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ORTHOGONALLY SPHERICAL OBJECTS AND SPHERICAL FIBRATIONS

RINA ANNO AND TIMOTHY LOGVINENKO

ABSTRACT. We introduce a relative version of the spherical objects of Seidel and Thomas [STO01]. Define an
object E in the derived category D(Z x X)) to be spherical over Z if the corresponding functor from D(Z) to
D(X) gives rise to autoequivalences of D(Z) and D(X) in a certain natural way. Most known examples come
from subschemes of X fibred over Z. This categorifies to the notion of an object of D(Z x X) orthogonal
over Z. We prove that such an object is spherical over Z if and only if it possesses certain cohomological
properties similar to those in the original definition of a spherical object. We then interpret this geometrically
in the case when our objects are actual flat fibrations in X over Z.

1. INTRODUCTION

Let X be a smooth projective variety over C and D(X) be the bounded derived category of coherent
sheaves on X. Following certain developments in mirror symmetry Seidel and Thomas introduced in [STO01]
the notion of a spherical object:

Definition 1.1 ([STO01]). An object E of D(X) is spherical if:

; (® if i =0 ordim X
1) Hom E F) = ’ ’
) mD(X)( ) {0, otherwise

(2) E~ F®wyx where wx is the canonical bundle of X.

The motivating idea came from considering Lagrangian spheres on a symplectic manifold. Given such a
sphere one can associate to it a symplectic automorphism called the Dehn twist. Correspondingly:

Theorem ([STO01)). Let E € D(X). The twist functor Tg is a cone we can associate to the natural transfor-
mation E ®@c RHomy (E, —) eval, Idp(xy. If E is spherical, then Tg is an autoequivalence of D(X).

Spherical twists can be used to construct braid group actions on D(X), as was indeed the main concern of
[STO1]. They also deserve to be studied in their own right as some of the simplest examples of autoequivalences
of D(X) which are purely derived and do not come from autoequivalences of the underlying abelian category
Coh(X). In fact, on smooth toric surfaces or on surfaces of general type whose canonical model has at
worst A,-singularities the whole of Aut D(X) is generated by spherical twists, lifts from Aut Coh(X) and the
shift ([IU05], [BP10]). In more complicated cases spherical twists are still an essential tool in studying the
autoequivalences of D(X) and stability conditions on it ([Bri08], [Bri09], [Bri06]).

In this paper we study a relative version of the construction above which deals not with a single object but
with a family of objects in D(X) over some base Z. A geometric picture to keep in mind is a subvariety D of
X flatly fibred over Z. Even when the structure sheaf of D is not itself spherical in sense of [ST01] one may
still produce an autoequivalence of D(X) by exploiting the extra fibration structure which D possesses. We
characterize the families of objects of D(X) over Z for which this is possible and we do it terms of applicable
cohomological criteria similar to Definition 1.1 above. Our study is a self-contained exercise in derived
categories of coherent sheaves and doesn’t use mirror symmetry or assume any knowledge of it. One should
mention though that the original examples of these family twists were inspired by Kontsevich’s proposal that
the autoequivalences of D(X) should correspond to loops in the moduli space of complex structures on its
mirror, cf. [Hor99] (especially §4.1), [Hor05], [Sze01], [Sze04]. Maybe in the future our results could be used
to construct further examples of this correspondence in a more general setting.

Consider an object E in the derived category D(Z x X) of the product of Z and X. We can view E as a
family of objects in D(X) parametrised by Z by considering the fibres of E over points of Z to be the derived
pullbacks of F to the corresponding fibres of X x Z over Z:

X —Lzxx VpeZ BE,=iy E
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On the other hand, each object E € D(Z x X) defines naturally a functor ®5: D(Z) — D(X) called the
Fourier-Mukai transform with kernel E (cf. [Huy06]) which sends each point sheaf O, on Z to the fibre
E, € D(X). The interplay between these two points of view, moduli-theoretic and functorial, led to a string
of celebrated results by Mukai, Bondal and Orlov, Bridgeland and others.

When Z is the point scheme Spec C the above formalism tells us to view an object E € D(X) as a functor
O = F ®c (—) from D(Vect) to D(X). Then the functor E ®c RHomx (F, —) is the composition of &g
with its right adjoint @gdj and the definition of the twist functor T given above amounts simply to T being
a cone of the adjunction co-unit

(1.1) PP — Idp(x) -

There is a subtlety involved here: taking cones, infamously, is not functorial in D(X), so the cone of a
morphism between two functors is not a priori well defined. However in [AL10] it is shown that for very
general Z, X and F € D(Z x X) we can represent the functors in (1.1) by Fourier-Mukai kernels and then
represent the adjunction co-unit (1.1) by a natural morphism p between these kernels. We can therefore define
the twist functor Tr as the Fourier-Mukai transform whose kernel is the cone of p and pose the following
general problem:

Problem: Describe the objects E in D(Z x X)) for which the twist Tg is an autoequivalence of D(X).

