reported upper bound on the rainbow connection number of bridgeless graphs is 4n/5 − 1,
where n is order of the graph [Caro et al., 2008]
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1. Introduction

Edge colouring of a graph is a function from its edge set to the set of natural numbers.
A path in an edge coloured graph with no two edges sharing the same colour is called a
rainbow path. An edge coloured graph is said to be rainbow connected if every pair of vertices
is connected by at least one rainbow path. Such a colouring is called a rainbow colouring of
the graph. The minimum number of colours required to rainbow colour a connected graph is
called its rainbow connection number, denoted by rc(G). For example, the rainbow connection
number of a complete graph is 1, that of a path is its length, and that of a star is its number
of leaves. For a basic introduction to the topic, see Chapter 11 in [1].

The concept of rainbow colouring was introduced by Chartrand, Johns, McKeon and
Zhang in 2008 [2]. Chakraborty et al. showed that computing the rainbow connection number
of a graph is NP-Hard [3]. To rainbow colour a graph, it is enough to ensure that every edge of
some spanning tree in the graph gets a distinct colour. Hence order of the graph minus one is
an upper bound for rainbow connection number. Many authors view rainbow connectivity as
one ‘quantifiable’ way of strengthening the connectivity property of a graph [4, 3, 5]. Hence
tighter upper bounds on rainbow connection number for graphs with higher connectivity
have been a subject of investigation. The following are the results in this direction reported
in literature: Let G be a graph of order n. If G is 2-edge-connected (bridgeless), then
rc(G) ≤ 4n/5 − 1 and if G is 2-vertex-connected, then rc(G) ≤ min{2n/3, n/2 + O(

√
n)}

[4]. Krivelevich and Yuster showed that rc(G) ≤ 20n/δ where δ is the minimum degree
of G [5]. The result was recently improved by Chandran et al. where it was shown that
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rc(G) ≤ 3n/(δ + 1) + 3 [6]. Hence it follows that rc(G) ≤ 3n/(λ + 1) + 3 if G is λ-edge-
connected.

All the above upper bounds grow with n. Diameter of a graph, and hence its radius, are
obvious lower bounds for rainbow connection number. Hence it is interesting to see if there is
an upper bound which is a function of the radius or diameter alone. Such upper bounds were
shown for some special graph classes in [6]. But, for a general graph, the rainbow connection
number cannot be upper bounded by a function of r alone. For instance, the star K1,n has
a radius 1 but rainbow connection number n. Still, the question of whether such an upper
bound exists for graphs with higher connectivity remains. Here we answer this question in
the affirmative. In particular, we show that if G is bridgeless, then rc(G) ≤ r(r + 2) where
r is the radius of G (Corollary 5). Moreover, we also demonstrate that the bound cannot be
improved even if we assume stronger connectivity (Example 6).

Since the above bound is quadratic in r, we tried to see what additional restriction would
give an upper bound which is linear in r. To this end, we show that if the size of isometric
cycles or induced cycles in a graph is bounded independently of r, then the rainbow connection
number is linear in r. In particular, we show that if G is a bridgeless graph with radius r and
the size of a largest isometric cycle ζ, then rc(G) ≤ rζ (Theorem 4). Since every isometric
cycle is induced, it also follows that rc(G) ≤ rk where k is the chordality (size of a largest
induced cycle) of G (Corollary 7).

1.1. Preliminaries

All graphs considered in this article are finite, simple and undirected. The length of a
path is its number of edges. An edge in a connected graph is called a bridge, if its removal
disconnects the graph. A connected graph with no bridges is called a bridgeless (or 2-edge-
connected) graph. If S is a subset of vertices of a graph G, the subgraph of G induced by the
vertices in S is denoted by G[S]. The graph obtained by contracting the set S into a single
vertex vS is denoted by G/S. The vertex set and edge set of G are denoted by V (G) and
E(G) respectively.

Definition 1. Let G be a connected graph. The distance between two vertices u and v
in G, denoted by dG(u, v) is the length of a shortest path between them in G. The ec-
centricity of a vertex v is ecc(v) := maxx∈V (G) dG(v, x). The diameter of G is diam(G) :=
maxx∈V (G) ecc(x). The radius of G is rad(G) := minx∈V (G) ecc(x). Distance between a
vertex v and a set S ⊆ V (G) is dG(v, S) := minx∈S dG(v, x). The neighbourhood of S is
N(S) := {x ∈ V (G)|dG(x, S) = 1}.

Definition 2. Given a graph G, a set D ⊆ V (G) is called a k-step dominating set of G, if
every vertex in G is at a distance at most k from D. Further if G[D] is connected, then D is
called a connected k-step dominating set of G.

