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ON MAXIMAL SUBFIELDS OF ENVELOPING SKEWFIELDS

IN PRIME CHARACTERISTICS

JEAN-MARIE BOIS and GIL VERNIK

Abstract. As was shown by Schue [6] there always exist two maximal subfields of the en-
veloping skewfields of a solvable Lie p-algebra, such that one is Galois and the second purely
inseparable of exponent 1 over the centre. In this paper we obtain similar results for arbitrary
solvable Lie algebras in prime characteristic, and for the Zassenhaus algebras. A key result
here is to describe relations between maximal subfields in a polynomial extension of a division
ring, and those of the base ring. We also provide a description of the enveloping algebra of the
p-envelope of a Lie algebra as a polynomial extension of the smaller enveloping algebra.

Introduction

Let D be a division ring which is finitely generated over its centre Z, and let K be a subfield
of D. The centralizer of K in D is defined by CD(K) = {x ∈ D | [x,K] = 0}. The subfield K is
called a maximal subfield of D if CD(K) = K. Alternatively, a subfield K ⊆ D containing Z is

maximal if and only if [D : K] = [K : Z] =
√

[D : Z] [2, thm. 4.2.2 and 4.3.2]. For more details
about maximal subfields in the division rings one is referred to [2, 9].

A natural question is whether any central simple algebra affords a maximal subfield which is
Galois over the centre (equivalently, whether such an algebra is a crossed product). The answer
to this question is negative in general, see [9, Theorem 7.1.30]. In some special cases the answer
may be positive. In [6], J. Schue showed that this is the case for the division ring of fractions
of the enveloping algebra of a solvable Lie p-algebra over a field F of characteristic p > 2. In
addition, in [6] was also shown the existence of a maximal subfield which is purely inseparable
of exponent one over the centre.

The present paper is concerned with similar questions when L is any solvable Lie algebra over
a field of prime characteristic. In particular a positive result is obtained for any solvable, not
necessarily restrictable, Lie algebra of characteristic p > 2. Using a construction by Ermolaev
[1], we also obtain a result for some simple Lie algebras, namely the Zassenhaus algebras.

The paper is organised as follows. In Section 1.1, we assume that D is a p-division algebra, ie.
the dimension [D : Z] is a power of p = char(Z). In that situation, we provide a link between the
notions of tori in D, and Galois extensions of Z inside D whose Galois groups are p-elementary
abelian (Theorem 1.1.4). In Section 1.2, we establish a reduction principle to construct maximal
subfields in D from maximal subfields in a rational function field D(u) (Proposition 1.2.4). As
a corollary, we show that the structure of maximal commutative subfields can be transferred
between D and D(u) (Theorem 1.2.5).

Applications are given in Section 2. Let L be any solvable Lie algebra, or a Zassenhaus algebra
(see 2.2.1 for the definition). It is proved that the enveloping skewfield of L in characteristic
p > 2 contains maximal subfields which are Galois (resp. purely inseparable of exponent 1) over
the centre (Theorems 2.1.7 and 2.2.2). A crucial ingredient for the proof in the solvable case is
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the following. We prove that the enveloping field of a p-envelope of L is isomorphic to a ring of
rational functions over the enveloping skewfield of L (Proposition 2.1.6). In view of the previous
results, this allows us to reduce to the case of restrictable Lie algebras, which is known by results
of J. Schue [6].

As a consequence of these theorems, we also show that the enveloping skewfield of L defines
an element of order p in the Brauer group of its centre, when L is solvable and non-abelian, or
L = W (1,m). This suggests the following conjecture:

Conjecture. Let L be a non-abelian Lie algebra over a fields of characteristic p > 2, and let
K(L) be the enveloping skewfield. Then, K(L) defines an element of order p in the Brauer group
of its centre.

Acknowledgements. The authors wish to thank Rolf Farnsteiner for interesting comments on
the results and suggestions of improvements.

1. A reduction principle for division rings

In what follows, we denote by [V : D] := dimD(V ) for a left vector space V over a division
ring D. For an algebra A, we denote Z(A) the centre of A. For a prime number p, we denote
by Zp the cyclic group with p elements and Fp the field with p elements; we use this notation to
emphasise the field structure.