A partial answer was provided by Horja in [Hor05] for smooth Z and X. He considers only those objects E
of D(Z x X)) which come from the derived category of a smooth subscheme of X flatly fibred over Z. For these
he gives a cohomological criterion sufficient for the twist Tg to be an autoequivalence of D(X). In [Ann07]
Anno takes a different approach: she abstracts out the properties of the functors @5 defined by spherical
objects of [ST01] and [Hor05] which are exploited in their proofs that the twists Tg are autoequivalences. In
all these cases not only T is an autoequivalence, but this autoequivalence identifies naturally the left and
right adjoints of ®z. And if this is true, then the same is true of the co-twist Fg and vice versa, where the
co-twist F'g is the cone of the adjunction unit Idp(z) — @gdj ® . In other words, one can show very generally
that for a functor S between two triangulated categories:

(1.2) {Fs is an autoequivalence Ts is an autoequivalence }

Sredi o FgSledl] } Hand only 1 { radi ~ gladiTg 1]
The functors which possess these equivalent properties are called spherical functors. We thereby define:

Definition (Definition 3.4). An object E € D(Z x X) is spherical over Z if the corresponding Fourier—Mukai
transform ®g: D(Z) — D(X) is a spherical functor, in other words:

(1) The co-twist Fg is an autoequivalence of D(Z).

(2) The natural map ®le¥e (2:36), FE<I>'Edj[1] is an isomorphism of functors.

When Z = Spec C this is equivalent to Definition 1.1 above (Example 3.5). It also explains why most of
the examples over a non-trivial base Z came from subschemes of X fibred over Z. These are the cases when
the autoequivalence Fg is of particularly nice form. Indeed, for such fibrations the Fourier-Mukai kernel of
Fg must be supported on the diagonal A of Z x Z (Lemma 3.9), and an autoequivalence of D(Z) is supported
on A if and only if it is simply tensoring by some shifted line bundle Lg in D(Z) (Prop. 3.7). This makes the
Fourier—Mukai kernel of <I>rbildj d g, a certain R Hom complex, into an extension of A,Lg by A,Ox. Pointwise,
this turns into a familiar condition that a certain R Hom complex is C @ C[d] for some d € Z.

In Section 3 of the present paper we show that this argument can be made very general. Let Z and X
be arbitrary schemes of finite type over an algebraically closed field k£ of characteristic 0. No assumptions
of smoothness or projectivity are made. Instead we make two assumptions on the object E € D(Z x X):
E is perfect (locally quasi-isomorphic to a bounded complex of free sheaves) and the support of E is proper
over Z and over X. These are necessary for @z to have adjoints which are again Fourier—-Mukai transforms.
We then categorify the notion of “a subscheme of X fibred over Z”. The graphs of such subschemes in
Z x X are characterised by the property that their fibres over points of Z are mutually disjoint in X, and in
derived categories the notion of disjointness is expressed by orthogonality - vanishing of all Hom’s between
two objects, so the objects we want are the objects in D(Z x X) which are orthogonal over Z, i.e. their fibres
over points of Z are mutually orthogonal in D(X). In Lemma 3.9 we show that E is orthogonal over Z if and
only if the support of the Fourier—Mukai kernel of the co-twist Fg is contained in the diagonal A of Z x Z.
Hence Fg is an autoequivalence if and only if it is the functor of tensoring by some invertible (locally a shifted
line bundle) object of D(Z). We describe this object independently as the cone L of a natural morphism

(1.3) Oy Definition 3.6, mzx RHomzx x (mx«7%E, E) Tz, Tx are projections Z x X — Z, X
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and show that, conversely, if L is invertible then Fg ~ (=) ® Lg (Prop. 3.7). To check whether Lg is
invertible we restrict (1.3) to points of Z, whence we obtain our main theorem.

Theorem (Theorem 3.1). Let Z and X be two separable schemes of finite type over k. Let E be a perfect
object of D(Z x X) orthogonal over Z and proper over Z and X. Then E is spherical over Z if and only if:

(1) For every closed point p € Z such that the fibre E, is not zero we have
RHomx (mx.+E, E,) =k®k[d,] for some d, € Z.
(2) The canonical morphism o (see Definition 3.10) is an isomorphism:
EY @y (0x) % EY @7y(LE)

Interestingly, a similar statement can be made for kernels of Fourier-Mukai equivalences (Example 3.3).

The integer d, in (1) is constant on every connected component of Z. The n-spherical objects in the
literature are those with d, = —n for all p € Z. We do regret the sign difference. For any Gorenstein point
(z,z) in the support of E we have d, , = —(dim, X — dim, Z) (Prop. 3.11). The canonical morphism « in
(2) is the morphism of Fourier—Mukai kernels which represents the natural morphism pledi — Frprodi [1] in
the definition of a spherical functor. Due to this indirect definition it may be very difficult, even in simple
cases, to write o down explicitly and check that it is an isomorphism. We deal with this in §3.4 where we
show that if d,, < 0 for every p € Z (or, more generally, if a certain cohomology vanishes) the condition (2)
can be relaxed simply to the two objects being isomorphic via any isomorphism (Cor. 3.14).

In Section 4 we reconsider the case of flat fibrations. Let £&: D — X be a subscheme with 7: D — Z
a flat and surjective map. We apply the results of Section 3 to Op in D(Z x X). One of our goals is to
understand what geometric properties a spherical fibration must possess. The two technical assumptions on
the object E in Section 3 translate to the assumptions of the fibres of D over Z being proper and of Op being
a perfect object of D(Z x X). We first give the most general analogue of Theorem 3.1 which applies to any
flat fibration D with the above properties (Theorem 4.1). Then we improve on it for the case when either
the fibres of D are Gorenstein schemes or ¢ is a Gorenstein map, noting in particular that for any spherical
D these two conditions are, in fact, equivalent (Prop. 4.8). Finally, we treat the case when the immersion
¢ is regular, i.e. locally on X the ideal of D is generated by a regular sequence. The key property for us is
that the cohomology sheaves of £*£,0p are then the vector bundles AVAY where A is the normal sheaf of D
in X. The object £*¢,Op is the key to computing the Ext complex in the condition (1) of Theorem 3.1 and
therefore (1) can be deduced via a spectral sequence argument from fibre-wise vanishing of the cohomology
of ANJA/. In fact, the reverse implication can also be obtained if the complex £*¢,Op actually splits up as
a direct sum of AYAV[j]. In [AC10] Arinkin and Caldararu had shown that for a smooth X this happens
if and only if N extends to the first infinitesimal neighborhood of D in X, e.g. when D is carved out by
a section of a vector bundle, or when D is the fixed locus of a finite group action, or when £ can be split.
For any regular immersion £ we say that it is Arinkin-Caldararu if £*£,Op splits up as the direct sum of its
cohomology sheaves. Then:

