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THE SPACE OF HEEGAARD SPLITTINGS

JESSE JOHNSON AND DARRYL MCCULLOUGH

Abstract. For a Heegaard surface Σ in a closed orientable 3-manifold
M , H(M,Σ) = Diff(M)/Diff(M,Σ) is the space of Heegaard surfaces
equivalent to the Heegaard splitting (M,Σ). Its path components are
the isotopy classes of Heegaard splittings equivalent to (M,Σ). We
describe H(M,Σ) in terms of Diff(M) and the Goeritz group of (M,Σ).
In particular, for hyperbolic M each path component is a classifying
space for the Goeritz group, and when the (Hempel) distance of (M,Σ)
is greater than 3, each path component of H(M,Σ) is contractible. For
splittings of genus 0 or 1, we determine the complete homotopy type
(modulo the Smale Conjecture for M in the cases when it is not known).

Let M be a closed, orientable 3-manifold, not necessarily irreducible, and
suppose that Σ is a Heegaard surface in M . The space H(M,Σ) of Hee-
gaard splittings equivalent to (M,Σ) is defined to be the space of left cosets
Diff(M)/Diff(M,Σ), where Diff(M,Σ) is the subgroup of Diff(M) consist-
ing of diffeomorphisms taking Σ onto Σ. In other words, this is the space of
images of Σ under diffeomorphisms of M .

We will denote the homotopy groups πi(H(M,Σ)) by Hi(M,Σ). In par-
ticular, H0(M,Σ) is the set of isotopy classes of Heegaard splittings equiv-
alent to (M,Σ). In the present work, we focus on the groups Hi(M,Σ)
for i ≥ 1. (Note that Hi(M,Σ) is independent of the basepoint chosen,
because Diff(M) acts transitively on H(M,Σ) and consequently any two
path components are homeomorphic. We use the identity map 1M , or more
strictly speaking, the coset 1M Diff(M,Σ), as our implicit choice of basepoint
of H(M,Σ).)

As one would expect, H(M,Σ) is closely related to Diff(M). When the
genus of Σ is at least 2, we have a general result.

Theorem 1. Suppose that Σ has genus at least 2. Then πq(Diff(M)) →
Hq(M,Σ) is an isomorphism for q ≥ 2, and there are exact sequences

1 → π1(Diff(M)) → H1(M,Σ) → G(M,Σ) → 1 ,

1 → G(M,Σ) → Mod(M,Σ) → Mod(M) → H0(M,Σ) → 1 .
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In Theorem 1, Mod(M) and Mod(M,Σ) denote the groups of path compo-
nents of Diff(M) and Diff(M,Σ) respectively, and G(M,Σ) is the Goeritz
group of the Heegaard splitting, defined to be the kernel of Mod(M,Σ) →
Mod(M). We remark that for most reducible M , π1(Diff(M)) is known to
be non-finitely-generated [24], suggesting that H(M,Σ) has a complicated
homotopy type in these cases.

When π1(M) is infinite, Theorem 1 applies to all cases except the genus-1
Heegaard surface in S1 × S2. To state our result for that case, denote by
LX the space of smooth free loops in a smooth manifold X, that is, the
C∞ maps from S1 to X, with the C∞ topology. There is a free involution
α : LS2 → LS2 defined by α(γ) = ρ ◦ γ, where ρ : S2 → S2 is the antipodal
map. The quotient LS2/〈α〉 can be identified with the connected component
of the constant loop in LRP

2.

Theorem 2. For the unique genus-1 Heegaard surface Σ in S1×S2, H(S1×
S2,Σ) is homotopy equivalent to LS2/〈α〉.

We remark that (at least when X has empty boundary) the inclusion
function from LX to the space of all continuous free loops in X (with the
compact-open topology) is a homotopy equivalence (see A. Stacey [31, The-
orem 4.6]). The analogous statement holds for the space ΩX of smooth
based free loops [31, Section 4.3]). The map LX → X given by evaluation
at the basepoint is a locally trivial fibration [31, Corollary 4.8], with fiber
ΩX. Since LX → X has an obvious section, the exact sequence of this fi-
bration shows that πq(LX) ∼= πq+1(X)⊕πq(X) for all q ≥ 1. The homology
of LSn was computed in W. Ziller [34, p. 21] (see also R. Cohen, J. Jones,
and J. Yan [6]); for n = 2 it is H0(LS

2) ∼= Z, Hk(LS
2) ∼= Z for k > 0 odd,

and Hk(LS
2) ∼= Z⊕Z /2 for k > 0 even.

When π1(M) is infinite and M is irreducible, all Heegaard splittings of
M have genus at least 2. In addition, apart from one case in which Diff(M)
has not been fully determined, we know that Diff(M) has a very simple
homotopy type. Theorem 1 becomes the following statement:

Corollary 1. Suppose that M is irreducible and π1(M) is infinite, and that
M is not a non-Haken infranilmanifold. Then Hi(M,Σ) = 0 for i ≥ 2, and
there is an exact sequence

1 → Z(π1(M)) → H1(M,Σ) → G(M,Σ) → 1 .

Note that when the conclusion of Corollary 1 holds, each component of
H(M,Σ) is aspherical, and if π1(M) is centerless, is a classifying space
K(G(M,Σ), 1) for the Goeritz group. As to the excluded cases in Corol-
lary 1, a nilmanifold is a 3-manifold that is a quotient of Heisenberg space
by a torsion-free lattice (topologically these are the S1-bundles over the torus
with nonzero Euler class), and an infranilmanifold is a finite quotient of a
nilmanifold. Non-Haken infranilmanifolds are Seifert-fibered with base orb-
ifold a 2-sphere with three cone points of types (2, 4, 4), (2, 3, 6), or (3, 3, 3).
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If the components of Diff(M) turn out to be homotopy equivalent to S1 for
these manifolds, as expected (see [27]), then Corollary 1 will hold without
exclusion.

Corollary 1 applies whenever the (Hempel) distance d(M,Σ) is greater
than 3. Combined with various results from the literature, this provides a
rather complete description of the homotopy type of H(M,Σ) for this case:

Corollary 2. If d(M,Σ) > 3 then H(M,Σ) has finitely many components,
each of which is contractible. In fact, the number of components of H(M,Σ)
equals |Mod(M)|/|Mod(M,Σ)|, and if d(M,Σ) > 2 genus(Σ), then H(M,Σ)
is contractible.

When π1(M) is finite, Diff(M) and H(M,Σ) can have more interesting
homotopy types. For these cases, M admits an elliptic structure, that is, a
Riemannian metric of constant sectional curvature 1, or equivalently M is
a quotient of the standard round 3-sphere by a group of isometries acting
freely. For elliptic 3-manifolds, the (Generalized) Smale Conjecture asserts
that the inclusion Isom(M) → Diff(M) of the subgroup of isometries of M
is a homotopy equivalence. As we will discuss in Section 7 below, the Smale
Conjecture is known for some cases, including S3 and lens spaces other
than RP

3, but is open in general. Our computations of Hi(M,Σ) require
this homotopy equivalence, and therefore must be regarded as modulo the
Smale Conjecture for the unknown cases. In the statements of our remaining
results, C2 denotes a cyclic group of order 2.

Theorem 3. For n ≥ 0 let Σn be the unique Heegaard surface of genus n
in S3.

(1) H(S3,Σ0) ≃ RP
3.

(2) H(S3,Σ1) ≃ RP
2 ×RP

2,
(3) For n ≥ 2, Hi(S

3,Σn) ∼= πi(S
3 × S3) for i ≥ 2, and there is a

non-split exact sequence

1 → C2 → H1(S
3,Σn) → G(S3,Σn) → 1 .

Theorem 4. Let L = L(m, q) be a lens space with m ≥ 2 and 1 ≤ q ≤ m/2.
Assume, if necessary, that L satisfies the Smale Conjecture. For n ≥ 1, let
Σn be the unique Heegaard surface of genus n in L.