1.1. Preliminaries: tori in p-division algebras.

1.1.1. Before we deal with the reduction principle, we need some results on commutative sub-
fields and tori in p-division algebras. Let D be a p-division algebra, that is to say, a division
ring of characteristic p > 0, of dimension some power of p over its centre. We are interested in
linking the notion of a torus in D with some class of subfields of D, which are Galois extensions
of the centre Z. Recall that an element t ∈ D is toral if tp − t ∈ Z. Alternatively, this means
that the inner derivation ad(t) is a toral element in the restricted Lie algebra DerZ(D) [8, p. 79].
A torus is a commutative Z-subspace T ⊆ D which is spanned by toral elements. In particular,
ad(T ) is a torus in DerZ(L) [8, p.86]. We define the rank of T to be [ad(T ) : Z].

Clearly, the unit element 1 is toral, and if T0 is a torus, then Z + T0 is a torus as well, of
same rank. Since we are concerned with the adjoint action of tori on the division ring D, we
will henceforth only consider tori containing 1.

1.1.2. We recall some standard facts related to actions of a torus. Let T be a torus, then there
is a weight space decomposition

(1.1) D =
⊕

λ∈Λ

Dλ,

where Λ ⊆ T ∗ = HomZ(T,Z) is the set of weights (of T in D). By definition,

Dλ = {x ∈ D | (∀ t ∈ T ), [t, x] = λ(t)x} ,

and Λ is the set of linear forms λ such that Dλ 6= (0). Note that D0 = CD(T ), the centralizer
of T in D. It is easily seen that each Dλ is a D0-vector space (on the left and on the right),
of dimension 1. Furthermore, one readily checks that Λ is an additive subgroup of T ∗, and the
decomposition (1.1) is a Λ-grading of D.

1.1.3. The following result is essentially known [6, Section 2]. We give a different proof and a
more precise statement.

Lemma. Let D be a p-division algebra with centre Z. Let T ⊆ D be a torus of rank d, and Λ
be the corresponding set of weights. Then:

(1) The group Λ ≃ Z
d
p.
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(2) Let Z(T ) ⊆ D be the subfield generated by Z and T . Then Z(T ) is Galois over Z, and
Gal(Z(T )/Z) ≃ Λ.

Proof. (1) We may assume that T contains 1. Let {t0 . . . , td} be a toral basis of T , with t0 = 1.

Let Tp =
∑d

i=1 Fpti, and Λp := {λ|Tp
| λ ∈ Λ} ⊆ HomFp

(Tp, Z). Since t0 = 1 acts trivially on D,
it is clear that Λ ≃ Λp. We will show that Λp = T ∗

p := HomFp
(Tp,Fp), which will prove our first

assertion.
First we show that Λp ⊆ T ∗

p . For each i ∈ {1, . . . , d}, we have (ad ti)
p−(ad ti) = 0. Let λ ∈ Λ;

since each λ(ti) is an eigenvalue of ad ti, we obtain λ(ti) ∈ Fp as we wanted. For the reverse
inclusion, we consider the natural non-degenerate pairing

Tp × T ∗
p → Fp

(t, λ) 7→ λ(t).

Let t ∈ Λ⊥
p ⊆ Tp. For all λ ∈ Λp and all xλ ∈ Dλ, we have [t, xλ] = λ(t)xλ = 0. Owing to (1.1),

we obtain [t,D] = 0, so that t ∈ Z ∩ Tp. Since {1, t1, . . . , td} is a Z-linearly independent family,

we get t = 0. This proves Λ⊥
p = (0), hence Λp = T ∗

p .

(2) For all i ∈ {1, . . . , d}, we have tpi − ti ∈ Z, hence [Z(T ) : Z] ≤ pd. Furthermore, since
each ti is separable over Z, it follows that Z(T ) is separable over Z. In particular it admits a
primitive element, say α ∈ Z(T ).

Let P (X) ∈ Z[X] be the minimal polynomial of α over Z, so that deg(P ) = [Z(T ) : Z].
It is known that the cardinality |AutZZ(T )| is the number of roots of P (X) in Z(T ), whence
|AutZZ(T )| ≤ [Z(T ) : Z]. Thus, to show that Z(T ) is normal (and hence Galois) over Z it
suffices to prove that |AutZZ(T )| = [Z(T ) : Z].