Theorem (Theorem 4.2). Let D be a regularly immersed flat and perfect fibration in X over Z with proper
fibres. Let N be the normal sheaf of D in X. Then D is spherical if for any closed point p € Z the fibre D,
is a connected Gorenstein scheme and

(1) Hp (MNlp,) =0 unless i = j =0 ori=dimD, , j = codimx D.

(2) (wp/x)|p, ~wp, where wp, is the dualizing sheaf of D), and wp/x = NCUIx DN,
Conversely, if D is spherical, then each fibre D, is a connected Gorenstein scheme and (2) holds. And if £ is
an Arinkin-Caldararu immersion, then (1) also holds.

The ‘If” implication here lifts the result in [Hor05] to our more general setting and, in fact, the same
argument works for any object in D(D) and not just Op. The converse implication is new. Note that it
implies that for any spherical fibration D we must have H,i:,p (Op,) = 0 for all i > 0, which agrees with the
fact that in the known examples the fibres of spherical fibrations are Fano varieties.

Section 2 contains the preliminaries necessary for all of the above. In §2.2 we work out explicitly the
morphisms of kernels which underly the left and right adjunction units of a general Fourier—Mukai functor.
We need this to compute Fg since co-twist functors need to be defined as the cones of adjunction units. We
get this result for free from the similar result for adjunction co-units in [AL10] using the Grothendieck duality
arguments summarized in §2.1. We then review the formalism of spherical functors in Section §2.3.

Finally, in the Appendix we give an example of an orthogonally spherical object which is not a spherical
fibration and which is a genuine complex and not just a shifted sheaf. It arises naturally when constructing
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an affine braid group action on (n,n)-fibre of the Grothendieck-Springer resolution of the nilpotent cone of
5lo,(C). The authors hope that the tools developed in this paper will allow to construct more examples
of orthogonally spherical objects which aren’t sheaves and to study explicitly the derived autoequivalences
which they induce.

Acknowledgements: We would like to thank Will Donovan, Miles Reid, and Richard Thomas for enlighten-
ing discussions in the course of this manuscript’s preparation. The second author did most of his work on this
paper at the University of Warwick and would like to thank it for being a helpful and stimulating research
environment.

2. PRELIMINARIES

Notation: Throughout the paper we define our schemes over the base field £ which is assumed to be an
algebraically closed field of characteristic 0. We also denote by Vect the category of finitely generated k-
modules, or in other words - the category of finite-dimensional vector spaces over k. Given a fibre product
X, x---x X, we denote by m;, the projection X7 x ---x X, — X, onto the i-th component, unless specifically
mentioned otherwise.

Let X be a scheme. We denote by Dg.(X), resp. D(X), the full subcategory of the derived category of
Ox-Mod consisting of complexes with quasi-coherent, resp. bounded and coherent, cohomology. Given an
object E in D(Ox-Mod) we denote by H'(E) the i-th cohomology sheaf of E and by EV its derived dual,
the object RHomx (E,Ox).

All the functors in this paper are presumed to be derived until proven otherwise.

We therefore omit all the usual R’s and L’s. An exception is made for the derived bi-functor R Hom x (—, —)
of the bi-functor Homx (—, —) which maps any A, B € Coh(X) to the space Homx (A, B) of the morphisms
from A to B in Coh(X). This was done to distinguish for any A, B € D(X) the complex RHomy (4, B) in
D(Vect) from the vector space Homp x)(A, B) which is the space of the morphisms from A to B in D(X).
Another exception was made for the derived functor R Hom x (—, —) of taking a sheaf of morphisms between
two objects. This was done so that it still looks like a curly version of R Homx (—, —).

All the categories we consider are most certainly 1-categories. However given a morphism A — B in a
category we can consider it as a (trivial) commutative diagram. For two commutative diagrams of the same
shape there is a well defined notion of them being isomorphic, e.g. in our case A — B is isomorphic to another
diagram A’ — B’ if and only if there exist isomorphisms which make the square

A——DB

zl lz

A/ > Bl

commute. Sometimes as an abuse of notation we describe this by saying that the morphism A — B is
‘isomorphic’ to the morphism A’ — B’. Clearly this imposes an equivalence relation on the set of morphisms
in a given category. This equivalence relation is important in the context of a triangulated category because
all the morphisms in the same equivalence class will have isomorphic cones.

2.1. On duality theories. The standard reference on Grothendieck-Verdier duality has for some time been
[Har66]. There the duality theory is constructed by hand in a (comparatively) geometric and (comparatively)
painful fashion. For a more modern and (comparatively) more elegant categorical approach which obtains
the existence of the right adjoint to f, by pure thought we can recommend the reader an excellent exposition
in [Lip09]. Below we give a brief overview of the results we intend to use. Our approach relies heavily on
notions of a perfect object in a derived category, both in an absolute sense and relative to a morphism. The
reader may find this discussed at length in [III71b] and [Ill71a).