(1) If q ≥ 2, then
(a) H(L,Σ1) is contractible.
(b) For n ≥ 2, Hi(L,Σn) = 0 for i ≥ 2, and there is an exact

sequence

1 → Z×Z → H1(L,Σn) → G(L,Σn) → 1 .

(2) If m > 2 and q = 1, then
(a) H(L,Σ1) ≃ RP

2.
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(b) For n ≥ 2, Hi(L,Σn) ∼= πi(S
3) for i ≥ 2, and there are exact

sequences

1 → Z → H1(L,Σn) → G(L,Σn) → 1

for m odd, and

1 → Z×C2 → H1(L,Σn) → G(L,Σn) → 1

for m even.
(3) If L = L(2, 1), then

(a) H(L,Σ1) ≃ RP
2 ×RP

2.
(b) For n ≥ 2, Hi(L,Σn) ∼= πi(S

3 × S3) for i ≥ 2, and there is an
exact sequence

1 → C2 × C2 → H1(L,Σn) → G(L,Σn) → 1 .

Theorem 5. Let E be an elliptic 3-manifold, but not S3 or a lens space.
Assume, if necessary, that E satisfies the Smale Conjecture. Let Σ be a
Heegaard surface in E.

(1) If π1(E) ∼= D∗

4m, or if E is one of the three manifolds with funda-
mental group either T ∗

24, O
∗

48, or I∗120, then Hi(E,Σ) ∼= πi(S
3) for

i ≥ 2 and there is an exact sequence

1 → C2 → H1(E,Σ) → G(E,Σ) → 1 .

(2) If E is not one of the manifolds in Case (1), that is, either π1(E)
has a nontrivial cyclic direct factor, or π1(E) is a diagonal subgroup
of index 2 in D∗

4m×Cn or of index 3 in T ∗

48×Cn, then Hi(E,Σ) = 0
for i ≥ 2, and there is an exact sequence

1 → Z → H1(E,Σ) → G(E,Σ) → 1 .

Theorems 1 and 2 are proven in Sections 3 and 4 respectively, and Corol-
laries 1 and 2 in Section 5. Theorem 3(1) is proven in Section 8. The-
orem 3(2) and the (a) parts of Theorem 4 are proven in Section 10, and
Theorem 3(3), the (b) parts of Theorem 4 and Theorem 5 in Section 11.
The other sections provide auxiliary material used in the proofs.

1. Spaces of images, mapping class groups, and Goeritz groups

In this section and the next, we assume only that M is a closed manifold
and Σ is a closed submanifold of positive codimension (although much of
what we say extends to more general contexts).

A submanifold Σ′ of M is called an image of Σ if there is a diffeomorphism
of M carrying Σ onto Σ′. The images of Σ correspond to the left cosets
Diff(M)/Diff(M,Σ), since if g, h ∈ Diff(M), then g(Σ) = h(Σ) if and only
if g−1h ∈ Diff(M,Σ). Therefore we call Diff(M)/Diff(M,Σ) the space of
images equivalent to Σ, and denote it by Img(M,Σ). In particular, when
(M,Σ) is a Heegaard splitting of a closed 3-manifold, Img(M,Σ) is the space
of Heegaard splittings H(M,Σ) as defined in the introduction.
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A Fréchet space is a complete metrizable locally convex topological vector
space. The topology of a Fréchet space is defined by a countable collection
of seminorms such that fj → f if ‖fj−f‖ → 0 for each of the seminorms. A
Fréchet manifold is a (usually infinite-dimensional) manifold locally modeled
on open subsets of a Fréchet space, with smooth (as maps of the Fréchet
space) transition functions. Two convenient references for Fréchet spaces
and Fréchet manifolds are R. Hamilton [11] and A. Kriegl and P. Michor [25].

The space of images Img(M,Σ) is a Fréchet manifold locally modeled
on the sections close to the zero section from Σ to its normal bundle [11,
Example 4.1.7]. It follows that Img(M,Σ) has the homotopy type of a CW-
complex (see for example Section 2.1 of [18]).

The mapping class group Mod(M,Σ) of the pair (M,Σ) is defined to be
the discrete group Diff(M,Σ)/diff(M,Σ), where diff(M,Σ) (and in general,
any space of isometries, diffeomorphisms, or imbeddings whose name begins
with a small letter) is the connected component of the identity diffeomor-
phism. In particular, when Σ is empty, we write this as Mod(M) and it
becomes the usual mapping class group. Note that we allow orientation-
reversing diffeomorphisms, when M is orientable, so our Mod(M,Σ) is what
is often called the extended mapping class group.

The Goeritz group of the pair (M,Σ) is the kernel G(M,Σ) of the natural
map Mod(M,Σ) → Mod(M). When Σ has codimension 1 and is two-sided
in M , the pure Goeritz group G0(M,Σ) is defined to consist of the elements
of G(M,Σ) that do not interchange the sides of Σ. It is a subgroup of index
at most 2 in G(M,Σ).

To indicate the subgroup of orientation-preserving, we use a “+” sub-
script, as in Diff+(M) or Isom+(S

3).

2. Fibration theorems

In this section, we will obtain fibrations using a method of R. Palais [28]
and J. Cerf [5], which is based on the following definition. Let X be a
G-space and x0 ∈ X. A local cross-section for X at x0 is a map χ from
a neighborhood U of x0 into G such that χ(u)x0 = u for all u ∈ U . By
replacing χ(u) by χ(u)χ(x0)

−1, one may always assume that χ(x0) = 1G.
If X admits a local cross-section at each point, it is said to admit local
cross-sections.

A local cross-section χ0 : U0 → G at a single point x0 determines a lo-
cal cross-section χ : gU0 → G at any point gx0 in the orbit of x0, by the
formula χ(u) = gχ0(g

−1u)g−1, since then χ(u)(gx0) = gχ0(g
−1u)g−1gx0 =

gχ0(g
−1u)x0 = gg−1u = u. In particular, if G acts transitively on X, then

a local cross-section at any point provides local cross-sections at all points.
From [28] we have

Proposition 2.1. Let G be a topological group and X a G-space admitting
local cross-sections. Then any equivariant map of a G-space into X is locally
trivial.
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In fact, when π : Y → X is G-equivariant, the local coordinates on π−1(U)
are just given by sending the point (u, z) ∈ U × π−1(x0) to χ(u) · z.

We continue to assume only that M is a closed manifold and Σ is a
closed submanifold of positive codimension. Clearly Diff(M)/Diff(M,Σ)
and Diff(M)/diff(M,Σ) are Diff(M)-spaces.

Theorem 2.2. Diff(M)/Diff(M,Σ) and Diff(M)/diff(M,Σ) admit local
Diff(M) cross-sections.

Proof. We will argue for Diff(M)/Diff(M,Σ) = Img(M,Σ), since the case
of Diff(M)/diff(M,Σ) requires only trivial modifications. Since Diff(M)
acts transitively, we need only find a local cross-section at 1M Diff(M,Σ).

Fix a Riemannian metric on M and a tubular neighborhood N(Σ) deter-
mined by the exponential map Exp: ν<ǫ(Σ) → N(Σ) ⊂ M , where ν<ǫ(Σ)
is the space of normal vectors of Σ of length less than ǫ. For all g in a
sufficiently small C∞-neighborhood V of 1M (in fact for all g sufficiently
C1-close to 1M ) in Diff(M), the tangent planes to g(Σ) remain almost per-
pendicular to the tangent planes of the fibers of N(Σ), and consequently
g(Σ) meets each normal fiber in N(Σ) in exactly one point.

Denote by Sect(Σ, TM) the sections from Σ to the restriction of TM to Σ,
and by Z the zero-section in Sect(Σ, TM) or in any other space of sections.

The imageW of V in Img(M,Σ) is an open neighborhood of 1M Diff(M,Σ).
Define Φ: W → Sect(Σ, TM) by putting Φ(gDiff(M,Σ))(x) equal to the
unique vector in TxM ∩ ν<ǫ(Σ) that exponentiates to g(Σ) ∩ Exp(ν<ǫ(x)),
where ν<ǫ(x) is the fiber of νǫ(Σ) at x. In particular, Φ(1M Diff(M,Σ)) = Z,
the zero section.