For all λ ∈ Λ, choose a non-zero element xλ ∈ Dλ. For all t ∈ T , it is easily seen that
xλtx

−1
λ = t − λ(t), so that the inner automorphism defined by xλ induces an automorphism

σλ ∈ AutZZ(T ). One readily checks that the assignment λ ∈ Λ 7→ σλ ∈ AutZZ(T ) is a group
homomorphism. It is also injective, because σλ = id if and only if t − λ(t) = σλ(t) = t for all
t ∈ T . It follows pd ≥ [Z(T ) : Z] ≥ |AutZZ(T )| ≥ |Λ| = pd. Hence, equality holds everywhere.
This shows that Z(T ) is Galois over Z, with Gal(Z(T )/Z) ≃ Λ.

1.1.4. Theorem. Let D be a finite-dimensional p-division algebra over its centre Z. Let K ⊆ D
be a commutative extension field of Z. The following are equivalent:

(i) There exists a torus T ⊆ K of rank d, such that K = Z(T );
(ii) K is a Galois extension of Z, and Gal(K/Z) is a p-elementary abelian group of rank d.

Proof. (i) ⇒ (ii) follows from Lemma 1.1.3, as well as the equality of ranks.
For (ii) ⇒ (i), assume that K is Galois over Z, with Gal(K/Z) ≃ Z

d
p =: Γ. For each

i ∈ {1, . . . , d}, let Γi = Zp × . . .×{0} × . . .×Zp, where the trivial group occurs on the i-th slot.
Set Ki = KΓi . By [4, Cor. VI.1.16], we have K = K1 · · ·Kd. Furthermore, each Ki is Galois
over Z with Galois group Γ/Γi ≃ Zp. By the Theorem of Artin-Schreier [4, Th. VI.6.4], there

exist ci ∈ Z, ti ∈ Ki such that Ki = Z(ti) and tpi − ti − ci = 0. Then, T =
∑d

i=1 Zti is a torus
such that K = Z(T ).

1.1.5. We record a few more general results on tori in D.

Proposition. Let D be a division p-algebra with centre Z. Let [D : Z] = p2n, and let T be a
torus of rank d. Recall the weight space decomposition D =

⊕

λ∈Λ Dλ. Then, the following are
equivalent:

(i) n = d;
(ii) Z(T ) is a maximal subfield;
(iii) D0 is a maximal subfield;
(iv) D0 = Z(T );
(v) D0 is commutative;
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(vi) |Λ| = pn.

Proof. By Lemma 1.1.3, we have |Λ| = pd, which proves (i) ⇐⇒ (vi). The same lemma also
gives [Z(T ) : Z] = pd. Recall that a commutative subfield K ⊆ D containing Z is maximal
if and only if [K : Z] = pn, yielding (i) ⇐⇒ (ii). Alternatively, such a field K is maximal
commutative if and only if CD(K) = K, if and only if CD(K) is commutative. Taking into
account the fact that CD(Z(T )) = CD(T ) = D0, we readily obtain (ii) ⇐⇒ (iv) ⇐⇒ (v).
Finally, we have CD(D0) ⊆ CD(T ) = D0. Hence, CD(D0) = D0 if and only ifD0 is commutative,
if and only if CD(D0) is maximal commutative. This proves (iii) ⇐⇒ (v).

1.2. The reduction principle.

1.2.1. In this section, we consider a finite-dimensional centra division algebra D over an infinite
field Z. No restriction is made a priori on char(Z). We will say that a property holds for almost
all λ ∈ Z (or: generically) if the property holds for all except a finite number of values of λ.

1.2.2. Rational functions over a division ring. Consider the polynomial ring in several variables
Z[u] = Z[u1, . . . , uq], with field of fractions Z(u) = FracZ[u]. Consider D[u] := D ⊗Z Z[u],
the polynomial ring in q variables over D. Note that D[u] ≃ D ⊗F F[u] for any central subfield
F ⊆ Z. We will identify D and Z[u] with the subalgebras D⊗Z Z and Z⊗Z Z[u] of D[u]. When
q = 1, we use the symbol u instead of u or u1. The following results are well-known:

Lemma.

