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0 A vector minmax problem for controlled

Markov chains

Sameer Kamal∗

Abstract

The problem of controlling a finite state Markov chain in the pres-

ence of an adversary so as to ensure desired performance levels for a

vector of objectives is cast in the framework of Blackwell approacha-

bility. Relying on an elementary two time scale construction a control

scheme is proposed which ensures almost sure convergence to the de-

sired set regardless of the adversarial actions.

Key words: controlled Markov chains, Blackwell approachability, two time
scales, stationary strategies, multi–objective optimization

1 Introduction

Many control problems in practice have two features that put them outside of
the classical framework of deterministic or stochastic optimal control theory:
presence of unknown disturbances and multiple objectives. One common
approach for addressing the former issue is to treat the disturbances as ac-
tions of an adversary and plan against the worst case scenario thereof. This
makes the problem a two person zero sum game. While the classical two per-
son zero sum stochastic games are fully analyzable through the associated
Shapley equation, this is not the case when there are many objectives. In a
seminal article, Blackwell [1] provided a framework for addressing this ‘vector
minmax’ problem in case of repeated games, providing both the necessary
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and sufficient conditions for attainability of the objectives (what came to be
known as Blackwell approachability) and a scheme for achieving the same.
This is becoming a popular model for addressing engineering problems with
aforementioned features, see, e.g., Hou et al [2] for a recent application.
The framework has also found application in strategic learning literature in
economics and computer science, see, e.g., Young [5]. As observed above,
many engineering situations call for going beyond the repeated game model
and consider a controlled Markov dynamics instead. In an important work,
Shimkin and Shwartz [4] studied this problem for controlled Markov chains
and proposed a scheme to ensure Blackwell approachability. Their scheme
depends on updating strategies at return times to a fixed state, which allows
them to exploit the regenerative nature of such visits. This is necessitated
by the fact that there appears to be a need to hold the policy fixed for some
time – the interval between two return times in their case – for the ‘learning’
to take place. For a large chain, the return times can be infrequent, rendering
the convergence slower. Motivated by this, we propose an alternative scheme
here that holds a policy constant for durations that are short initially and
can become longer gradually, thus capturing the ‘exploration-exploitation’
trade–off. Each choice of strategy is associated with a positive re–scaled
time duration and whenever the player switches to a new strategy he retains
it for the associated re–scaled duration of time. Almost sure convergence of
the running average cost to the desired set is then established under standard
conditions. A major ingredient in our proof is an elementary two time scale
argument and the proposed scheme is designed to exploit the two time scale
feature in an essential way.

The paper is organized as follows. Section 2 describes the problem set–
up and introduces the notation and some preliminary concepts. Section 3
develops an elementary two time scale result which plays a crucial role in
the proof of convergence and around which our scheme is built in the first
place. Section 4 proves the main convergence result, Theorem 18. Section 5
concludes by outlining some further possibilities.

2 Basic setup

The model. Consider a system evolving as a controlled Markov chain on
a finite state space S with a reward associated with each transition. We
assume that the reward is always some vector from a compact set K ⊂ R

d.
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Let Up and Ua be finite action spaces. Let (θn) denote the aforementioned
controlled Markov chain on S with transition kernel p(θ′|θ, up, ua) for θ′, θ ∈
S, up ∈ Up, ua ∈ Ua. Let P(Up) denote the set of probability distributions
on the space Up. Let Πp denote the set of all maps, or strategies, from S to
P(Up). Similarly, let Πa denote the set of all strategies from S to P(Ua).
Depending on the past the player and the adversary independently choose
their current strategies from Πp and Πa respectively. Let (up

n), (u
a
n) be the

actual control sequences chosen by the player and the adversary from Up, Ua

respectively. At time step n the one step reward is given by κ (θn, u
p
n, u

a
n).

Let xn denote the vector for current average reward. The iterative equation
for the average reward becomes

xn+1 = xn + 1/(n+ 1)[κ (θn, u
p
n, u

a
n)− xn].

Main goal. The aim of the main player is to have the average reward
asymptotically approach a certain desirable subset D ⊂ K

(

⊂ R
d
)

by suit-
ably choosing his strategy at each step. More precisely, the player seeks
to choose his sequence of strategies in such a manner that no matter what
sequence of strategies the adversary chooses, with probability one all limit
points of the sequence (xn) lie in D̄ where D̄ denotes the closure of D.