Let S be a Noetherian scheme. Let FT g be the category of separated schemes of finite type over S whose
morphisms are separated S-scheme maps of finite type. We have the following (relative) duality theory D, /s

for schemes in FTg: for any X i> S let Dx /s denote the functor R Hom (—, f!(’)x) from D(Ox-Mod) to
D(Ox-Mod)?. Here (—)' is the twisted inverse image pseudo-functor (see [Lip09], Theorem 4.8.1). It follows

from [I1171a], Corollary 4.9.2 that Dx /s takes Ds_pert(X), the full subcategory of D(Mod-Ox ) consisting of
objects perfect over S, to itself in the opposite category and the restriction is a self-inverse equivalence

DX/S’: Ds_ perf(X) l> Ds_perf(X)OP.

Now, given any two schemes X and Y in F7 g and any exact functor F': Dg_perf(X) = Dg.pert(Y) we
define its dual under D, /g to be the functor Dy,s F Dx/g: Ds.pert(X) = Ds.pert(Y). The double-dual
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of a functor is then the functor itself and we say that F' and Dy,s F' Dx/;s are dual under Do/s. The
(contravariant) notion of a dual of a morphism of functors is defined accordingly. One can then easily see
that if a functor has a left (resp. right) adjoint then D, /s sends it to the right (resp. left) adjoint of its dual
and interchanges the adjunction units with the adjunction co-units.

Let X be a scheme in FTg and let E be a perfect (in an absolute sense) object of D(Ox-Mod). Then
the functor F ® (—) takes Dg. perf(X) t0 Dg.pert(X), its adjoint, both left and right, is the functor EY ® (—)
and for any F' € D(Ox-Mod) we have ([AIL10], Lemma 1.4.6) a natural isomorphism

(2.1) Dx,s(E®F) = EY @ Dx/sF.
Therefore E ® (—) and EY ® (—) are dual under D,,s and D,/s interchanges the adjunction unit Id —
EY ® E® (—) and the adjunction co-unit £V ® E® — Id.

Let X LV be a proper map in FTg. Then f. sends Dg perf(X) t0 Dg_pers(Y). We have it from the
sheafifed Grothendieck duality ([Lip09], Corollary 4.4.2) that for any E € Dg.(X) the natural map
(2.2) Dy/s(f+E) = fu(Dx/sE).
is an isomorphism. It follows that f, is self-dual under D, g.

On the other hand, let X 1 ¥ be now any map in F7T g such that f* takes Dg. perf(Y) to Dg.perr(X
(e.g. f is perfect or any f when S = Spec k). We have ([Lip09], Excercise 4.2.3(e)) for any E € D, (Y) a
natural isomorphism

(2.3) Dx;s(f*E) = f'(Dy,sE)

It follows that f* and f' are dual under D,s. If f is proper, then f* and f" are the left and the right adjoints
of fi, so them being dual under D, g is precisely equivalent to f. being self-dual.

Even when f* doesn’t take S-perfect objects to S-perfect objects, it still follows immediately from the
definitions of maps (2.2) and (2.3) in [Lip09] that for any E € Dy.(Y) the following diagram commutes

B e o o T
(2.4) Dys (fuf'E) ———— Dy sE
(2.2)+(2.3)J{~ /
f«f—Id

f*f!DY/SE

i.e. Dg/g still send the adjunction unit Id — f. f* to the adjunction co-unit fof' — Id. We then also have:

Lemma 2.1. Let X L Y be any map in FTg, let E be a perfect object in D(Mod -Y) and let F be an
S-perfect object in D(Mod -Y'). Then the natural map

(2.5) ffE®f'F— f(EQF)
is an tsomorphism.
Proof. By its definition the map (2.5) is the right adjoint with respect to fi. of the composition

(2:6) F(F'E® ['F)
Using the duality isomorphism D, gD,/ sF ~ F, isomorphisms (2.1)-(2.3) and (2.4), we can re-write (2.6) as

R pe R

inverse of projection formula map
E® f.

* TOj ion form m PP
Id—f.f E\/ ® f*f*Do/SF projection formula map f* (f*E ® f*D./SF)>

(27)  Das (EV ® Dy/sF
which by [AL10], Lemma 2.2 is the same map as

Id—f. f* ) [T (@)= f"ef"

opp
(28)  Dus (EV ® DyjsF ~2100 ¢ p*(BY @ D, s F £ (FFEY® f*D./SF)> .

Using (2.1)-(2.3), (2.4) and D, /5D, sF ~ F again, we deduce that (2.6) is the same map as

(2.9) FPEe RIS ffEer) 2 pe R
where the map « is isomorphic to
opp
* [P @)= f"®f . *
(2.10) Dy/s (f (EY ® Dg/sF) ————— f EV®f D./SF> .

Since the right adjoint of (2.9) with respect to f. is clearly «, we conclude that the natural map (2.5) is
precisely the map a which is evidently an isomorphism. O
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In the special case of S = Spec k the category F7T is simply the category of all schemes of finite type
over k. For any such scheme X we have Dg.pere(X) = D%, (X). The resulting duality theory D, is the
usual duality theory of [Har66] with Dx/,(Ox) being dualizing complexes in sense of [Har66], Chapter V.