(1) The ring D[u] has a division ring of fractions, denoted D(u).
(2) The centre of D(u) is Z(u), and [D(u) : Z(u)] = [D : Z]. Further, D(u) ≃ D ⊗Z Z(u).
(3) For all λ = (λ1, . . . , λq) ∈ Zq, there exists a unique algebra homomorphism πλ : D[u] →

D such that πλ|D = idD and πλ(ui) = λi for all i ∈ {1, . . . , q}.

1.2.3. For any subspace V ⊆ D and λ ∈ Z, we define V λ := πλ(V ∩D[u]) ⊆ D, which we call
a specialization of V . If V ⊇ Z(u), then V λ ⊇ Z. We will need the following simple lemma:

Lemma.

(1) Let {a1, . . . , an} ⊆ D[u] be Z(u)-linearly independent. Then, for almost all λ ∈ Z, the
specializations {πλ(a1), . . . , πλ(an)} ⊆ D are linearly independent over Z.

(2) Let V ⊆ D(u) be a Z(u)-subspace of dimension n. Then, for almost all λ ∈ Z, the
specialization V λ is a Z-subspace of dimension n.

Proof. (1) Let B = {β1, . . . , βN} be a basis of D over Z, so that it is also a basis of D[u] over

Z[u]. Decompose each ai =
∑N

j=1 fij βj , with fij = fij(u) ∈ Z[u]. Let A = [fij] ∈ Mn,N

(

Z[u]
)

.

Since {a1, . . . , an} is linearly independent over Z(u), there is an n × n submatrix A0 such that
the minor det(A0) ∈ Z[u]r {0}.

Now note that for all i, πλ(ai) =
∑

j πλ(fij)βj , so that the matrix πλ(A) represents the vectors

{πλ(a1), . . . , πλ(an)} in the basis B. Then, the n× n minor det
(

(πλ(A0)
)

= πλ(det A0), which
is non-zero for almost all values of λ. Hence, the matrix πλ(A) has full rank for almost all λ, in
which case the family {πλ(a1), . . . , πλ(an)} is linearly independent over Z.

(2) Let {a1, . . . , an} be a Z(u)-basis of V . After multiplication by a suitable non-zero element
of Z[u], we may assume that all ai ∈ D[u]. By (1), these elements almost always reduce to linearly
independent elements in V λ, hence [V λ : Z] ≥ [V : Z(u)] for almost all λ ∈ Z. Conversely, let
{b1, . . . , bm} ⊆ V ∩ D[u] be a lifting of some Z-basis of V λ and let B ∈ Mm,N

(

Z[u]
)

be the
corresponding coefficients matrix. Since {πλ(b1), . . . , πλ(bm)} are linearly independent, as above
there exists a non-vanishing m × m minor in the reduced matrix πλ(B). The corresponding
minor of B is also nonzero, so that the matrix B has rank m over Z(u). It readily follows
[V λ : Z] ≤ [V : Z(u)].
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1.2.4. Now we are ready to prove the reduction principle. We keep the previous notations.

Proposition. Let K ⊆ D(u) be an extension field of Z(u), and λ ∈ Z.

(1) The specialization Kλ ⊆ D is an extension field of Z, and for almost all λ ∈ Z we have
[Kλ : Z] = [K : Z(u)]. In particular, if K is a maximal commutative subfield of D(u),
then Kλ is generically a maximal subfield of D.

(2) If K is Galois over Z(u), then Kλ is Galois over Z for almost all λ ∈ Z.

If char(Z) = p > 0, we have in addition:

(3) If K is purely inseparable of exponent r over Z(u), then Kλ is purely inseparable over
Z, of exponent ≤ r. Equality holds for almost all λ ∈ Z.

(4) If K is Galois over Z(u), with Galois group Z
r
p, then for almost all λ ∈ Z, Kλ is Galois

over Z, with Gal(Kλ, Z) ≃ Z
r
p.