Assumptions. In our analysis we restrict our attention to the case where
D̄ is convex. However, see Section 5 for possible extension to the case of
non–convex D̄. Next, assume that when the strategies for the main player
and the adversary are held fixed at arbitrary strategies πp ∈ Πp and πa ∈ Πa

respectively then the Markov chain (θn) is ergodic. Let η
(πp,πa)(·) denote the

corresponding stationary measure on state space S with the strategies for
the player and the adversary held fixed. Define the corresponding average
reward κ̄(πp, πa) as

κ̄(πp, πa) :=
∑

θ∈S

∑

up∈Up

∑

ua∈Ua

κ(θ, up, ua)η(π
p,πa)(θ)πp(up|θ)πa(ua|θ).

For any point x, let xD̄ be the (unique) point in D̄ closest to x. For the
rest of this paper we work under the following assumption which is standard
for Blackwell approachability:

Assumption 1. For every x ∈ K\D̄ there exists a player strategy πp
x satis-

fying the following inequality:

inf
πa∈Πa

〈κ̄(πp
x, π

a)− xD̄, xD̄ − x〉 > 0.
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In words, the hyperplane through xD̄ perpendicular to the line segment xxD̄

separates x from the set {κ̄(πp
x, π

a) : πa ∈ Πa}.

For ρ ∈ R+, let B(x, ρ) denote the open ball of radius ρ centered at x.

Lemma 1. There exists a map ρ(·) : K\D̄ −→ R+, such that for any x ∈
K\D̄, we have

inf
y∈B(x,ρ(x))

inf
πa∈Πa

〈κ̄(πp
x, π

a)− yD̄, yD̄ − y〉 > 0. (1)

Proof. For any x ∈ K\D̄, by Assumption 1 there exists a player strategy πp
x

and an ǫ > 0 such that

inf
πa∈Πa

〈κ̄(πp
x, π

a)− xD̄, xD̄ − x〉 > ǫ.

We get

〈κ̄(πp
x, π

a)− yD̄, yD̄ − y〉

= 〈κ̄(πp
x, π

a)− xD̄ + (xD̄ − yD̄), yD̄ − y〉

= 〈κ̄(πp
x, π

a)− xD̄, xD̄ − x〉 + 〈κ̄(πp
x, π

a)− xD̄, (yD̄ − y − (xD̄ − x))〉+

〈xD̄ − yD̄, yD̄ − y〉

> ǫ− |〈κ̄(πp
x, π

a)− xD̄, (yD̄ − y − (xD̄ − x))〉| − |〈xD̄ − yD̄, yD̄ − y〉|

Since supπa∈Πa supxD̄∈D̄ ‖κ̄(πp
x, π

a)−xD̄‖ < ∞ and supy∈K ‖yD̄−y‖ < ∞,
it follows that there exists a finite positive constant c such that

〈κ̄(πp
x, π

a)− yD̄, yD̄ − y〉 > ǫ− c(‖xD̄ − yD̄‖+ ‖x− y‖).

Since D̄ is convex, the map x 7→ xD̄ must be continuous. It follows that
there exists a ρ(x) > 0 such that 〈κ̄(πp

x, π
a) − yD̄, yD̄ − y〉 > ǫ/2 whenever

‖x− y‖ < ρ(x). Since this holds for any πa, we get

inf
y∈B(x,ρ(x))

inf
πa∈Πa

〈κ̄(πp
x, π

a)− yD̄, yD̄ − y〉 > 0.

For the rest of the paper we assume that ρ(·) : K\D̄ → R+ is a function
satisfying (1). We now introduce the main objects needed for our analysis.
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The sets Kn, Qn and Q. For n ∈ N, define compact sets Kn as

Kn :=

{

y ∈ K : inf
x∈D

‖y − x‖ ∈ [1/(n+ 1), 1/n]

}

.

We can write
K\D̄ =

⋃

n∈N

Kn.

For n ∈ N, the collection {B(x, ρ(x)/2) : x ∈ Kn} is an open cover for Kn.
By compactness there exists a finite subcover. Let Qn be a finite subset of
Kn such that

⋃

q∈Qn

B(q, ρ(q)/2) ⊃ Kn.

Let Q denote the union
Q :=

⋃

n∈N

Qn.

The following result is immediate.