On the other hand we have the perfect duality theory which exists in the category of arbitrary schemes.
Let X be a scheme and let DP x denote the functor R Hom (—, Ox) from D(Ox-Mod) to D(Ox-Mod)P,
i.e. DPx(E) = EV. It is shown in [III71b], §7 that DP x takes Dperf(X), the full subcategory of D(Mod-Ox)

consisting of perfect objects, to itself in the opposite category and the restriction is a self-inverse equivalence
DPX : Dperf(X) :—> Dperf(X)OP.

Then, given any two schemes X and Y, we define just as above the notions of a dual under DP of any
functor F': Dpers(X) — Dpere(Y) and of any natural transformation between two such functors. Once again,
the duality interchanges left adjoints with right adjoints and the adjunction units with the adjunction counits.

Let X L5V be any scheme map. Then f* sends Dpers(Y) t0 Dpere(X) and we have ([I71b], Prps. 7.1.2)
for any E € Dpers(Y) a natural isomorphism
(2.11) DPyx f*E = f*DPy E.
It follows that f* is self-dual under DP.

Now let X L5 ¥ be any scheme map such that f, sends Dpers(X) to Dpert(Y), €.g. a quasi-perfect map of
concentrated schemes ([Lip09], §4.7). Then, since f* is self-dual, the dual of f, under DP is the left adjoint f;
of f*. And when f is a separated finite-type perfect map of Noetherian schemes, we know ([AIL10], Lemma
2.1.10) that f;(—) is naturally isomorphic to f.(f'(Oy)® —) in a way which makes the composition

fif* = £ (F(Oy) @ F(=)) = fuf
be precisely the adjunction co-unit f;f* — Id.

| the adjunction co-unit

Id

2.2. Adjunction units and Fourier—Mukai transforms. The definition of a spherical functor S in
[Ann07] demands that S has both a left adjoint L and a right adjoint R. It moreover demands us to work
in the universe where taking cone of a morphism of functors is well-defined (see [Ann07], §1). In our case we
can use a traditional choice of restricting ourselves to working only with the functors which are isomorphic to
Fourier—Mukai transforms and only with the morphisms of functors which come from the morphisms of the
corresponding Fourier—-Mukai transforms. We still need, however, to demonstrate that S has both left and
right adjoints and that these two adjoints and the four corresponding adjunction units and co-units belong to
our chosen universe. That is - the adjoints are isomorphic to Fourier—-Mukai transforms and the adjunction
morphisms are all induced by morphisms of Fourier—Mukai kernels.

Partly this was achieved in §2.1 of [AL10]. We give a brief summary here. Quite generally, let X; and Xo
be two separated proper schemes of finite type over k and let E be a perfect object in D(X; x X53). We have
a commutative diagram of projection morphisms:

(212) X1 X X2 X Xl
™12 i 23
13

X1><X2 X1><X1 X2><Xl

T ™1
X1 X2 Xl

Let ®5: D(X;) — D(X2) be the Fourier—-Mukai transform ms, (F ® 7} (—)) with kernel E, then:

(1) A left adjoint ®2¥ to & exists and is isomorphic to the Fourier-Mukai transform ¥ Evar (0x,) from
D(XQ) to D(Xl)

(2) A right adjoint 2% to ®p exists and is isomorphic to the Fourier-Mukai transform ¥ EY @l (Oxs)
from D(X32) to D(X3).

(3) The adjunction co-unit @gdjbe — Idp(x,) is isomorphic to the morphism ©¢g — ©p, of Fourier—
Mukai transforms D(X;) — D(X;) induced by the morphism @ — Oa of objects of D(X; x X;)
written down explicitly in [AL10], Theorem 2.1 (to which we refer the reader for all the details). An
analogous statement holds for the adjunction co-unit @E@Ed] — Idpx,) ([AL10], Cor. 2.5).

(4) The condition of X; and X, being proper can be replaced by the condition of the support of E
being proper over X; and over X, ([AL10], §2.2). If, moreover, E is actually a pushforward of an
object in the derived category of a closed subscheme X; x X5 proper over X; and X5, then there is



ORTHOGONALLY SPHERICAL OBJECTS AND SPHERICAL FIBRATIONS 7

an alternative description of the morphisms of Fourier-Mukai kernels which produce the adjunction
co-units Ve — Idp(x,) and PpdY 5 1dp (x,) ([AL10], Theorem 3.1 and Cor. 3.5).

What remains to be done is to obtain a similar result for the adjunction units Idpx,) — @Edj ®p and

ldpx,) — @ E@Edj . Fortunately this can be obtained directly from the above results in [AL10] via the
Grothendieck-Verdier duality in the following way.
The dual of the Fourier—-Mukai transform

Pp(-) = mu (E@71(-))
under the duality theory D,/ (see Section 2.1) is the functor
(2.13) T RHom (E,ﬂ'll(—)) .
There are two ways to view this functor. Firstly, via natural isomorphisms
(2.14) RHom (BE,m0x1) @ (=) = RHom (B, m0x1 @ 71 (=) = RHom (E, 71 (-))
we can identify (2.13) with the Fourier-Mukai transform ®g 3/p (.7 0,) from D(X1) to D(X>). Secondly,

observe that (2.13) is the right adjoint \I!fgd] of the Fourier-Mukai transform ¥ from D(X3) to D(X7).