Lemma c from [28] provides a continuous linear map k : Sect(Σ, TM) →
Sect(M,TM) such that for each X ∈ Sect(Σ, TM), k(X)|Σ = X. In fact, k
is defined just by using parallel translation to push each X(x) to a vector
at each of the points in the normal fiber at x, then multiplying by a smooth
function that is 1 on Σ and is 0 off of N(Σ).

Now, define TExp: Sect(M,TM) → C∞(M,M), the space of smooth
maps from M to M with the C∞-topology, by TExp(X)(x) = Exp(X(x)).
By Lemmas a and b of [28], TExp is continuous and maps a neighborhood
of Z into Diff(M). On a neighborhood U of 1M Diff(M,Σ) contained in W
and small enough so that TExp ◦k ◦Φ(U) ⊂ Diff(M), TExp ◦k ◦Φ is a local
cross-section. For if gDiff(M,Σ) ∈ U , then by definition of Φ we have

Exp ◦Φ(gDiff(M,Σ))(x) = g(Σ) ∩ Exp(ν<ǫ(x))

for each x ∈ Σ. Therefore

Exp ◦Φ(gDiff(M,Σ)) 1M Diff(M,Σ)(Σ) = Exp ◦Φ(gDiff(M,Σ))(Σ) = g(Σ)

and consequently TExp ◦k ◦ Φ(gDiff(M,Σ))1M Diff(M,Σ) = gDiff(M,Σ).
�

Proposition 2.1 and Theorem 2.2 give immediately
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Corollary 2.3. The quotient maps Diff(M) → Diff(M)/Diff(M,Σ) and
Diff(M) → Diff(M)/diff(M,Σ) are fibrations.

Also, the natural map Diff(M)/diff(M,Σ) → Diff(M)/Diff(M,Σ) is Diff(M)-
equivariant, with fiber the discrete group Diff(M,Σ)/diff(M,Σ) = Mod(M,Σ),
so we have

Corollary 2.4. The natural map

Diff(M)/diff(M,Σ) → Diff(M)/Diff(M,Σ) = Img(Σ)

is a covering map with fiber Mod(M,Σ).

Corollary 2.5. For i ≥ 2, πi(Diff(M)/diff(M,Σ)) → πi(Img(Σ)) is an
isomorphism, and there is an exact sequence

1 → π1(Diff(M)/diff(M,Σ)) → π1(Img(M,Σ))

→ Mod(M,Σ) → π0(Diff(M)/diff(M,Σ)) → π0(Img(M,Σ)) → 1 .

For later use, we include the following lemma.

Lemma 2.6. The map Diff(M,Σ) → Diff(Σ) defined by restriction is a
fibration over its image (which is a union of path components of Diff(Σ)).

Proof. Let Imb(Σ,M) be the space of all imbeddings of Σ intoM that extend
to diffeomorphisms of M . From [28], the map ρ : Diff(M) → Imb(Σ,M)
defined by ρ(f) = f |V is a fibration. We identify the image of Diff(M,Σ) →
Diff(Σ) with the subspace of elements of Imb(Σ,M) that take Σ to Σ. Since
Diff(M,Σ) is the full preimage of this subspace, over its image Diff(M,Σ) →
Diff(Σ) is just the pullback fibration. �

3. Heegaard splittings of genus at least 2

This section contains the proof of Theorem 1. We will use the following
theorem of A. Hatcher [12, 16] and N. Ivanvov [19, 20]:

Theorem 3.1 (Hatcher, Ivanov). Let M be a Haken 3-manifold.

(i) If ∂M 6= ∅, then diff(M rel ∂M) is contractible.
(ii) If M is closed, then there is a homotopy equivalence (S1)k → diff(M),

where k is the rank of the center of π1(M).

In [12], the results are stated for PL homeomorphisms, but the Smale Con-
jecture for S3, also proven by Hatcher [15], gives the equivalence of these
statements for the two categories (see [16]).

Proof of Theorem 1. Since the genus of Σ is at least 2, diff(Σ) is contractible
[7]. From Lemma 2.6, there is a fibration

Diff(M rel Σ) ∩ diff(M,Σ) → diff(M,Σ) → diff(Σ) .

Any two elements of Diff(M rel Σ) ∩ diff(M,Σ) are isotopic preserving
Σ. Since π1(diff(Σ)) is trivial, they are isotopic relative to Σ. Therefore



8 JESSE JOHNSON AND DARRYL MCCULLOUGH

Diff(M rel Σ)∩ diff(M,Σ) = diff(M rel Σ), which is contractible using The-
orem 3.1(i), so the fibration shows that diff(M,Σ) is contractible.

By Corollary 2.3, the quotient map

Diff(M) → Diff(M)/diff(M,Σ)

is a fibration. Since it has contractible fiber, it is a homotopy equivalence.
The assertions of Theorem 1 now follow from Corollary 2.5. �

4. The case of S1 × S2

In this section, we will prove Theorem 2. For more concise notation, we
write M for S1 × S2. In addition, we write the standard 2-sphere S2 as
D2

+ ∪D2
−
, the upper and lower hemispheres, N or +N for the center point

of D2
+, the north pole, and −N for the south pole. The isometry group of

S2 is the orthogonal group O(3). By O(2) we denote the O(2)-subgroup of
SO(3) that preserves D2

+ ∩ D2
−
; its subgroup SO(2) preserves each of D2

+

and D2
−
, while elements of O(2) − SO(2) interchange D2

+ and D2
−
. Since

SO(3) acts transitively on S2 and the stabilizer of N is SO(2), the space of
cosets SO(3)/SO(2) is homeomorphic to S2.

In M define T = S1 ×D2
+ ∩S1 ×D2

−
. It is a Heegaard surface in M , and

the resulting splitting is called the standard genus-1 Heegaard splitting of
M . The following must be well known, but we include a proof here.

Proposition 4.1. Up to isotopy M has a unique Heegaard splitting for each
positive genus.

Proof. Assume first that the Heegaard splitting has genus 1. By Haken’s
Lemma [10] (see also [4, Lemma 1.1]), there is a 2-sphere S in M that meets
each of the solid tori of the splitting in a single disk. It is easy to check that
M contains a unique essential 2-sphere up to isotopy, so we may assume that
S is a fiber and each solid torus of the splitting is a regular neighborhood of
a loop crossing S in a single point. By the well-known light-bulb trick, such
a loop is isotopic to a loop of the form S1 × {x}, so the Heegaard splitting
is isotopic to the standard one.

Suppose now that the Heegaard splitting has genus n > 1, and apply
Haken’s Lemma as before to obtain a sphere that intersects each handle-
body in a disk. Compressing the splitting along one of the two disks, then
removing a neighborhood of the essential sphere, one of the handlebodies
becomes a handlebody of genus n− 1, and the other a handlebody with two
punctures. Filling in the punctures gives a Heegaard splitting of S3 of genus
n− 1. Waldhausen [33] showed that every positive genus Heegaard splitting
of S3 is a stabilization, which implies that the original Heegaard splitting
of M was a stabilization. Inductively, the original splitting is obtained by
repeated stabilization of the standard genus-1 splitting. �

Proposition 4.1 shows, of course, that H(M,Σ) is connected for every Hee-
gaard splitting of M .
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Our proof of Theorem 2 will use the description of Diff(M) due to A.
Hatcher [13, 14]. To set notation, define R(M) to be the subgroup of
Diff(S1 × S2) consisting of the diffeomorphisms that take each {x} × S2

to some {y} ×S2 by an element of the orthogonal group O(3) that depends
on x, and where the diffeomorphism of S1 sending each x to the correspond-
ing y is an element of O(2).