Proposition 2. The collection Q is a countable collection.

The map Q(·). Since Q is countable, we can assign an injective (one–one)
map I : Q −→ N. Using the map I(·) we define a map Q : K\D̄ → Q where,
for x ∈ K\D̄, we define

Q(x) := argmin
q

{I(q) : x ∈ B(q, ρ(q)/2), q ∈ Q}.

The re–scaled times and the interpolated trajectory. Let t(0) = 0. For
n ∈ N, define the re–scaled times

t(n) =
n

∑

i=1

1/i.

Let x̄(·) be the trajectory obtained by linearly interpolating between the
iterates. Thus, for any n ∈ N and t ∈ [t(n), t(n+ 1)) define

x̄(t) :=
t(n+ 1)− t

t(n+ 1)− t(n)
· xn +

t− t(n)

t(n+ 1)− t(n)
· xn+1.
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The map T (·). Define vmax := supx∈K sup(θ,up,ua) ‖κ(θ, u
p, ua)−x‖. Since

x, κ(θ, up, ua) ∈ K and K is compact, it follows that vmax < ∞. Clearly, for
times u1 and u2,

‖x̄(u1)− x̄(u2)‖ ≤ vmax|u1 − u2|.

Let T : Q → R+ be a map such that for every q ∈ Q the following holds:

ρ(q)

4vmax

< T (q) <
ρ(q)

3vmax

. (2)

Choice of strategy along S. We are now ready to define how the player
should choose his strategies over time. Let πp

0 be any arbitrary strategy.
Let S := (sn) denote the increasing subsequence of times when the player
changes his strategy. Start with s0 = 0. Assume sn is known. We consider
two cases, xsn ∈ K\D̄ and xsn ∈ D̄. If xsn ∈ K\D̄ then set q = Q(xsn). Now
choose the strategy πp

q and set

sn+1 = argmin
m

{

m :

m−1
∑

i=sn

1/i > T (q)

}

.

If, however, xsn ∈ D̄ then choose the strategy πp
0 and set s(n+1) = sn + 1.

3 A two time scale result

This section develops an elementary two time scale result needed for the
proof of convergence. For the reader’s convenience we break the proof into a
series of smaller units.

Lemma 3. For every x ∈ K\D̄,

B(x, ρ(x)) ∩ D̄ = ∅.

Proof. If y ∈ B(x, ρ(x)) ∩ D̄, then yD̄ = y and so

inf
πa∈Πa

〈κ̄(πp
x, π

a)− yD̄, yD̄ − y〉 = 0.

But this contradicts (1). Hence, B(x, ρ(x)) ∩ D̄ = ∅.
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Lemma 4. For any compact set L such that L
⋂

D̄ = ∅, we have

∣

∣

∣

{

q ∈ Q : B(q, ρ(q)/2)
⋂

L 6= ∅
}
∣

∣

∣
< ∞.

Proof. Since both L and D̄ are compact sets, it follows that

inf
x∈D̄,y∈L

‖x− y‖ =: d(L) > 0.

Consider any q such that q ∈ Qm and m > 3
2d(L)

. Since Qm ⊂ Km, we
have

inf
x∈D̄

‖q − x‖ ≤
1

m
<

2d(L)

3
.

Further, by Lemma 3, ρ(q) < 1/m < 2d(L)/3. It follows that if m > 3
2d(L)

and q ∈ Qm then B(q, ρ(q)/2)
⋂

L = ∅. The result follows.

Lemma 5. Let (sm(n)) be an increasing subsequence of S. If limn→∞ xsm(n)
=

x for some x ∈ K\D̄, then along a further subsequence, denoted (sm(n))
again, there exists q ∈ Q such that Q(xsm(n)

) = q for all n ∈ N.

Proof. Since limn→∞ xsm(n)
= x /∈ D̄, there exists a compact set L such that

L ∩ D̄ = ∅ and xsm(n)
∈ L for all sufficiently large n. By Lemma 4,

∣

∣

∣

{

Q(xsm(n)
) : n ∈ N

}
∣

∣

∣
< ∞.

Thus there exists q ∈ Q such that along a subsequence, denoted (sm(n))
again, we have xsm(n)

∈ L and Q(xsm(n)
) = q for all n ∈ N.