Taking this second point of view, it immediately follows that the dual of @gdj is U and the dual of the
adjunction unit

(2.15) Idp(x,) — @R g

is the adjunction co-unit

(2.16) TpeY = Idp(x,) -

By [AL10], Corollary 2.4, the adjunction co-unit (2.16) is isomorphic to the morphism

(2.17) O5 = B0,

of Fourier—-Mukai tranforms D(X;) — D(X;) induced by the following morphism of objects of D(X; x X7):

(218) Q= mis (T EY @ 15 B @ miyml (Ox,)) “22 20 1 AL A (11, BY @ w3 E © iy (Ox,))
(2.19) T DA (THEY @ 133 @ 11,71 (Ox,)) =~ A (EY @ E® 7 (0x,))
(2.20) Avmie (E® EY @14 (0y,)) 222921 A n, (71 (Ox,))
(2.21) Ay, (72(0x,)) 22021 AL 0y,

Identifying! the duals of ©p and O, under D(e/k) with Og 3,,,,4 #0x,) M OR 30 (04 70y, )> WE See
that the dual of (2.17) under D, ;, is the morphism of Fourier-Mukai transforms induced by the morphism

(2.22) RHom(Oa, 7 0x,) = RHom(Q, 7 Ox,)

obtained by applying the relative dualizing functor Dy, x x,,x, = RHom(—, 71 O0x,) to (2.18) — (2.21).
Treating (2.18) — (2.21) as morphisms of functors in Ox, and dualizing them with respect to the relative
duality theory D,/x, as described in Section 2.1, we see that Dx, x x,,/x, applied to (2.18) — (2.21) yields:

Id—mi.my
(2 23) A*DXI/XI(OXl) o A 7Tl*ﬂ-ll)Xl/Xl((9)('1)
* Id—-E®EY
(2.24) At Dy, /x, (Ox,) =222 8 Ay (E @ EY @ 71 Dx, x,(0x,))
(2 25) A*Tl'l* (E®EV®7TIDX1/X1(OX1>) >~ 71'13*A A (7T12E®7T23E ®7T127T1DX1/X1 OXl )
ALA'SId
(2 26) 7713*A A (7T12E®7T23E ®7712771DX1/X10X1) ——>>7T13* (7T12E®7T23E ®7712771DX1/X10X1)

By the above (2.23)-(2.26) induces a morphism of the Fourier-Mukai transforms isomorphic to the dual of
(2.17). Since (2.17) is itself isomorphic to the dual of Idx; — @?djq);;, we conclude that the morphism of
transforms induced by (2.23)-(2.26) is isomorphic to Idx; — ®4¥® 5 Finally, since Dx,/x,(0x,) ~ Ox,
and 7,7} (Ox,) ~ m5;m(Ox, ), we obtain:

LOne has to be a little careful here since O, unlike Q, is not a perfect object of D(X1 x X1). However, both natural maps
in the analogue of (2.14) are still isomorphisms so we can still make the same identification.
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Proposition 2.2. Let X; and X5 be two separated proper schemes of finite type over k and let E be a
perfect object of D(X1 x Xs). Then the adjunction unit Idx; — P j<I>E is isomorphic to the morphism of
Fourier—Mukai transforms induced by the following morphism of objects of D(X1 x X1):

(2.27) AL(Ox,) MITT A 11 (Ox)

(2.28) At (Ox,) M2EEE'O A 1 (B EY ® 7 (0x,))

(229) A*ﬂ'l* (E@Ev ®7T1(OX1)) ~ 7T13*A*A (7T12E®7T23E ®7T237T2 OXz )
* * * AN

(2.30) T13: AL A (71'12E @i BV @ 772371'!2((’))(2)) il 13 (71'12E R A A 7T237T2 (0x,) )

In a similar fashion we also obtain:

Proposition 2.3. Let X; and Xz be two separated proper schemes of finite type over k and let E be a
perfect object of D(X1 x X3). Then the adjunction unit Idx; — \IIE\I/lgd] is isomorphic to the morphism of
Fourier-Mukai transforms induced by the following morphism of objects of D(X1 x X1):

Id ‘11'1*7r1
(2.31) A, (Oy,) — A, (Ox,)
(2.32) At (Ox,) 228 O A 1, (E® EY @ 71 (Ox,))
(2.33) A (EQ EY @71 (0x,)) ~ mi3.AA (r1,EY @ 133E ® T (Ox,) )
* * * A*A' Id * * *
(2.34) T3 AL A (1], BY @ w53 E @ miomy(Ox,) =5 mige (11, EY ® 753 E © mipm3(Ox,))

If X7 and X5 are not proper, but the support of E is proper over X; and Xz, one can still apply the above
results via compactification, as described in [AL10], §2.2. If E is actually a pushforward of an object in the
derived category of a closed subscheme D — X; x X5 proper over both X; and X5, one can also dualize
Theorem 3.1 and Corollary 3.5 of [AL10] to obtain an alternative description of morphisms of kernels which
induce both adjunction units. We leave this as an exercise for the reader.

We conclude with:

Lemma 2.4. Let Ey and Es be two objects of D(X1 x X3) and let « be a morphism from Ey to Es. Then o
is an isomorphism if and only if the induced morphism of functors ®g, — ®g, is an isomorphism.