Proof. (1) By construction, Kλ is a finite-dimensional commutative domain over Z, so it is a
field. Now, if K ⊆ D(u) is a maximal subfield, then [K : Z(u)]2 = [D(u) : Z(u)]. By Lemma
1.2.3, for almost all λ ∈ Z, we have [Kλ : Z]2 = [K : Z(u)]2 = [D : Z], and hence Kλ is a
maximal subfield of D.

(2) Choose a primitive element α ∈ K over Z(u). After multiplying by a suitable element
of Z[u] we may assume that α ∈ D[u]. Let P (X) =

∑n
i=1 ciX

i ∈ Z(u)[X] be the minimal
polynomial of α over Z(u). Since K is Galois over Z(u), this polynomial splits into linear
factors P (X) =

∏n
i=1(X − αi), where each αi ∈ K. Now choose an element c ∈ Z[u]r {0} such

that cαi ∈ D[u] for all i. Then α is a root of cnP (X) =
∏n

i=1(cX − cαi) ∈ Z[u][X]. For almost
all λ ∈ Z, the element πλ(c) 6= 0. Then πλ(α) is a root of

Pλ(X) :=
n
∏

i=1

(

X − πλ(c)
−1πλ(cαi)

)

∈ Z[X].

Indeed, since α ∈ D[u] we can write πλ(cα) = πλ(c)πλ(α), and hence (X − α) | Pλ(X).
Now note that {cα1, . . . , cαn} is a Z(u)-basis of K. By Lemma 1.2.3, {πλ(cα1), . . . , πλ(cαn)}

is a Z-basis of Kλ for almost all λ ∈ Z. It follows that Pλ(X) is a separable polynomial, and
also that Kλ = Z

(

πλ(cα1), . . . , πλ(cαn)
)

is the splitting field of Pλ(X). This proves that Kλ is
a Galois extension of Z.

(3) Let x ∈ Kλ, and choose an element a ∈ K ∩ D[u] with πλ(a) = x. Since K is purely
inseparable of exponent r, we have ap

r

∈ Z[u], hence, xp
r

= πλ(a
pr) ∈ Z.

We check that the inseparability exponents coincide for almost all λ ∈ Z. There exists a ∈ K

such that {1, a, ap . . . , ap
r−1

} is linearly independent over Z(u). We may assume that a ∈ D[u].

By Lemma 1.2.3, for almost all λ ∈ Z the family {1, πλ(a), . . . , πλ(a)
pr−1

} is linearly independent
over Z: so the inseparability exponent of Kλ over Z is > r − 1.

(4) Recall that being Galois with a p-elementary abelian Galois group is equivalent to being
generated by toral elements (Theorem 1.1.4). So we can write K = Z(u)(t1, . . . , tn), where
the ti are toral and {1, t1, . . . , tn} are Z(u)-linearly independent. It suffices to show that for
almost all λ ∈ Z, there exist toral elements τ1, . . . , τn ∈ Kλ such that {1, τ1, . . . , τn} are Z-
linearly independent. Indeed, under these assumptions, we also know that [K : Z(u)] = pn =
[Z(τ1, . . . , τn) : Z], yielding Kλ = Z(τ1, . . . , τn).

There exists c ∈ Z[u] r {0} such that all cti ∈ D[u]. For almost all λ ∈ Z, the family
{πλ(c), πλ(ct1), . . . , πλ(ctn)} is linearly independent over Z. In particular πλ(c) 6= 0. A straight-
forward computation shows that each element (cti)

p − cp−1(cti) is central in D[u]. We obtain
that each πλ(cti)

p − πλ(c)
p−1πλ(cti) is central, so that each τi := πλ(c)

−1πλ(cti) is toral in Kλ.
And by choice of λ, the family {1, τ1, . . . , τn} is Z-linearly independent.
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1.2.5. Transfer theorems. Let D be a finite-dimensional division algebra over its centre Z, and
D(u) be a division ring of rational functions in several variables over D.

Theorem.

(1) One has [D(u) : Z(u)] = [D : Z], and ExpD(u) = ExpD.
(2) D(u) has a maximal subfield which is Galois over Z(u) if and only if D has a maximal

subfield which is Galois over Z.
(3) When char(Z) = p > 0: D(u) has a maximal subfield which is purely inseparable of ex-

ponent r (resp. Galois with Galois group Z
r
p) over Z(u) if and only if D has a maximal

subfield with the same property over Z.