The Mannor-Tsitsiklis bound. We now introduce a set of conditions,
labeled (†), which is needed for Theorem 6 and Corollary 7 below. To this
end, let (sm(n)) be an arbitrary increasing subsequence of S. Let Tl and Tr

be times such that Tl < Tr. Let (lm(n)) and (rm(n)) be sequences such that
sm(n) ≤ lm(n) < rm(n) ≤ sm(n)+1, n ∈ N. Let (†) denote the following four
conditions:

1† xsm(n)
−→ x for some x ∈ K\D̄.

2† Q(xsm(n)
) = q for some q ∈ Q and all n ∈ N.
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3† [Tl, Tr) ⊂ [0, T (q)).

4† t(lm(n))− t(sm(n)) → Tl and t(rm(n))− t(sm(n)) → Tr.

Assuming the conditions of (†) hold, for lm(n) ≤ j < rm(n) consider the
single step reward κ

(

θj , u
p
j , u

a
j

)

. At each of these time steps the player adopts
the strategy πp

q independently of the action chosen by the adversary. For
θ ∈ S and ua ∈ Ua, let κτ (θ, ua) be the reward at the τ th occurrence of
(θ, ua) in the range lm(n), . . . , rm(n) − 1, . The rewards κτ (θ, ua), τ = 1, 2, . . . ,
are independent, identically distributed random variables with mean

E[κτ (θ, ua)] =
∑

up

κ(θ, up, ua)πp
q (θ)(u

p).

Further, since each κ
(

θj , u
p
j , u

a
j

)

is chosen from a compact set, we get, for z
in any neighbourhood of the origin,

E[exp (〈z, κτ (θ, ua)〉)] < ∞,

where 〈·, ·〉 is the inner product in R
d. Define the set R(πp

q ) := {κ̄(πp
q , π

a) :
πa ∈ Πa}. For a vector v, define ‖v−R(πp

q )‖ := infπa∈Πa ‖v− κ̄(πp
q , π

a)‖. We
can now invoke Theorem 6.2 of Mannor and Tsitsiklis [3]. For our setup and
with our notation, it reads as follows:

Theorem 6. Assuming that the conditions of (†) hold, there exists a function
λ : (0,∞) → (0,∞] and a positive constant c0, such that irrespective of the
adversary policy πa, the following bound holds:

P





∥

∥

∥

∥

∥

∥

∑rm(n)−1

j=lm(n)
κ
(

θj , u
p
j , u

a
j

)

rm(n) − lm(n)

− R(πp
q )

∥

∥

∥

∥

∥

∥

≥ ǫ



 ≤ c0 exp
(

−λ(ǫ)(rm(n) − lm(n))
)

.

For the next result, note that t(rm(n)) − t(lm(n)) =
∑rm(n)−1

j=lm(n)
1/j. Under

the conditions of (†) this implies that

lim
n→∞

rm(n)

lm(n)

= exp (Tr − Tl). (3)

Corollary 7. Assuming that the conditions of (†) hold, we have

lim
n→∞

∥

∥

∥

∥

∥

∥

∑rm(n)−1

j=lm(n)
κ
(

θj , u
p
j , u

a
j

)

rm(n) − lm(n)
−R(πp

q )

∥

∥

∥

∥

∥

∥

= 0 a.s.
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Proof. Since limn→∞(t(rm(n)) − t(lm(n))) = Tr − Tl > 0, it follows from (3)
that rm(n) − lm(n) > lm(n)[exp (Tr − Tl) − 1]/2 for n sufficiently large. Since
lm(n) ≥ n, we get rm(n) − lm(n) > n[exp (Tr − Tl) − 1]/2 for n sufficiently
large. Plugging this estimate in Theorem 6 and noting that the constant ǫ
is arbitrary, a standard application of the Borel–Cantelli argument gives the
result.

The two time scale result. With Corollary 7 available for use, we are
ready for our main two time scale result. Thus, let (sm(n)) be an arbitrary
increasing subsequence of S. Assume that limn→∞ xsm(n)

= x for some x ∈

K\D̄. By Lemma 5 there exists a q ∈ Q such that along a subsequence,
denoted again by (sm(n)), Q(xsm(n)

) = q for all n ∈ N. For n ∈ N and t ≥ 0
define the trajectories

ȳm(n)(t) :=

{

x̄(t(sm(n)) + t) if t ≤ t(sm(n)+1)− t(sm(n))
x̄(t(sm(n)+1)) if t > t(sm(n)+1)− t(sm(n))

(4)

By the Arzela-Ascoli theorem there exists a continuous trajectory ȳ(·) such
that along a subsequence, denoted again by (m(n)), limn→∞ ȳm(n)(·) = ȳ(·)
in the topology of uniform convergence over compacts.