As noted in [13, 14], R(M) is homeomorphic (although not isomorphic) to
the subgroup O(2)×O(3)×ΩSO(3) ⊂ Diff(M), where ΩSO(3) denotes the
space of smooth loops γ : S1 → SO(3) taking the basepoint 0 ∈ S1 = R /Z
to the identity rotation. The O(2)-coordinate tells the effect of an element
of R(M) on the S1-coordinate of S1 × S2, the O(3)-coordinate tells the
effect on the S2-coordinate of {0} × S2, and the element of Ω SO(3) tells
the deviation from being constant in the S2-coordinate as the S1-coordinate
varies. More precisely, an element (f, g, γ) ∈ R(M) acts on M by sending
(t, x) ∈ S1 × S2 to (f(t), γ(t)(g(x))).

Theorem 4.2 (A. Hatcher). The inclusion R(M) → Diff(M) is a homotopy
equivalence.

Let R(M,T ) be the subgroup of R(M) that takes T to T , that is, R(M)∩
Diff(M,T ). Under the homeomorphism fromR(M) to O(2)×O(3)×ΩSO(3),
R(M,T ) corresponds to the subgroup O(2) × (C2 × O(2)) × ΩSO(2). The
C2-factor of C2 × O(2) is generated by the reflection through the equa-
tor D2

+ ∩D2
−
.

Proposition 4.3. The inclusion R(M,T ) → Diff(M,T ) is a homotopy
equivalence.

Proof. By Lemma 2.6, the restriction map Diff(M,T ) → Diff(T ) is a fibra-
tion over its image, which we will denote by Diff0(T ). Letting R(T ) denote
the diffeomorphisms of T = S1×(D2

+∩D2
−
) that send each {x}×(D2

+∩D2
−
)

to some {y}× (D2
+∩D2

−
) by an element of O(2), and such that sending each

{x} to the corresponding {y} is an element of O(2), we have a restriction
map R(M,T ) → R(T ) that is a 2-fold covering projection.

We now have a commutative diagram

R(M rel T ) −−−−→ R(M,T ) −−−−→ R(T )
y

y
yj

Diff(M rel T ) −−−−→ Diff(M,T ) −−−−→ Diff0(T )

whose rows are fibrations and vertical maps are inclusions. The two com-
ponents of Diff(M rel T ) are contractible, using Theorem 3.1, so the first
vertical arrow is a homotopy equivalence. To complete the proof, it suffices
to check that the third vertical arrow j is a homotopy equivalence.

Note first that R(T ) is homeomorphic to O(2)×O(2)×ΩSO(2), compati-
bly with our homeomorphism from R(M,T ) to O(2)×(C2×O(2))×ΩSO(2).
A diffeomorphism of T lies in Diff0(T ) exactly when it preserves the circles
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{t}×(D2
+∩D

2
−
) up to isotopy. These are exactly the diffeomorphisms isotopic

to elements of R(T ), so j is surjective on path components. Since elements
in different path components of R(T ) induce distinct outer automorphisms
of π1(T ), j is injective on path components. The composition of inclusions
SO(2)×SO(2) → r(T ) → diff(T ) is a well-known homotopy equivalence (see
for example A. Gramain [9]). The components of Ω SO(2) are contractible,
so the inclusion SO(2) × SO(2) → r(T ) is a homotopy equivalence as well.
Therefore r(T ) → diff(T ) is a homotopy equivalence, and it follows that j
is a homotopy equivalence on every path component of R(T ). �

Proof of Theorem 2. By Proposition 4.1, we may use Σ = T as our genus-1
Heegaard surface.

We have a commutative diagram whose vertical arrows are inclusions:

R(M,T ) −−−−→ R(M) −−−−→ R(M)/R(M,T )
y

y
y

Diff(M,T ) −−−−→ Diff(M) −−−−→ Diff(M)/Diff(M,T )

By Corollary 2.3, the bottom row is a fibration. We claim that the top row is
also a fibration. Since R(M) acts transitively on R(M)/R(M,T ), it suffices
to construct a local R(M) cross-section at the coset 1M R(M,T ).

We will writeX for S1×{±N}, a union of two circles inM . SinceR(M,T )
is exactly the subgroup of R(M) that leaves X invariant, the image r(X)
of X under a coset rR(M,T ) is well-defined, and rR(M,T ) = sR(M,T ) if
and only if r(X) = s(X).

For w ∈ S2 − {−N}, let ρw ∈ SO(3) be the unique rotation with axis
the cross product w × N that rotates w to N , and let ρN be the identity
rotation. Now let U be the open set in R(M)/R(M,T ) consisting of the
elements rR(M,T ) such that r(X) ∩ T = ∅. When rR(M,T ) ∈ U , r(X) is
contained in either the interior of S1 ×D2

+ or the interior of S1 ×D2
−
, and

r(X) meets each {t} ×D2
+ in a single point.

To define χ : U → R(M), let rR(M,T ) ∈ U , r = (f, g, γ). For each t ∈ S1,
put wt = r(X)∩({t}×D2

+), g0 = ρw0
, and δ(t) = ρg0(wt) (note that g0(wt) 6=

−N , since this would say that wt = ρ−1
w0

(−N) = −ρ−1
w0

(N) = −w0 ∈
M − (S1 ×D2

+)). Since δ(0) = ρg0(w0) = ρN = 1S2 , δ ∈ ΩSO(3) and we can

define χ(r) = (1, g0, δ)
−1. To verify that χ is a local cross-section, we have

χ(r)−1(t, wt) = (1, g0, δ)(t, wt) = (t, δ(t)(g0(wt))) = (t, ρg0(wt)(g0(wt))) =

(t,N), so χ(r)−1r ∈ R(M,T ). That is, χ(r)(1Mr(M,T )) = rR(M,T ), com-
pleting the proof of the claim.

By Theorem 4.2 and Proposition 4.3, the first and second vertical ar-
rows of the diagram are homotopy equivalences. Therefore the third is a
(weak) homotopy equivalence. To complete the proof, we will construct a
homeomorphism φ : R(M)/R(M,T ) → LS2/〈α〉.

Define φ(rR(M,T )) to be the element represented by the loop γ defined
γ(t) = projS2 r(t,N). Note that although projS2 r(t,N) is not well-defined
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on cosets as an element of LS2, it is well-defined in LS2/〈α〉, and clearly φ
is continuous. Injectivity of φ follows using the fact that R(M,T ) is exactly
the subgroup of R(M) that preserves S1 × {±N}.

For surjectivity, it suffices to show that if τ : S1 → S2 is a smooth loop,
then there exists rτ ∈ R(M) such that rτ (t, τ(t)) = (t,N), since then we
have φ(r−1

τ R(M,T )) = τ . To show rτ exists, we will apply a sequence of
elements of R(M) whose composition moves each (t, τ(t)) to (t,N).

First, there is an element r = (1, g, 1) ∈ R(M) such that that r(0, τ(0)) =
(0, N), so we may assume that τ(0) = N . Next, there exist 0 < ǫ < 1/2
and an element of the form r = (1, 1, γ) such that r(t, τ(t)) = (t,N) for
t ∈ [−ǫ, ǫ] ⊂ S1; for t ∈ [−ǫ, ǫ], r(t, x) = (t, ρτ(t)(x)), where ρw is as defined
earlier in the proof where we were constructing a local R(M) cross-section for
R(M) → R(M)/R(M,T ). So we may assume that τ(t) = N for t ∈ [−ǫ, ǫ].