Definition 3. A subgraph H of a graph G is called isometric if distance between any pair
of vertices in H is the same as their distance in G. The size of a largest isometric cycle in G
is denoted by iso(G).

Definition 4. A graph is called chordal if it contains no induced cycles of length greater than
3. Chordality of a graph G is the length of a largest induced cycle in G.

Note that every isometric cycle is induced and hence iso(G) is at most the chordality of
G.
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2. Our Results

The most important idea in this note is captured in Lemma 3 and all the upper bounds
reported here will follow easily from it. Next important idea in this note, which is used in the
construction of all the tight examples, is illustrated in Theorem 4. Before stating Lemma 3,
we state and prove two small lemmas which are used in its proof.

Lemma 1. For every edge e in a graph G, any shortest cycle in G containing e is isometric.

Proof. Let C be a shortest cycle in G containing e. For contradiction, assume that there
exists at least one pair (x, y) ∈ V (C) × V (C) such that dG(x, y) < dC(x, y). Choose (x, y)
to be one with minimum dG(x, y) among all such pairs. Let P be a shortest x–y path in
G. First we show that P ∩ C = {x, y}. If P ∩ C contains some vertex z /∈ {x, y}, then
dG(x, z) + dG(z, y) = dG(x, y) < dC(x, y) ≤ dC(x, z) + dC(z, y). First equality follows since
P is a shortest x–y path, the strict inequality follows by assumption and the last is triangle
inequality. Therefore, either dG(x, z) < dC(x, z) or dG(y, z) < dC(y, z). This contradicts the
choice of (x, y). Now it is easy to see that P together with the segment of C between x and
y containing e will form a cycle strictly smaller than C contradicting the minimality of C.
Hence C is isometric.

Definition 5. Given a graph G and a set D ⊂ V (G), a D-ear is a path P = (x0, x1, · · · , xp)
in G such that P ∩D = {x0, xp}. P may be a closed path, in which case x0 = xp. Further,
P is called an acceptable D-ear if either P is a shortest D-ear containing (x0, x1) or P is a
shortest D-ear containing (xp−1, xp).

Lemma 2. If P is an acceptable D-ear in a graph G for some D ⊂ V (G), then dG(x,D) =
dP (x,D) for every x ∈ P where dP (x,D) is the length of a shortest x–D path along P .

Proof. Without loss of generality, let P = (x0, x1, · · · , xp) be a shortest D-ear containing
e = (x0, x1). It is easy to see that P ′ = (vD, x1, x2, · · · , xp−1, vD) is a shortest cycle in
G′ = G/D containing e = (vD, x1). Hence by Lemma 1, P ′ is isometric in G′. Now the result
follows since dG(x,D) = dG′(x, vD) and dP (x,D) = dP ′(x, vD).

Lemma 3. If G is a bridgeless graph, then for every connected k-step dominating set Dk of
G, k ≥ 1, there exists a connected (k − 1)-step dominating set Dk−1 ⊃ Dk such that

rc(G[Dk−1]) ≤ rc(G[Dk]) + min{2k + 1, ζ},

where ζ = iso(G).

Proof. Given Dk, we rainbow colour G[Dk] with rc(G[Dk]) colours. Let m = min{2k + 1, ζ}
and let A = {a1, a2, · · · } and B = {b1, b2, · · · } be two pools of colours, none of which are used
to colour G[Dk]. A Dk-ear P = (x0, x1, · · · , xp) will be called evenly coloured if its edges are
coloured a1, a2, · · · , a⌈ p

2
⌉, b⌊ p

2
⌋, · · · , b2, b1 in that order. We prove the lemma by constructing

a sequence of sets Dk = D0 ⊂ D1 ⊂ · · · ⊂ Dt = Dk−1 and colouring the new edges in every
induced graph G[Di] such that the following property is maintained for all 0 ≤ i ≤ t.

Property 1. Every x ∈ Di\Dk lies in an evenly coloured acceptable Dk-ear in G[Di].
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Note that Property 1 is vacuously true for D0. Given a Di which satisfies Property 1, if
Di ⊃ N(Dk), then Di is a (k − 1)-step dominating set and we stop the procedure by setting
t = i. Otherwise we construct Di+1 ⊃ Di and colour the new edges of G[Di+1] as follows.