Set T = T (q). For k ∈ N and Jk = {0, 1, . . . , 2k − 1} consider the finite
collection of intervals

Ck :=
{[

2−kjT, 2−k(j + 1)T
)

: j ∈ Jk

}

. (5)

For j ∈ Jk, define

κj,k :=
ȳ(2−k(j + 1)T )− exp (−2−kT )ȳ(2−kjT )

1− exp (−2−kT )
.

Next, with (sm(n)) denoting an arbitrary increasing subsequence of S, define
N(q, j, k) as the following set:

N(q, j, k) := {(xn) : ∃(sm(n)) s.t. Q(xsm(n)
) = q ∀n and κj,k /∈ R(πp

q )}.

Proposition 8. The set N(q, j, k) is a null set, i.e., P[N(q, j, k)] = 0.

Proof. Fix any interval
[

2−kjT, 2−k(j + 1)T
)

in Ck. Let (lm(n)) and (rm(n))
be sequences with sm(n) ≤ lm(n) < rm(n) ≤ sm(n)+1, n ∈ N such that t(lm(n))−
t(sm(n)) → 2−kjT and t(rm(n))− t(sm(n)) → 2−k(j + 1)T . We have

ȳ(2−k(j + 1)T )− ȳ(2−kjT )

2−kT
= lim

n→∞

xrm(n)
− xlm(n)

t(rm(n))− t(lm(n))
.
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In terms of lm(n) and rm(n), the equation for average reward can be written
as

xrm(n)
= xlm(n)

+
rm(n) − lm(n)

rm(n)





∑rm(n)−1

j=lm(n)
κ
(

θj , u
p
j , u

a
j

)

rm(n) − lm(n)

− xlm(n)



 .

Rearranging, we get

xrm(n)
− (lm(n)/rm(n))xlm(n)

1− (lm(n)/rm(n))
=

∑rm(n)−1

j=lm(n)
κ
(

θj , u
p
j , u

a
j

)

rm(n) − lm(n)

.

Since xrm(n)
→ ȳ(2−k(j + 1)T ) and xlm(n)

→ ȳ(2−kjT ), it follows from (3)
that

lim
n→∞

xrm(n)
− (lm(n)/rm(n))xlm(n)

1− (lm(n)/rm(n))
= κj,k,

and consequently

lim
n→∞

∑rm(n)−1

j=lm(n)
κ
(

θj , u
p
j , u

a
j

)

rm(n) − lm(n)

= κj,k.

Hence, by Corollary 7 it must be the case that

κj,k ∈ R(πp
q ) a.s.

Define C :=
⋃

k Ck. The next fact is crucial to our analysis.

Proposition 9. The collection C is a countable collection of intervals.

Define N to be the following set:

N :=
⋃

q∈Q

⋃

k∈N

⋃

j∈Jk

N(q, j, k).

Proposition 10. The event N is a null set, i.e., P[N ] = 0.

Proof. Both Q and C are countable collections. The result now follows from
the fact that the union of countably many exceptional null sets is again a
null set.
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By virtue of Proposition 3, to show almost sure convergence of sequences
(xn) to D̄ it suffices to restrict attention to sequences outside N . Conse-
quently, in what follows we shall work exclusively with sequences (xn) outside
the exceptional null set N .

Theorem 11. Let (xn) be any sequence outside the exceptional null set N .
For (sm(n)) an increasing subsequence of S, assume that limn→∞ xsm(n)

= x

for some x ∈ K\D̄. Assume further that for some q ∈ Q, Q(xsm(n)
) = q for

all n ∈ N. Let T = T (q). Let ȳ(·) be a limiting trajectory of the trajectories
ȳm(n)(·) given by (4). Then, for t ∈ [0, T ], ȳ(t) can be written as

ȳ(t) = ȳ(0) +

∫ t

0

v(s)ds, (6)

where v(·) is a Borel measurable function defined on [0, T ]. Further, for
Lebesgue almost all t in [0, T ], the following holds:

v(t) + ȳ(t) ∈ R(πp
q ). (7)

Remark. We point out that (6) is a standard result in two time scale
theory. Moreover, using Lebesque’s theorem we could also show (7) to hold
almost surely for any (but not all) t ∈ [0, T ]. The problem arises from the
fact that the set [0, T ] is an uncountable set and when we do a union of null
sets, one for each t ∈ [0, T ], the union need not be a null set. We solve this
problem by treating the interval [0, T ) as a probability space and giving the
trajectory ȳ(t) a martingale structure. This also provides an independent
and elementary proof of two time scale structure.