Regard τ as a path I → S1 → S2 = SO(3)/SO(2). By the homotopy
lifting property, τ lifts to a path δ : I → SO(3) with δ(0) = 1SO(3) and
δ(t)(N) = τ(t). In particular, δ(t)(N) = N for t ∈ [0, ǫ] ∪ [1 − ǫ, 1] so
δ(t) ∈ SO(2) for these t. Changing δ(t) by a smooth isotopy supported on
[0, ǫ/2]∪[1−ǫ/2, 1], we may assume that δ(t) = 1S2 for t ∈ [0, ǫ/2]∪[1−ǫ/2, 1].
Consequently, δ defines an element δ : S1 → SO(3) of the smooth loop space
ΩSO(3). Putting r(t, x) = (t, δ(t)(x)), we have φ(rR(M,T ))(t) = δ(t)(N) =
τ(t). �

5. The irreducible case

In this section, we will prove Corollaries 1 and 2. For the manifolds in
Corollary 1, the center Z(π1(M)) is Zk where k = 3 when M is the 3-torus
and k is 0 or 1 otherwise. Moreover, diff(M) ≃ (S1)k; for Haken manifolds
this is Theorem 3.1(ii) above, and for hyperbolic M , k = 0 and it is D.
Gabai’s result [8] that the components of Diff(M) are contractible. When
M is non-Haken and not hyperbolic, it is Seifert-fibered over a 2-orbifold O
of nonpositive (orbifold) Euler characteristic χorb(O). When χorb(O) < 0,

that is, when M has an S̃L(2,R) or H2 × S1 geometric structure (see [29]),
diff(M) ≃ (S1)k by [27]. When χorb(O) = 0, M may be Haken, including
all cases when M has a Euclidean geometric structure, or it may be a non-
Haken infranilmanifold, excluded by hypothesis. In all the non-excluded
cases, the isomorphism π1(diff(M)) → Z

k is given explicitly by taking the
trace at a basepoint of M of an isotopy from 1M to 1M that represents a
given element of π1(diff(M)).

Proof of Corollary 1. All Heegaard splittings of M have genus at least 2, so
we can apply Theorem 1. For i ≥ 2, Hi(M,Σ) ∼= πi(Diff(M)), which is 0
since diff(M) ≃ (S1)k, and there is an exact sequence

1 → π1(Diff(M)) → H1(M,Σ) → G(M,Σ) → 1 .

�
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We remark that in general, the exact sequence in Corollary 1 need not
split. Suppose that M fibers over S1 with fiber F and monodromy a dif-
feomorphism h : F → F of even order n, having at least two fixed points p
and q. Let Dp and Dq be disjoint h-invariant disks about p and q respec-
tively. Regard M as F × I/∼ where (x, 1) ∼ (h(x), 0). The diffeomorphisms

φ̃t : F ×R → F ×R defined by φ̃t(x, s) = (x, s+nt) induce diffeomorphisms
φt : M → M that are an isotopy from 1M to 1M with trace a primitive ele-
ment of Z(π1(M)). Now, let V be F × [0, 1/2] −Dq × [0, 1/2]∪Dp× [1/2, 1]

and W be F × [1/2, 1] −Dp × [1/2, 1]∪Dq×[0, 1/2]. These form a Heegaard
splitting of M such that φr/n(V ) = V for each integer r with 1 ≤ r ≤ n. The
loop sending t to φt/n for 0 ≤ t ≤ 1 represents an element γ of H1(M,Σ)
such that γn is a generator σ of Z(π1(M)) ∼= Z. If the exact sequence splits,
then H1(M,Σ) is a semidirect product Z⋊G(M,Σ). This maps surjectively
onto Z /2 × G(M,Σ), and (σ, 1) would be an even power in this quotient,
which is impossible.

Proof of Corollary 2. All splittings of reducible 3-manifolds have distance
d(M,Σ) = 0, and by J. Hempel [17] and A. Thompson [32]), d(M,Σ) > 2
implies that M is atoroidal and not Seifert-fibered, so M is hyperbolic.
Corollary 1 shows that each component of H(M,Σ) is a K(G(M,Σ), 1)-
space. By [23], d(M,Σ) > 3 implies that Mod(M,Σ) → Mod(M) is injec-
tive, so G(M,Σ) is trivial. Therefore the path components of H(M,Σ) are
contractible.

D. Gabai [8] showed that the inclusion of the finite set of isometries into
Diff(M) is a homotopy equivalence, so Mod(M,Σ) and hence H0(M,Σ) are
finite. In fact, the second exact sequence of Theorem 1 also shows that the
number of components of H(M,Σ) equals |Mod(M)|/|Mod(M,Σ)|. When
d(M,Σ) > 2 genus(Σ), the main result of [23] shows that Mod(M,Σ) →
Mod(M) is also surjective, so H(M,Σ) is contractible. �

6. The isometries of elliptic 3-manifolds

An elliptic 3-manifold is a closed 3-manifold E that admits a Riemannian
metric of constant positive curvature; according to Perelman’s celebrated
work, this is equivalent to π1(E) being finite. We always assume that E is
equipped with a metric of constant curvature 1, so is the quotient of S3 by
a finite group of isometries acting freely.

The elliptic 3-manifolds were completely classified long ago (see [26] for
a discussion). The isometry groups of elliptic 3-manifolds have also been
known for a long time. A detailed calculation was given in [26]. We will
have to use some of the results and methodology of that work, so in the
remainder of this section we review the necessary parts and set up some
notation.

First we recall the beautiful description of SO(4) using quaternions. A
nice reference for this is [29]. Fix coordinates on S3 as {(z0, z1) | zi ∈
C, z0z0 + z1z1 = 1}. Its group structure as the unit quaternions can then
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be given by writing points in the form z = z0 + z1j, where j2 = −1 and
jzi = zij. The real part ℜ(z) is ℜ(z0), and the imaginary part ℑ(z) is
ℑ(z0) + z1j. The inverse of z is ℜ(z) − ℑ(z) = z0 − z1j. The usual inner
product on S3 is given by z · w = ℜ(zw−1).

The unique involution in S3 is −1, and it generates the center of S3. The
pure imaginary unit quaternions P form the 2-sphere of vectors orthogonal
to 1, and are exactly the elements of order 4. Consequently, P is invari-
ant under conjugation by elements of S3. Conjugation induces orthogonal
transformations on P , defining a canonical 2-fold covering homomorphism
S3 → SO(3) with kernel the center.

Left multiplication and right multiplication by elements of S3 are orthog-
onal transformations of S3, and there is a homomorphism F : S3 × S3 →
SO(4) defined by F (z, w)(q) = zqw−1. It is surjective and has kernel
{(1, 1), (−1,−1)}. The center of SO(4) has order 2, and is generated by
F (1,−1), the antipodal map of S3.

By S1 we will denote the subgroup of points in S3 with z1 = 0, that is,
all z0 ∈ S1 ⊂ C. Let ξk = exp(2πi/k), which generates a cyclic subgroup
Ck ⊂ S1. The elements S1 ∪ S1j form a subgroup O(2)∗ ⊂ S3, which
is exactly the normalizer of S1 and of the Ck with k > 2. It is also the
preimage in S3 of the orthogonal group O(2) ⊂ SO(3), under the 2-fold
covering S3 → SO(3).

When H1 and H2 are groups, each containing −1 as a central invo-
lution, the quotient (H1 × H2)/〈(−1,−1)〉 is denoted by H1 ×̃ H2. In
particular, SO(4) itself is S3 ×̃ S3, and contains the subgroups S1 ×̃ S3,
O(2)∗ ×̃ O(2)∗, and S1 ×̃ S1. The latter is isomorphic to S1 × S1, but it is
sometimes useful to distinguish between them. Finally, Dih(S1 × S1) is the
semidirect product (S1 × S1) ⋊ C2, where C2 acts by complex conjugation
in both factors.

There are 2-fold covering homomorphisms

O(2)∗ ×O(2)∗ → O(2)∗ ×̃ O(2)∗ → O(2)×O(2) → O(2) ×̃ O(2) .

Each of these groups is diffeomorphic to four disjoint copies of the torus, but
they are pairwise nonisomorphic, as can be seen by examining their subsets
of order 2 elements. Similarly, S1 × S3 and S1 ×̃ S3 are diffeomorphic, but
nonisomorphic.

The method used in [26] to calculate Isom(E) is straightforward. Let
G = π1(E) imbedded as a subgroup of SO(4) so that S3/G = E. An ele-
ment F (z, w) induces an isometry on E exactly when it lies in the normal-
izer Norm(G) of G in O(4), and this gives an isomorphism Norm(G)/G ∼=
Isom(E). So for each G, one just needs to calculate Norm(G) and work out
the quotient group Norm(G)/G.