Proof. By induction it is enough to prove the theorem for a single variable, that is q = 1.
(1) The identity [D(u) : Z(u)] = [D : Z] was proved in 1.2.2. For the exponent, recall that

D(u) ≃ D ⊗Z Z(u) as algebras over Z(u). For tensor powers, we compute:

D(u)⊗Z(u) D(u) ≃ D ⊗Z Z(u)⊗Z(u) Z(u)⊗Z D

≃ D ⊗Z Z(u)⊗Z D

≃ D ⊗Z D ⊗Z Z(u).

We obtain inductively that D(u)⊗n ≃ D⊗n⊗Z Z(u), where the tensor power on the left is taken
over Z(u) and the one on the right over Z. If D⊗n is trivial in the Brauer group Br(Z), then
D(u)⊗n is trivial in BrZ(u), so ExpD(u) | Exp(D). Conversely, assume that D⊗n ⊗Z Z(u) ≃
Mq

(

Z(u)
)

, for some q ≥ 1. We know that D⊗n ≃ MN (∆), for some central division Z-algebra

∆ and some integer N ≥ 1; it follows MN (∆) ⊗Z Z(u) ≃ Mq

(

Z(u)
)

. Using the fact that

MN (∆)⊗Z Z(u) ≃ MN

(

∆(u)
)

, we obtain an isomorphism

MN (∆(u)) ≃ Mq (Z(u)) .

This implies that ∆(u) ≃ Z(u). It follows that ∆ is commutative, whence ∆ = Z. Thus, the
algebra D⊗n is trivial in the Brauer group Br(Z), and Exp(D) | ExpD(u) as we wanted to show.

(2) and (3) The “only if” part follows from Proposition 1.2.4. Conversely, if D has a maximal
subfieldK satisfying any of the properties listed in (2) or (3), it is easy to check that K⊗ZZ(u) ⊆
D(u) is a maximal subfield with the same property.

2. Applications

2.1. Enveloping skewfields of non-restricted Lie algebras.

2.1.1. In this section, F denotes an algebraically closed field of characteristic p > 0. Let L
be a finite dimensional Lie algebra over F. Let U(L) be its enveloping algebra with centre
Z(L), and K(L) = FracU(L) be the division ring of fractions of U(L). We denote by C(L)
the centre of K(L). The main result here is to show that when L is solvable, there always ex-
ists maximal subfields of K(L) which are Galois or purely inseparable of exponent one over C(L).

2.1.2. Recall that a Lie algebra is restrictable if there exists a map x ∈ L 7→ x[p] ∈ L, such
that (ad x)p = ad(x[p]) for all x ∈ L. If L is restrictable, one can choose this map with some
additional properties which mimick the properties of associative p-th powers in an associative
algebra. In that case, the map is called a p-mapping, and L is called a restricted Lie algebra.
We don’t write down explicitly these properties here, as they are quite technical and irrelevant
in our situation; see [8, Chap. 2] for a comprehensive account.

Finally, in the enveloping algebra of a restricted Lie algebra, the subalgebra

Zp(L) := F〈xp − x[p] | x ∈ L〉 ⊆ U(L)

is contained in the centre of U(L), and called the p-centre of U(L).
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2.1.3. We briefly recall the notion of a p-envelope, see [8, Section 2.5] or [7, Section 1.1] for
details. Let L be embedded in a restricted Lie algebra G. The p-envelope of L in G, denoted
L(p), is the smallest restricted Lie subalgebra of G containing L. Note that the structure of L(p)

depends on the initial embedding. For example, if L ⊆ gl(n), then the corresponding p-envelope
L(p) is finite-dimensional. On the other hand, consider the natural inclusion L ⊆ U(L), then
the associated p-envelope is infinite-dimensional.

In the sequel, we will slightly abuse terminology by referring to “a p-envelope” of a Lie algebra
L. By this we will always mean the p-envelope of L in some unspecified larger finite-dimensional
restricted Lie algebra. Since L is finite-dimensional, it always affords finite-dimensional p-
envelopes [8, Prop 2.5.3].