Proof. Define Gk := σ (Ck), the σ-algebra on [0, T ) generated by Ck. Let
G :=

∨

k Gk. For λ the Lebesgue measure, define the scaled probability
measure µ on [0, T ) given by dµ/dλ = 1/T . This acts as a probability
measure for the probability space ([0, T ), µ,G). For t ∈ [0, T ) and k ∈ N

define the ‘floor’ fk(t) := 2−k⌊2kt/T ⌋T . Thus, for any t ∈ [0, T ), we have
t ∈ [fk(t), fk(t) + 2−kT ). Define Mk(t) as:

Mk(t) :=
ȳ(fk(t) + 2−kT )− ȳ(fk(t))

2−kT
.

Note that Mk(·) is Gk–measurable. Further, for t ∈ [0, T ) we have

E
µ[Mk+1(t)|Gk] = Mk(t) µ–almost surely.

11



In other words, the sequence (Mk(·))k∈N forms a bounded martingale in the
filtered probability space ([0, T ), µ,G,Gk). It follows that µ–almost surely
the limit v(t) := limk→∞Mk(t) exists. The limit v(·) is, clearly, a measurable
function. Note that [0, fk(t)) is a Gk–measurable subset of [0, T ). Letting
A := [0, fk(t)), it is immediate that

∫

A
Mk(s)ds =

∫

A
v(s)ds. It follows that

ȳ(fk(t)) =

∫ fk(t)

0

Mk(s)ds =

∫ fk(t)

0

v(s)ds.

Letting k → ∞ gives us:

ȳ(t) = ȳ(0) +

∫ t

0

v(s)ds.

Let t ∈ [0, T ). Set j = j(k) = ⌊2kt/T ⌋. Note that as t ranges over [0, T ),
the pair (j(k), k) still take values in a countable set. From the definitions of
Mk(t) and κj,k it follows that

v(t) = lim
k→∞

Mk(t) = lim
k→∞

κj(k),k − ȳ(t).

Since (xn) is outside the exceptional null set N , limk→∞ κj(k),k must neces-

sarily lie in R(πp
q ).

Lemma 12. Let (xn) be any sequence outside the exceptional null set N .
For (sm(n)) an increasing subsequence of S, assume that limn→∞ xsm(n)

= x

for some x ∈ K\D̄. Assume further that for some q ∈ Q, Q(xsm(n)
) = q for

all n ∈ N. Let T = T (q). Let ȳ(·) be a limiting trajectory of the trajectories
ȳm(n)(·) given by (4). Then

inf
w∈D̄

‖ȳ(t)− w‖ ≤ inf
w∈D̄

‖ȳ(0)− w‖ exp (−t) for all t ∈ [0, T (q)].

Proof. For t ∈ [0, T ) let d(t) := infw∈D̄ ‖ȳ(t) − w‖. For any point p, let
dp(t) := ‖ȳ(t)− p‖. Let ȳD̄(t) be the point in D̄ closest to ȳ(t). We have

ḋ(t) ≤ ḋp(t)|p=ȳD̄(t) =
(ȳ(t)− ȳD̄(t)) · v(t)

‖ȳ(t)− ȳD̄(t)‖
< −d(t),

and the result follows.
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4 Almost sure convergence

As before we present our proof as a series of short lemmas.

Lemma 13. For sn ∈ S, if xsn ∈ D̄ then

t(sn+1)− t(sn) = 1/(sn + 1) < 1/sn,

while if x ∈ K\D̄ then

t(sn+1)− t(sn) < T (Q(x)) + 1/sn.

Lemma 14. For x ∈ K\D̄ we have

T (Q(x)) −→ 0 as x −→ D̄.