For convenient reference, we include two tables from [26]. Table 1 gives
the isometry groups of the elliptic 3-manifolds with non-cyclic fundamental
group. The first column shows the fundamental group of E, where Cm

denotes a cyclic group of orderm, andD∗

4m, T ∗

24, O
∗

48, and I∗120 are the binary
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π1(E) E Isom(E) I(E)

Q8 = D∗

8
quaternionic SO(3)× S3 S3

Q8 × Cn quaternionic O(2)× S3 C2 × S3

D∗

4m
, m > 2 prism SO(3)× C2 C2

D∗

4m × Cn, m > 2 prism O(2)× C2 C2 × C2

index 2 diagonal prism O(2)× C2 C2 × C2

T ∗

24
tetrahedral SO(3)× C2 C2

T ∗

24
× Cn tetrahedral O(2)× C2 C2 × C2

index 3 diagonal tetrahedral O(2) C2

O∗

48
octahedral SO(3) {1}

O∗

48
× Cn octahedral O(2) C2

I∗
120

icosahedral SO(3) {1}

I∗120 × Cn icosahedral O(2) C2

Table 1. The isometry group Isom(E) and its group of path
components I(E) for the elliptic E with π1(E) not cyclic.

dihedral, tetrahedral, octahedral, and icosahedral groups of the indicated
orders. The groups called index 2 and index 3 diagonal are certain subgroups
of D∗

4m×Cn and T ∗

24×Cn respectively. Table 2 gives the isometry groups of
the elliptics with cyclic fundamental group. These are the 3-sphere L(1, 0),
real projective space L(2, 1), and the lens spaces L(m, q) with m ≥ 3. Both
tables give the full isometry group Isom(E), and the group I(E) of path
components of Isom(E).

In S3 there is a standard torus T = {z0+ z1j | |z0| = |z1|}. It bounds two
solid tori, V and W , where |z0| ≤ |z1| and |z0| ≥ |z1| respectively. In our
work, certain isometries that preserve T will be useful.

(1) α = F (1,−1), the antipodal map. It preserves each of V and W .
(2) ρ : z0 + z1j 7→ z0 + z1j. It is an orientation-reversing involution that

preserves each of V and W .
(3) τ = F (j, j) : z0 + z1j 7→ z0 + z1j. It is an involution that restricts to

a hyperelliptic involution on each of V and W .
(4) σ+ = F (i, ij) : z0 + z1j 7→ z1 + z0j. It is an involution that inter-

changes V and W .
(5) σ− : z0 + z1j 7→ z1 + z0j. It is an orientation-reversing isometry of

order 4 that interchanges V and W .

The following relations among these isometries are easily checked:

(1) σ2
−
= τ .
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m, q Isom(L(m, q)) I(L(m, q))

m = 1 (L(1, 0) = S3) O(4) C2

m = 2 (L(2, 1) = RP
3) (SO(3)× SO(3))⋊ C2 C2

m > 2, m odd, q = 1 O(2)∗ ×̃ S3 C2

m > 2, m even, q = 1 O(2)× SO(3) C2

m > 2, 1 < q < m/2, q2 6≡ ±1 mod m Dih(S1 × S1) C2

m > 2, 1 < q < m/2, q2 ≡ −1 mod m (S1 ×̃ S1)⋊ C4 C4

m > 2, 1 < q < m/2, q2 ≡ 1 mod m,
gcd(m, q + 1) gcd(m, q − 1) = m

O(2) ×̃ O(2) C2 × C2

m > 2, 1 < q < m/2, q2 ≡ 1 mod m,
gcd(m, q + 1) gcd(m, q − 1) = 2m

O(2)×O(2) C2 × C2

Table 2. Isometry groups of elliptic manifolds L(m, q) with
cyclic fundamental group.

(2) σ+τ = τσ+, and ρτ = τρ.
(3) (ρσ+)

2 = τ , so ρ and σ+ generate a dihedral group of order 8.
(4) σ+σ−σ+ = σ−1

−
, so σ+ and σ− generate a dihedral group of order 8.

7. The Smale Conjecture

The original Smale Conjecture, proven by A. Hatcher [15], asserts that
the inclusion Isom(S3) → Diff(S3) from the isometry group to the diffeo-
morphism group is a homotopy equivalence. The Generalized Smale Con-
jecture (henceforth just called the Smale Conjecture) asserts this for elliptic
3-manifolds.

N. Ivanov [21, 22] proved the Smale Conjecture for most of the elliptic
3-manifolds that contain one-sided Klein bottles, specifically:

(i) The lens spaces L(4n, 2n − 1), n ≥ 2
(ii) The quaternionic and prism manifolds for which π1(E) has a non-

trivial cyclic direct factor.

The preprint [18] gives proofs of the Smale Conjecture for all lens spaces
L(m, q) with m > 2, and for all quaternionic and prism manifolds. Although
the Smale Conjecture seems likely to hold for all elliptic 3-manifolds, no
claim is currently asserted for the remaining cases. Perelman’s methods do
not seem to apply, at least in their current form (see [18, Section 1.4]).
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8. Heegaard splittings of elliptic 3-manifolds: the genus-0
case

In this section we will prove Theorem 3(1), that is, the case when M = S3

and Σ has genus 0.
Recall that P ⊂ S3 is the 2-sphere orthogonal to 1. The stabilizer

Isom+(S
3, P ) of P in Isom+(S

3) is exactly the stabilizer of the pair {±1},
which is the subgroup O(3) ⊂ SO(4).

Lemma 8.1. The inclusion Isom(S3, P ) → Diff(S3, P ) is a homotopy equiv-
alence.

Proof. Consider the diagram

Isom+(S
3 rel P ) −−−−→ Isom+(S

3, P ) −−−−→ Isom(P )
y

y
y

Diff+(S
3 rel P ) −−−−→ Diff+(S

3, P ) −−−−→ Diff(P )

in which the vertical maps are inclusions, and the rows are fibrations, the
top row since it is a homomorphism of compact Lie groups, and the bottom
row by Lemma 2.6. The right vertical arrow is a homotopy equivalence, by
a theorem of S. Smale [30]. The left vertical arrow is a homotopy equiv-
alence, since the Smale Conjecture for S3 implies that Diff(D3 rel ∂D3) is
contractible. Therefore Isom+(S

3, P ) → Diff+(S
3, P ) is a homotopy equiva-

lence. Since both Isom(S3, P ) and Diff(S3, P ) contain orientation-reversing
elements, it follows that Isom(S3, P ) → Diff(S3, P ) is a homotopy equiva-
lence. �

Proof of Theorem 3(1). Since all 2-spheres (smoothly) imbedded in S3 are
isotopic, we may take Σ to be P . Consider the diagram

Isom(S3, P ) −−−−→ Isom(S3) −−−−→ Isom(S3)/ Isom(S3, P )
y

y
y

Diff(S3, P ) −−−−→ Diff(S3) −−−−→ Diff(S3)/Diff(S3, P )

in which the vertical maps are inclusions. The rows are fibrations, the top
row since it is a homomorphism of compact Lie groups, and the bottom row
by Corollary 2.3. We have just seen that the left vertical arrow is a homotopy
equivalence. The middle vertical arrow is the original Smale Conjecture, so
we have

H(S3, P ) ≃ Isom(S3)/ Isom(S3, P )

≃ Isom+(S
3)/ Isom+(S

3, P ) = SO(4)/O(3) = RP
3 ,

the latter equality since O(3) is the stabilizer of {±1} under the transitive
action of SO(4) on pairs of antipodal points in S3. �
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9. Lens spaces

Our work on genus-1 splittings will require some information about lens
spaces, which we recall in this section. Let L be the lens space L(m, q),
with m ≥ 2 and q selected so that 1 ≤ q ≤ m/2. We regard L as S3/GL,
where GL ⊂ S1 ×̃ S1 ⊂ SO(4) is the cyclic subgroup of order m generated

by γm,q = F (ξq+1
2m , ξq−1

2m ).
For each n ≥ 1, L has a Heegaard surface Σn of genus n, and by a theorem

of F. Bonahon [2] for n = 1 and Bonahon and J.-P. Otal [3] for n ≥ 2, it
is the unique Heegaard surface of this genus up to isotopy. Consequently,
H(L,Σn) is path-connected.