Proof. The ‘only if’ statement is obvious. For the ‘if’ statement we use the fact that for any closed point
p € X1 and any A in D(X;) we have a natural isomorphism ®4(0,) — ¢;(A) which is functorial in A. So
if &g, — ®g, is an isomorphism then the pullback of « to any closed point of X; is an isomorphism. This
implies that the pullback of the cone « to any closed point of X7 is 0. Therefore the cone of « is itself 0 and
« is an isomorphism. O

2.3. Twists, co-twists and spherical functors. Let X; and X5 be, as before, two separated proper
schemes of finite type over k, let E be a perfect object in D(X; x X5) and let & be the Fourier—Mukai
transform from D(X;) to D(X3) with kernel E. Then, as explained in Section 2.2, the following is well-defined:

Definition 2.5. We define the right twist Tp of ®g to be the functorial cone of the adjunction co-unit
® E‘bgdj — Idp(x,) so that we have an exact triangle

3p®NY = Idp(x,) — Th-

We define the right co-twist T, of ® to be the functorial cone of the adjunction unit Idp(x,) — (I)E(I)ladJ

shifted by one to the right so that we have an exact triangle

Th — ldp(x,) — @p®aY.

We define the left twist F, of ®g to be the functorial cone of the adjunction co-unit @Edjq)E — Idp(x,) so
that we have an exact triangle

eV ep — Idpx,) — Fp

We define the left co-twist Fp of ®g to be the functorial cone of the adjunction unit Idpx,) — @?dj dp
shifted by one to the right so that we have an exact triangle

(235) Fg — IdD(Xl) — (I)gldjq)E.

The following notion was introduced by Anno in [Ann07]:
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Definition 2.6. We say that the Fourier—-Mukai transform ®g is a spherical functor if the left co-twist Fg
of & is an autoequivalence of D(X;) and if the composition

Id—®pd'sY P Fr(1] in (2.35)

(2.36) Py WY P ey Fp[1]®a¥

is an isomorphism of functors D(X35) — D(X4).
We then have the following key result:

Theorem 2.1 ([Ann07], Proposition 1). If @ is spherical, then the left twist Fy, and the left co-twist Fg are
mutually inverse autoequivalences of D(X1), while the right twist Tg and the right co-twist Ty, are mutually
inverse autoequivalences of D(Xs).

When proving a functor to be spherical the reader may find the following lemma useful:

Lemma 2.7. The composition (2.36) is the unique morphism @?gdj N FE[l}q)Edj which makes the following

diagram commute:

. 2.35
(2.37) U P 2 )

al %co—unit
Fpl]®i9e,

Proof. We first show that the composition (2.36) makes (2.37) commute. Indeed, composing each term with
®p and composing the whole isomorphism with the adjunction co-unit @lgdjtb g — Idp(x,) we obtain

(2.38) prbig, Mt gradig gladig, ), prg)gladig,, A comnit, gy
Since clearly the following square commutes
radj ladj 5, (2:35) ladj
(2.39) YO LY Oy — Fg[l]2aYOp
adj. Co—unitl J/adj. co-unit
radj
) 2.39) Fg[1]
the composition (2.38) equals to
(2.40) ‘I)EZdj(I)E adj. unit ¢’Edj(bE¢lEL‘Ldj¢)E adj. co-unit (I)Eldjq)E (2—35)> FE[l]

and is therefore simply q)réldj dp ﬂ Fg[1], as required.

Conversely, let a: @gdj — F E@Edj [1] be a morphism which makes (2.37) commute. We then have a
commutative diagram

adj. unit (2.35)

(2.41) pradi PP oY Fgl1]@g?

la : :

Fp[1]®'ad Fpl]®2diepelat — pp1]eled

adj. unit adj. co-unit

Since the bottom row is the identity morphism, we conclude that « equals to the morphism given by the top
row, i.e. to the composition (2.36). O

3. ORTHOGONALLY SPHERICAL OBJECTS

Let Z and X be two separable schemes of finite type over k. Given a closed point p in Z we denote by ¢,
the closed immersion Spec k — Z and by tx, the corresponding immersion X — Z x X:

(3.1) X 7w X

X
Tk Tz

Spec . X
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Given a perfect object ' in D(Z x X) we define the fibre E, of E at p to be the object %, E in D(X). In
this way we can think of any perfect object in D(Z x X) as a family of objects of D(X) parametrised by Z.
For all of our Fourier—-Mukai transforms to take complexes with bounded coherent cohomologies to complexes
with bounded coherent cohomologies and to be able to apply the results in Section 2.2 on the adjunctions
units/co-units for Fourier-Mukai transforms, we assume throughout this section that either Z and X are both
proper or that the support of the object F in Z x X is proper over both Z and X.

3.1. Orthogonal objects. Our first goal is to come up with a categorification of the notion of a subscheme
D of X fibred over Z. Our motivating geometric example is the following setup:

Example 3.1. Let D be a flat fibration in X over Z with proper fibres. By this we mean a scheme D
equipped with a morphism £: D — X which is a closed immersion and a morphism 7: D — Z which is flat
and proper. Denote by tp the map D — Z x X given by the product of 7 and £&. We set E to be the structure
sheaf of the graph of D in Z x X, that is - the object tp.Op in D(Z x X).

An arbitrary subscheme D’ of Z x X is a graph of some subscheme D of X fibred over Z if and only if
the fibres of D’ over closed points of Z are disjoint as subschemes of X. In derived categories the notion
of disjointness corresponds to the notion of orthogonality, that is, to the vanishing of all the Ext’s between
them. This motivates us to suggest as a categorification of the notion of a subscheme of X fibred over Z the
following class of objects in D(Z x X):

Definition 3.2. Let E be a perfect object of D(Z x X). We say that F is orthogonal over Z if for any two
distinct points p and ¢ in Z the fibres E, and E, are orthogonal in D(X), or in other words

(3.2) Hom{p x)(Ep, By) =0 forallieZ

Since E is a perfect object we have (EY), = (E,)Y. So if E is orthogonal over Z, then its dual EV is also
orthogonal over Z.