Proof. By definition, x ∈ B(Q(x), ρ(Q(x))/2). It follows from Lemma 3 that
B(Q(x), ρ(Q(x)))

⋂

D̄ = ∅. Consequently ρ(Q(x)) ≤ 2 infy∈D̄ ‖x − y‖. The
result now follows from (2).

Lemma 15. Let (sm(n)) be an increasing subsequence of S. If limn→∞ xsm(n)
=

x for some x ∈ D̄ then

t(sm(n)+1)− t(sm(n)) −→ 0.

Proof. By Lemma 13, if xsm(n)
∈ D̄ then t(sm(n)+1) − t(sm(n)) < 1/sm(n) ≤

1/n, while if xsm(n)
∈ K\D̄ then t(sm(n)+1)−t(sm(n)) < T (Q(xsm(n)

))+1/sm(n).
By Lemma 14, T (Q(xsm(n)

)) → 0 as n → ∞. Since sm(n) → ∞ as n → ∞,
the result follows .

Lemma 16. Let (sm(n)) be an increasing subsequence of S such that limn→∞ xsm(n)
=

x and limn→∞ xsm(n)+1
= y. If y ∈ K\D̄ then x ∈ K\D̄.

Proof. Assume x ∈ D̄. Since ‖xsm(n)+1
−xsm(n)

‖ ≤ vmax(t(sm(n)+1)−t(sm(n))),
it follows from Lemma 15 that

lim
n→∞

‖xsm(n)+1
− xsm(n)

‖ = 0.

This leads to a contradiction since y ∈ K\D̄.

Recall that S = (sn) is the increasing sequence of times when the player
changes his strategy.
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Lemma 17. Let (xn) be a sequence outside the exceptional null set N . If y
is a limit point of the sequence (xsn) then y ∈ D̄.

Proof. Assume to the contrary and let y be a limit point of (xsn) that is
farthest from D̄. Take an appropriate subsequence such that limn→∞ xsm(n)

=

x and limn→∞ xsm(n)+1
= y. By Lemma 16 x ∈ K\D̄. Further assume, by

Lemma 5, that the subsequence is such that Q(xsm(n)
) = q for some q ∈ Q

and all n ∈ N. From our choice of y it follows that

inf
w∈D̄

‖y − w‖ ≥ inf
w∈D̄

‖x− w‖.

But by Lemma 12 we get

inf
w∈D̄

‖y − w‖ ≤ inf
w∈D̄

‖x− w‖ exp (−T (q)).

Since T (q) > 0 this leads to a contradiction and the result follows.

Theorem 18. Let (xn) be a sequence outside the exceptional null set N . If
x is a limit point of the sequence (xn) then x ∈ D̄.

Proof. By taking suitable subsequences assume that limn→∞ xum(n)
= x where

sm(n) < um(n) ≤ sm(n)+1 for all n ∈ N with (sm(n)) some increasing sub-
sequence of S. Assume further that limn→∞ xsm(n)

= y for some y. By

Lemma 17 y ∈ D̄. Since ‖xum(n)
− xsm(n)

‖ ≤ vmax(t(sm(n)+1) − t(sm(n))), it
follows from Lemma 15 that limn→∞ ‖xum(n)

− xsm(n)
‖ = 0. Thus x = y and

the result follows.

5 Conclusion

We have established the a.s. convergence of our scheme to the desired limit
set for finite state controlled Markov chains. In conclusion we point out some
future directions.

Extension to non–convex D. For non-convex D in general, the existence
of a ‘nearest point’ in D̄ from any point outside D̄ is guaranteed. A scheme
along above lines can be conceived wherein one uses piecewise constant poli-
cies that ensure decrease of distance from D̄ if such policies are known to
exist.
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Countable state space. Under suitable uniform stability assumption or
‘near-monotonicity’ condition on costs, variations of the above scheme can
be proposed for Blackwell approachability. This will be pursued in a future
work.

Computational issues. The above scheme is an ‘ideal’ scheme in so far as
it ignores actual computational aspects. A practical implementation would
raise further issues such as recursive on-line computation of policies, learning,
etc.

A combination scheme. A variation that seems promising is to combine
the approaches of this paper and Shimkin and Shwartz [4], switching strate-
gies when the currently adopted strategy exhausts its allotted time, or when
the chain returns to a prescribed state, whichever occurs first. One expects
similar results, though the analysis will be messier.
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