The standard torus {z0 + z1j | |z0| = |z1|} ⊂ S3 is invariant under the
action of GL, and its image under S3 → S3/GL = L is a Heegaard torus in
L. We denote the image by T , and the solid tori in L bounded by T by V
and W .

In [2], F. Bonahon proved that every diffeomorphism of L preserves T
up to isotopy, and used this to calculate the mapping class groups of lens
spaces. To state the results, we first recall some notation from [2].

(1) For all (m, q), τγm,qτ = γ−1
m,q, so τ induces an orientation-preserving

involution, also denoted by τ , which restricts to the hyperelliptic
involution on each of V and W .

(2) When q2 = 1 mod m, we have σ+γm,qσ+ = γqm,q, so σ+ induces
an orientation-preserving involution, also denoted by σ+, that inter-
changes V and W .

(3) When q2 = −1 mod m, we have σ−γm,qσ
−1
−

= γ−q
m,q, so σ− induces an

orientation-reversing isometry, also denoted by σ−, that interchanges
V and W .

Theorem 9.1 (F. Bonahon). The groups Mod(L) are as follows:

(1) Mod(L(2, 1)) = C2 generated by σ−.
(2) If m > 2 and q = 1, then Mod(L) = C2 generated by τ .
(3) If m > 2 and q2 = 1 mod m but q 6= 1, then Mod(L) = C2 × C2

generated by τ and σ+.
(4) If m > 2 and q2 = −1 mod m, then Mod(L) = C4 generated by σ−.
(5) If m > 2 and q2 6= ±1 mod m, then Mod(L) = C2 generated by τ .

Note that Theorem 9.1 implies the well-known fact that L(m, q) admits an
orientation-reversing diffeomorphism if and only if q2 ≡ −1 mod m. Since
each of the elements τ , σ+, and σ− preserves T , Theorem 9.1 also implies

Corollary 9.2. Mod(L, T ) → Mod(L) is surjective.

It is not difficult to compute G(L, T ), and then Mod(L, T ) using the exact
sequence 1 → G(L, T ) → Mod(L, T ) → Mod(L) → 1. Since the proofs are
not difficult and we will not need the results, we simply record them here:

Proposition 9.3. (1) If q 6= 1, then G(L, T ) = {1}.
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(2) If m > 2 and q = 1, then G(L, T ) = C2, generated by σ+, and
G0(L, T ) = {1}.

(3) G(L(2, 1), T ) = C2×C2, generated by σ+ and τ , and G0(L(2, 1), T ) =
C2, generated by τ .

Proposition 9.4. (1) If q 6= 1, then Mod(L, T ) → Mod(L) is an iso-
morphism.

(2) If m > 2 and q = 1, then Mod(L, T ) = C2 × C2, generated by σ+
and τ .

(3) Mod(L(2, 1), T ) = D8, the dihedral group of order 8 generated by σ+
and σ−.

10. Heegaard splittings of elliptic 3-manifolds: the genus-1
case

In this section we will prove Theorem 3(2) and the (a) statements in all
three cases of Theorem 4. We will retain the notation of Section 9, so that
L is the lens space L(m, q) with m ≥ 2 and 1 ≤ q ≤ m/2, except that
we now allow L = L(1, 0), the 3-sphere. As in Section 9, L is regarded
as S3/GL, where GL ⊂ S1 ×̃ S1 ⊂ SO(4) is the subgroup generated by

γm,q = F (ξq+1
2m , ξq−1

2m ). In particular, γ1,0 = F (−1,−1) = 1SO(4), and γ2,1 =
F (−1, 1) = α, the antipodal map.

Recall that Isom(L) = Norm(GL)/GL, where Norm(GL) is the normalizer
of GL in O(4). Consequently, an element F (z, w) in Norm(GL) ∩ SO(4)
induces an isometry on L, which we denote by f(z, w).

We will need to know the groups Norm(GL)∩SO(4), which we denote by
Norm+(GL). In the following lemma, Dih(S1 ×̃ S1) denotes the subgroup
of index 2 in O(2)∗ ×̃ O(2)∗ generated by S1 ×̃ S1 and the involution τ =
F (j, j), which acts by inversion on elements of S1 ×̃ S1. From [26] we have
the following information.

Lemma 10.1. (i) For m ≤ 2, Norm+(GL) = SO(4).
(ii) For m > 2 and q = 1, Norm+(GL) = S3 ×̃ O(2)∗.
(iii) For m > 2, q > 1 and q2 ≡ 1 mod m, Norm+(GL) = O(2)∗ ×̃ O(2)∗.
(iv) For m > 2 and q2 6≡ 1 mod m, Norm+(GL) = Dih(S1 ×̃ S1).

Proof. Part (i) is obvious. Part (ii) is found in Case III on p. 175 of [26],
and Part (iii) is found in Case VI on p. 176 of [26]. Part (iv) is found in
Cases IV and V on p. 175 of [26]. �

As in Section 9, T is the standard Heegaard torus for L. In particular, for
L = L(1, 0), T is {z0 + z1j | |z0| = |z1|}. We will need to know the groups
Isom+(L, T ).

Lemma 10.2. (1) isom(L, T ) = (S1 ×̃ S1)/GL

(2) When q2 ≡ 1 mod m, Isom+(L, T ) = (O(2)∗ ×̃ O(2)∗)/GL.
(3) When q2 6≡ 1 mod m, Isom+(L, T ) = Dih(S1 ×̃ S1)/GL.



THE SPACE OF HEEGAARD SPLITTINGS 19

Proof. Suppose first that L = L(1, 0) = S3. It is straightforward to check
that O(2)∗ ×̃ O(2)∗ ⊂ Isom+(S

3, T ). Suppose that F (z, w) ∈ Isom+(S
3, T ).

Now T is exactly the set of points equidistant from the two geodesics S1

and S1j, in fact these are exactly the most distant points from it. Since
F (z, w) preserves T , it must preserve S1 ∪ S1j. A quick check shows
that z, w ∈ O(2)∗ (starting with the case when F (z, w)(1), F (z, w)(i) ∈ S1

and F (z, w)(j), F (z, w)(ij) ∈ S1j, we compute that either (z, w) ∈ S1 × S1

or (z, w) ∈ S1j × S1j, while when F (z, w)(S1) = S1j, the previous case ap-
plies to F (z, w)F (1, j) showing that (z, w) ∈ S1×S1j or (z, w) ∈ S1j×S1).

In general, we have

Isom+(L, T ) = (Isom+(S
3, T ) ∩Norm(GL))/GL

= (O(2)∗ ×̃ O(2)∗ ∩Norm(GL))/GL .

From Lemma 10.1, O(2)∗ ×̃ O(2)∗∩Norm(GL) is O(2)∗ ×̃ O(2)∗ when q2 ≡
1 mod m and is Dih(S1 ×̃ S1) when q2 6≡ 1 mod m. This establishes state-
ments (2) and (3). The description of isom(L, T ) in (1) follows directly. �

Lemma 10.3. The inclusion Isom(L, T ) → Diff(L, T ) is a homotopy equiv-
alence.

Proof. From Theorem 9.1, L admits an orientation-reversing diffeomorphism
only when q2 ≡ −1 mod m, in which case σ− is an orientation-reversing
element of Isom(L, T ). That is, Diff(L, T ) contains orientation-reversing
elements if and only if Isom(L, T ) does. Therefore it suffices to prove that
the inclusion k : Isom+(L, T ) → Diff+(L, T ) is a homotopy equivalence.