2.1.4. As an example consider 4-dimensional non restricted Lie algebra L defined by [x, y] = y,
[x, z] = αz, [x, t] = t+ y and [y, z] = [y, t] = [z, t] = 0, where α 6∈ Fp. Then L is centreless, and
the adjoint representation provides an embedding of L into the restricted Lie algebra DerF(L).
Then the p-envelope L(p) ⊆ DerF(L) is

L(p) = ad(L) + F ad(x)p + F ad(x)p
2

.

Now identify each element h ∈ L with ad(h) ∈ ad(L) ⊆ L(p), and set u := ad(x)p, v := ad(x)p
2

.
We can see that in L(p), we have the relations

[u, v] = 0, [u, x] = 0, [u, y] = y, [u, t] = t, [u, z] = αpz,

[v, x] = 0, [v, y] = y, [v, t] = t, [v, z] = αp2z.

The other brackets are the ones coming from L. Here, one can check directly that L is an ideal
in L(p). The following lemma provides a general description of how L embeds into L(p):

2.1.5. Lemma. Let L be a finite dimensional Lie algebra over F, and let L(p) be a finite-
dimensional p-envelope of L. Then there exists a sequence L(p) = Lq ⊇ Lq−1 ⊇ · · · ⊇ L0 = L
such that, for all i ∈ {1, . . . , q}:

(1) Li = Fxi + Li−1 for some xi ∈ Li,

(2) there exists yi ∈ Li−1 with y
[p]
i−1 = xi,

(3) each Li is an ideal of L(p) such that [L(p), Li] = [L0, L0].

Proof. We construct the Li inductively. For 0 ≤ i < q, we have L
[p]
i 6⊆ Li, so there exists yi ∈ Li

such that xi+1 := y
[p]
i 6∈ Li. Set Li+1 := Li⊕Fxi+1. By construction these subspaces satisfy the

first two conditions. Since each Li ⊇ L, [8, Lemma 5.5] ensures that they are ideals of L(p). We
show that [Li, L0] = [L0, L0] for all i ∈ {0, . . . , q}. For i = 0 there is nothing to show; now for
i > 0 we have

[Li, L0] = [Li−1, L0] + [xi, L0]

= [Li−1, L0] + (ad yi−1)
p(L0)

= [Li−1, L0] + [Li−1, L0]

= [L0, L0],

which is what we wanted.

2.1.6. The following result gives better description of the relation between U(L) and U(L(p)).

Proposition. Let L be a finite dimensional Lie algebra over F, and L(p) be a p-envelope.
Then U(L(p)) ≃ U(L)[z1, . . . , zq] with q = dimF(L(p)/L). In particular, the enveloping field
K(L(p)) ≃ D(L)(z1, . . . , zq).

Proof. Let x1, . . . , xq, y0, . . . , yq−1 be as in Lemma 2.1.5. Then, the elements zi := xi − ypi−1

are in the p-centre of U(L(p)), hence commute with U(L). Since L(p) = L ⊕
⊕q

i=1 Fxi, the

7



Poincaré-Birkhoff-Witt theorem implies that U(L(p)) = U(L)[z1, . . . , zq] is a polynomial ring in
the variables z1, . . . , zq over U(L).

2.1.7. For a central simple algebra R over a field F , denote by Exp(R) the exponent of R, that
is the order of R in the Brauer group of the centre [9, p. 214]. Alternatively, this is the smallest
integer n ≥ 1 such that the n-th tensor power R⊗n ≃ MN (F ) for some integer N .

Theorem. Assume that char(F) = p > 2. Let L be a finite-dimensional non-abelian solvable
Lie algebra over F. Then, the division ring K(L) has the following properties:

(1) There exists a maximal subfield F ⊆ K(L) which is Galois over the centre and the Galois
group is p-elementary abelian;

(2) there exists a maximal subfield E ⊆ K(L) which is purely inseparable, of exponent 1 over
the centre;

(3) ExpK(L) = p.