Pick any edge e = (x0, x1) ∈ Dk × (N(Dk)\Di) of G and let Q = (x0, x1, · · · , xq) be
a shortest Dk-ear containing e. Such an ear always exists since G is bridgeless. Let xl be
the first vertex of Q in Di. If xl = xq, then evenly colour Q. Hence P = Q is an evenly
coloured acceptable Dk-ear. Otherwise, since Di satisfies Property 1, xl is on some evenly
coloured acceptable Dk-ear P ′ in G[Di]. Let R be the shorter segment of P ′ with respect
to xl. By Lemma 2, |R| = dP ′(xl,D

k) = dG(xl,D
k). Hence L = (x0, x1, · · · , xl) together

with R is also an acceptable Dk-ear, P = L ∪R, containing e. Colour the edges of L so that
P is evenly coloured. This is possible because (i) R uses colours exclusively from one pool
(|R| ≤ ⌊|P ′|/2⌋, since it is the shorter segment of P ′) and (ii) R forms the shorter segment of
P (|L| ≥ dG(xl,D

k) = |R|, by Lemma 2). Hence the colouring of R can be evenly extended
to L. Set Di+1 = Di ∪ P . Remaining uncoloured edges of G[Di+1] can be assigned any used
colour. Clearly Di+1 also satisfies Property 1.

Firstly, we claim that at most m new colours are used in the above procedure for con-
structing Dk−1 from Dk, for which it is enough to show that |P | ≤ m in every iteration.
Since Dk is a k-step dominating set and since the Dk-ear P = (x0, x1, · · · , xp) added in each
iteration is acceptable, it follows that |P | ≤ 2k+1. Otherwise a middle vertex x⌊ p

2
⌋ of P will

be at a distance more than k from Dk (by Lemma 2). Let C be a shortest cycle containing
e = (x0, x1). C exists since G is bridgeless. By Lemma 1, C is isometric and hence |C| ≤ ζ.
Further, |P | ≤ |C| since C includes a Dk-ear containing e. Thus |P | ≤ m = min{2k + 1, ζ}
in every iteration.

Next, we claim that the G[Dk−1] constructed this way is rainbow connected. Any pair
(x, y) ∈ Dk × Dk, is rainbow connected in G[Dk]. For any pair (x, y) ∈ (Dk−1\Dk) × Dk,
let P = (x0, x1, · · · , xi = x, · · · , xp) be the evenly coloured (acceptable) Dk-ear containing
x. Joining (x = xi, xi+1, · · · , xp) with a xp–y rainbow path in G[Dk] gives a x–y rainbow
path. For any pair (x, y) ∈ (Dk−1\Dk)×(Dk−1\Dk), let P = (x0, x1, · · · , xi = x, · · · , xp) and
Q = (y0, y1, · · · , yj = y, · · · , yq) be evenly coloured (acceptable) Dk-ears containing x and y
respectively. Without loss of generality, assume that the vertices of P and Q are ordered in
such a way that their first halves get colours from Pool A. We consider the following 4 cases.
If i ≤ ⌊p2⌋ and j > ⌊ q2⌋, then joining (y = yj, yj+1 · · · , yq) (which is B-coloured) to the yq–x0
rainbow path in G[Dk] followed by (x0, x1, · · · , xi = x) (which is A-coloured) gives a x–y
rainbow path. Case when i > ⌊p2⌋ and j ≤ ⌊ q2⌋ is similar. When i ≤ ⌊p2⌋ and j ≤ ⌊ q2⌋ check
if i ≤ j. If yes, join (y = yj, yj+1, · · · , yq) (which uses colours from {al ∈ A : l ≥ j + 1} ∪ B)
to the yq–x0 rainbow path in G[Dk] followed by (x0, x1, · · · , xi = x) (which uses colours from
{al ∈ A : l ≤ i}) to get an x–y rainbow path. If i > j, then do the reverse. In the final
case, when i > ⌊p2⌋ and j > ⌊ q2⌋ check if q − j ≤ p − i. If yes, join (y = yj, yj+1, · · · , yq)
(which uses colours from {bl ∈ B : l ≤ q − j} to the yq–x0 rainbow path in G[Dk] followed
by (x0, x1, · · · , xi = x) (which uses colours from A ∪ {bl ∈ B : l ≥ p − i + 1}) to get an x–y
rainbow path. If q − j > p− i, then do the reverse.

Theorem 4. For every bridgeless graph G,

rc(G) ≤
r∑

i=1

min{2i+ 1, ζ} ≤ rζ,

where r is the radius of G and ζ = iso(G).
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Moreover, for every two integers r ≥ 1, and 3 ≤ ζ ≤ 2r+1, there exists a bridgeless graph
G with radius r and iso(G) = ζ such that rc(G) =

∑r
i=1 min{2i + 1, ζ}.

Proof. If u is a central vertex of G, i.e., ecc(u) = r, then Dr = {u} is an r-step dominating
set in G and rc(G[Dr]) = 0. The only 0-step dominating set in G is V (G). Hence, repeated
application of Lemma 3 gives the upper bound

To construct a tight example for a given r ≥ 1 and 3 ≤ ζ ≤ 2r + 1, consider the graph
Hr,ζ in Figure 1. Note that (i) Hr,ζ is bridgeless, (ii) the size of largest isometric cycle in Hr,ζ

is ζ, and (iii) ecc(u) = r for any ζ ≤ 2r + 1.

bc bc bc bc bc bc bc bc bc bc bc
u = xr

Pr

xr−1
x2

P2

x1

P1

x0 = v

Figure 1: Graph Hr,ζ . Every Pi is a xi–xi−1 path of length |Pi| = min{2i, ζ − 1}.