We first check that k is injective on path components. By Lemma 10.2,
Isom+(L, T ) has either two or four components, represented by 1L, τ , and
when there are four, σ+ = f(i, ij) and σ+τ = f(ij,−i). Of these, only the
elements of isom(L, T ) preserve the sides and are isotopic to the identity on
T , so Isom+(L, T ) ∩ diff(L, T ) = isom(L, T ).

To see that k is surjective on path components, let f ∈ Diff+(L, T ). If
f interchanges the sides of T , then a well-known homology argument shows
that q2 ≡ 1 mod m. (Let µ and λ in H1(T ) be a meridian and longitude for
T ⊂ V such that mλ+ qµ is a meridian of T ⊂ W , and write h = f |T . For
h∗ : H1(T ) → H1(T ), h∗(µ) is a meridian for T ⊂ W , so h∗(µ) = ǫ(mλ+ qµ)
for ǫ either 1 or −1. Writing h∗(λ) = ǫ(aλ+ bµ), det(h∗) = aq −mb. Since
h interchanges the sides of T , ±µ = mh∗(λ)+ qh∗(µ), implying that a = −q
and hence det(h∗) = −q2 − mb. When f is orientation-preserving, h must
be orientation-reversing, giving q2 ≡ 1 mod m.) Since q2 ≡ 1 mod m, σ+
is an element of Isom+(L, T ), and composing it with f , we may assume
that f preserves the sides of T . Since f must then preserve the meridian
curves of both complementary tori up to isotopy, it is isotopic either to the
identity on both solid tori or to the hyperelliptic involution on both. In
the latter case, we may compose f with τ , an element of Isom+(L, T ), to
assume that f is isotopic to the identity on both sides and therefore lies in
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diff(L, T ). Therefore every path component of Diff(L, T ) contains elements
of Isom(L, T ).

From Lemma 10.2, isom(S3, T ) is a full S1×S1 subgroup of isometries in
diff(L, T ), so k is a homotopy equivalence on each path component. �

Proof of Theorem 3(2) and the (a) parts of Theorem 4. By a theorem of F.
Waldhausen [33] for m = 1 and F. Bonahon [2] for m ≥ 2, T is the unique
Heegaard torus of L up to isotopy. So we may take Σ1 = T .

Consider the commutative diagram

Isom(L, T ) −−−−→ Isom(L) −−−−→ Isom(L)/ Isom(L, T )
y

y
y

Diff(L, T ) −−−−→ Diff(L) −−−−→ Diff(L)/Diff(L, T ) .

whose vertical maps are inclusions. The rows are fibrations, the first since
Isom(L, T ) is a closed subgroup of the Lie group Isom(L), and the second by
Corollary 2.3. Since L is assumed to satisfy the Smale Conjecture, the middle
arrow is a homotopy equivalence. By Lemma 10.3, the first vertical arrow is
a homotopy equivalence, so we have H(L, T ) ≃ Isom(L)/ Isom(L, T ). Since
L has an orientation-reversing isometry only when when q2 ≡ −1 mod m,
in which case σ− ∈ Isom(L, T ) is an orientation-reversing isometry, we have

Isom(L)/ Isom(L, T ) = Isom+(L)/ Isom+(L, T )

= (Norm+(GL)/GL)/(O(2)∗ ×̃ O(2)∗ ∩Norm(GL))/GL

= Norm+(GL)/(O(2)∗ ×̃ O(2)∗ ∩Norm(GL)) .

Using Lemma 10.1, we can now calculate H(L, T ). When m ≤ 2,

H(L, T ) ≃ SO(4)/(O(2)∗ ×̃ O(2)∗) = (S3 ×̃ S3)/(O(2)∗ ×̃ O(2)∗)

= (S3 × S3)/(O(2)∗ ×O(2)∗) = S3/O(2)∗ × S3/O(2)∗ = RP
2 ×RP

2 .

When m > 2 and q2 = 1 mod m, we have

H(L, T ) ≃ (S3 ×̃ O(2)∗)/(O(2)∗ ×̃ O(2)∗)

= (S3 ×O(2)∗)/(O(2)∗ ×O(2)∗) = S3/O(2)∗ = RP
2 .

When m > 2 and q2 6= 1 mod m, we have

H(L, T ) ≃ (O(2)∗ ×̃ O(2)∗)/(O(2)∗ ×̃ O(2)∗) ,

a single point. �

11. Heegaard splittings of elliptic 3-manifolds: genus 2 and

higher

Proof of Theorem 3(3) and the (b) parts of Theorem 4. We continue to use
the notation of Section 10. By results of Waldhausen [33] when m = 1 and
Bonahon-Otal [3] for m ≥ 2, L has unique Heegaard surface for each genus
greater than 1, so H(L,Σ) is path-connected. Let Σn be a Heegaard surface
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of genus n ≥ 2. By Theorem 1, Hi(L,Σn) ∼= πi(Diff(L)), and there is an
exact sequence

1 → π1(Diff(L)) → H1(L,Σn) → G(L,Σn) → 1 .

Since we are assuing that L satisfies the Smale Conjecture, the groups
πi(Diff(L)) ∼= πi(Isom(L)) for i ≥ 1 can be found using Table 2.

Case I: q ≥ 2

For q ≥ 2, isom(L) is homeomorphic to S1 × S1, so Hi(L,Σn) = 0 for
i ≥ 2 and π1(Diff(L)) is Z×Z.

Case II: m > 2 and q = 1

In this case, isom(L) is homeomorphic to S1×S3 or to S1×SO(3) accord-
ing as m is odd or even. So Hi(L,Σn) = πi(S

3) for i ≥ 2, while π1(Diff(L))
is Z or Z×C2 according as m is odd or even.

Case III: L = L(2, 1)

In this case, isom(L) is homeomorphic to SO(3)× SO(3), so Hi(L,Σn) =
πi(S

3 × S3) for i ≥ 2 and π1(Diff(L)) is C2 × C2.

Case IV: L = L(1, 0)

In this case, isom(L) is SO(4), soHi(L,Σn) = πi(SO(4)) ∼= πi(S
3×S3) for

i ≥ 2 and π1(Diff(L)) is C2. To see that the exact sequence in Theorem 3(3)
does not split, observe that there is an isotopy Jt with J0 = 1S3 and J1 a
hyperelliptic involution on Σn; Jt rotates through an angle π around an axis
of symmetry of Σn. This defines an element of H1(S

3,Σn) whose square is
the generator of π1(Diff(S3)). A normal C2-subgroup is central, so if the
exact sequence split we would have H1(S

3,Σn) = π1(Diff(S3))× G(S3,Σn),
and the generator of π1(Diff(S3)) could not be a square. �

Proof of Theorem 5. Fix a Heegaard surface Σ in the elliptic 3-manifold E.
Since E is not S3 or a lens space, Σ has genus at least 2. By Theorem 1,
Hi(E,Σ) ∼= πi(Diff(E)) for i ≥ 2, and there is an exact sequence

1 → π1(Diff(E)) → H1(E,Σ) → G(E,Σ) → 1 .

SinceE is assumed to satisfy the Smale Conjecture, πi(Diff(M)) ∼= πi(Isom(E)).

Case I: π1(E) ∼= D∗

4m, or E is one of the three manifolds with fundamental
group either T ∗

24, O
∗

48, or I
∗

120.

Referring to Table 1, we see that isom(E) is homeomorphic to SO(3), so
Hi(E,Σ) = πi(S

3) for i ≥ 2 and π1(isom(E)) ∼= C2.

Case II: E is not one of the manifolds in Case I, that is, either π1(E) has a
nontrivial cyclic direct factor, or π1(E) is a diagonal subgroup of index 2 in
D∗

4m × Cn or of index 3 in T ∗

48 × Cn.

Again from Table 1, isom(E) is homeomorphic to S1, so Hi(E,Σ) = 0 for
i ≥ 2 and π1(isom(E)) is Z. �
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For the manifolds in Theorem 5, M. Boileau and J.-P. Otal [1] have proven
that there is a unique genus-2 Heegaard splitting up to isotopy, so in that
case H(L,Σ) is known to be connected.
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