Proof. By Proposition 2.1.6 and Theorem 1.2.5, it is enough to show the properties for restricted
solvable algebras. Then (1) follow from [6, Theorem 3] and (2) follow from [6, Theorem 2].
Property (3) follows from (2) and [3, Th. 4.1.8].

2.1.8. As a consequence of Theorem 2.1.7, we obtain the following result. For a solvable Lie
algebra in characteristic p > 2, there always exists a torus T ⊆ K(L) which is “maximal” in
the sense that CK(L)(T ) is commutative. Alternatively, by Proposition 1.1.5, this means T has

rank n, where [K(L) : C(L)] = p2n. If L is restricted then it follows from Schue’s results [6].

Corollary. Assume that char(F) = p > 2. Let L be a finite dimensional solvable Lie algebra
over F. Then there exists a torus T ⊆ K(L) such that CK(L)(T ) is commutative.

2.2. The Zassenhaus algebra.

2.2.1. Let F be algebraically closed of characteristic p > 2, and let m ≥ 1 be a fixed integer. The
Zassenhaus algebra is the simple Lie algebra of Cartan type W (1,m) [7, Chap. 4.2]. Explicitly,
W (1,m) has a basis {e−1, e0, . . . , epm−2} with brackets:

[ei, ej ] =

((

i+ j + 1

i

)

−

(

i+ j + 1

j

))

ei+j,

so [ei, ej ] = 0 when i+ j 6∈ {−1, . . . , pm − 2}.

2.2.2. Theorem. Let F be algebraically closed with char(F) > 2. Then, the enveloping skewfield
K
(

W (1,m)
)

has the following properties:

(1) There exists a maximal subfield which is Galois over the centre and the Galois group is
p-elementary abelian;

(2) there exists a maximal subfield which is purely inseparable, of exponent 1 over the centre;
(3) ExpK

(

W (1,m)
)

= p.

Proof. For ease of notation, let L := W (1,m). It is easy to see that the subspaceH :=
∑

i≥0 F ei
is a solvable Lie subalgebra of codimension 1 in L. By Theorem 2.1.7, the properties of the
theorem are satisfied in K(H). By [1, Prop. 2], there exists a central element z ∈ U(L) of the
form z = ae−1 + b, where a, b ∈ U(H), a 6= 0. Using the PBW theorem, we can see that z is
transcendental over U(H). Furthermore, it is clear that K(L) = FracU(H)[z] = K(H)(z), so
applying the transfer Theorem 1.2.5 yields the result.

8



References

[1] Y. Ermolaev: Central elements of the universal enveloping algebra of the Zassenhaus algebra, Izv. Vyssh.
Uchebn. Zaved. Mat. 1978, no. 6 (193), 73–88.

[2] I.N. Herstein, “Noncommutative rings”, The Carus Mathematical Monographs, Number Fifteen, Fourth
printing, September 1996.

[3] N. Jacobson, “Finite-dimensional division algebras over fields”, Springer-Verlag, Berlin, 1996.
[4] S. Lang, “Algebra”, third edition, Reading, MA, Addison Wesley, 1993.
[5] J. Schue: Structure theorems for the division ring associated with a solvable p-algebra, Algebras Groups Geom.

9 (1992), no. 2, 81–98.
[6] J. Schue: Enveloping algebras and division rings for Lie p-algebras, Lie algebra and related topics (Madison,

WI, 1988), 223230, Contemp. Math., 110, Amer. Math. Soc., Providence, RI, 1990.
[7] H. Strade, “Simple Lie algebras over fields of positive characteristic”, Walter de Gruyter (2004).
[8] H. Strade and R. Farnsteiner, “Modular Lie algebras and their representations”, Monographs and Textbooks

in Pure and Applied Mathematics, 116. Marcel Dekker, Inc., New York, 1988.
[9] Louis H. Rowen, “Ring theory, Volume 2”, Academic Press (1988).

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098

Kiel, Germany

E-mail address: bois@math.uni-kiel.de, vernik@math.uni-kiel.de

9


	Introduction
	1. A reduction principle for division rings
	1.1. Preliminaries: tori in p-division algebras
	1.2. The reduction principle

	2. Applications
	2.1. Enveloping skewfields of non-restricted Lie algebras
	2.2. The Zassenhaus algebra

	References