Let m :=
∑r

i=1 min{2i + 1, ζ}. Construct a graph G by taking mr + 1 graphs {Hj}mr

j=0

where V (Hj) = {xj : x ∈ V (Hr,ζ)} and E(Hj) = {{xj , yj} : {x, y} ∈ E(Hr,ζ)}. Identify the
vertex uj as common in every copy (u = uj , 0 ≤ j ≤ mr). It can be easily verified that (i) G is
bridgeless (ii) rad(G) = r and (ii) size of the largest isometric cycle in G is ζ. Hence, by first
part of this theorem, k := rc(G) ≤ m. In any edge colouring c : E(G) → {1, 2, · · · , k} of G,
each r-length u–vj path can be coloured in at most kr different ways. By pigeonhole principle,
there exist p 6= q, 0 ≤ p, q ≤ mr such that c(epi ) = c(eqi ), 1 ≤ i ≤ r where eji = (xji−1, x

j
i ).

Consider any rainbow path R between vp and vq. For every 1 ≤ i ≤ r, |R ∩ {epi , e
q
i }| ≤ 1

(since c(epi ) = c(eqi )) and hence P j
i ⊂ R for some j ∈ {p, q}. Thus |R| ≥ ∑r

i=1 (1 + |Pi|) = m.
Hence k ≥ m and G gives the required tight example.

Corollary 5. For every bridgeless graph G with radius r,

rc(G) ≤ r(r + 2).

Moreover, for every integer r ≥ 1, there exists a bridgeless graph with radius r and rc(G) =
r(r + 2).

Proof. Noting that min{2i + 1, ζ} ≤ 2i + 1, the upper bound follows from Theorem 4. The
tight examples are obtained by setting ζ = 2r + 1 in the tight examples for Theorem 4

A natural question at this stage is whether the upper bound of r(r+ 2) can be improved
if we assume a stronger connectivity for G. But the following example shows that it is not
the case.

Example 6 (Construction of a κ-vertex-connected graph of radius r whose rainbow connection
number is r(r + 2) for any two given integers κ, r ≥ 1). Let s(0) := 0, s(i) := 2

∑r−i+1
j=r j for

1 ≤ i ≤ r and t := s(r) = r(r+1). Let V = V0⊎V1⊎· · ·⊎Vt where Vi = {xi,0, xi,1, · · · , xi,κ−1}
for 0 ≤ i ≤ t−1 and Vt = {xt,0}. Construct a graph Xr,κ on V by adding the following edges.
E(X) = {{xi,j , xi′,j′} : |i− i′| ≤ 1}∪{{xs(i),0, xs(i+1),0} : 0 ≤ i ≤ r−1}. Figure 2 depicts X3,2.

Let m = r(r+2). Construct a new graph G by taking mr+1 copies of Xr,k and identifying
the vertices in V0 as common in every copy. It is easily seen that G is κ-connected and has a
radius r with x0,0 as the central vertex. By arguments similar to those in the tight examples
for Theorem 4, we can see that rc(G) = m.
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bc bc bc bc bc bc bc bc bc bc bc bc bc

bc bc bc bc bc bc bc bc bc bc bc bc

V0 V1 Vt

x0,0 x1,0 x2,0 x3,0x3,0 x4,0x4,0 x5,0 x6,0 x7,0 x8,0 x9,0 x10,0 x11,0 x12,0

x0,1 x1,1 x2,1 x3,1x3,1 x4,1x4,1 x5,1 x6,1 x7,1 x8,1 x9,1 x10,1 x11,1

Figure 2: Graph X3,2. Note: (i) X3,2 is 2-connected and (ii) ecc(x0,0) = 3.

Corollary 7. For every bridgeless graph G with radius r and chordality k,

rc(G) ≤
r∑

i=1

min{2i + 1, k} ≤ rk.

Moreover, for every two integers r ≥ 1 and 3 ≤ k ≤ 2r + 1, there exists a bridgeless graph G
with radius r and chordality k such that rc(G) =

∑r
i=1min{2i+ 1, k}.

Proof. Since every isometric cycle is an induced cycle, the chordality of a graph is at least
the size of its largest isometric cycle. i.e, k ≥ ζ. Hence the upper bound follows from that in
Theorem 4. The tight example demonstrated in Theorem 4 suffices here too.

This generalises a result from [6] that the rainbow connection number of any bridgeless
chordal graph is at most three times its radius.
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