Any object whose support in Z x X is the graph of a subscheme of X fibred over Z is immediately
orthogonal over Z - as all the Ext’s between two objects with disjoint supports must vanish. Another class
of examples comes from Fourier—Mukai equivalences:

Example 3.3. The kernel F of any fully faithful Fourier-Mukai transform ®z: D(Z) — D(X) is orthogonal
over Z, since for any p € Z the fibre F}, is precisely the image under ®r of the skyscraper sheaf O,. Moreover,
we have also @?djép(op) ~ 7wz« RHomzxx(F, 7r!X (Fp)). Applying 7k, where 7 is the structure morphism
Z — Spec k, to the adjunction unit O), — @?djfbp(op) (which is an isomorphism as ® is fully faithful) one
obtains R Homx (mx.F, F,) = k. It is possible (e.g. using the same techniques as in the proof of Proposition
3.7 below) to show that the converse is also true, i.e. ®p is fully faithful if and only if F' is orthogonal over
Z and RHomy (wx.F, F,) = k for all p € Z. Suppose now that ®p is further an equivalence, then all its
adjunction units and co-units are isomorphisms. By Lemma 2.4 the morphisms of Fourier—-Mukai kernels
which induce them are also isomorphisms. In particular, the isomorphism of functors

radj adj. unit radj ladj inverse of adj. co-unit ladj
(3.3) pradi 29 W, gradi g ple ol

must come from an isomorphism FV ® 7' (Ox) — FY ® 7%, (Oz) of their Fourier-Mukai kernels. Conversely,
any isomorphism FV ® 7 (Ox) — FY @ 75,(Oyz) induces an isomorphism ®5¢% = %% And, when X is
connected, ¢ being fully-faithful and @;ﬁdj being isomorphic to @?dj imply together that @ is an equivalence
([Bri99], Theorem 3.3). We conclude when X is connected the kernels of Fourier-Mukai equivalences are

precisely the objects which are orthogonal over Z and for which
(3.4) RHomx (nx.F, F,) =k forallpe Z
(3.5) FY @7y (0x) = FY @1y (0z)

Our main goal now is to show that the orthogonal objects which are one step up from that, in the sense
that R Homx (mx.F, F,) = k & k[d] for some d € Z and a similar condition to (3.5) holds, are the kernels of
the spherical Fourier—Mukai transforms.

3.2. Spherical objects.
Definition 3.4. Let E be a perfect object of D(Z x X). We say that F is spherical over Z if the Fourier-Mukai
transform ®g: D(Z) — D(X) is a spherical functor in the sense of [Ann07] or, in other words, if:

(1) The co-twist Fg is an autoequivalence of D(Z).
(2) The natural map ®4%= — Frd'@¥[1] is an isomorphism of functors.
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If F is also orthogonal over Z we say further that E is orthogonally spherical over Z.

Example 3.5. The spherical objects introduced by Seidel and Thomas in [ST01] can be thought of as the
objects spherical over Spec k. Indeed let Z = Spec k and let X be a smooth variety over k. Then 7x is an
isomorphism which identifies Spec k x X with X. Under this identification 7' (Ox) becomes simply Ox and
W}c(kz) becomes the dualizing complex Dy, which is isomorphic to wx[dim X] since X is smooth. Therefore

the Fourier—Mukai kernel of the right adjoint <I>rEadj is EY and the Fourier—Mukai kernel of the left adjoint @Edj
is EY ® wx|[dim X]. The triple product Spec k x X X Spec k is identified with X by the projection 75 and
under this identification the projection 713 becomes the map 7w : X — Spec k. Therefore the Fourier—-Mukai
kernel of the composition <I>rEadj(I) E is

s (BY @ E) ~ e RHomx (E, E) ~ RHomx (E, E)

and by the results of Section 2.2 the adjunction unit Id p(vect)y — @?djq) g comes from the natural morphism
k — RHomy (F, E) of Fourier-Mukai kernels which sends 1 to the identity automorphism of E. Denote this
morphism by ~.

The first condition for @ to be a spherical functor is for the left co-twist Fg to be an autoequivalence of
D(Vect). The only autoequivalences of D(Vect) are the shifts (—)[d] by some d € Z and their Fourier-Mukai
kernels are k[d]. The Fourier-Mukai kernel of Fy is the shift by 1 to the left of the cone of k - R Homx (E, E).
If E is non-zero the morphism -y is non-zero and then F'g is an autoequivalence if and only if R Homx (E, E)
is k @ k[d] for some d € Z. If this does hold then Fr = (—)[d — 1]. If E is 0, then the cone of v is k and
therefore F is the identity functor Id p(vect). As a side note, observe that the object E'is trivially isomorphic
to its single fibre over the single closed point of Spec k. Hence one way of re-phrasing the above would be
that Fr is an autoequivalence if and only if for every point p of the base such that the fibre F, is non-zero
we have RHomx (7x.F, E,) = k @ k[d] for some d € Z.

By Lemma 2.7 the second condition for @ to be spherical is an isomorphism a: EY = EY ®@wx [dim X +d]
which makes the diagram (2.37) commute. If E is 0 then this condition is trivially satisfied, so assume
otherwise. Since EY and EV ® wx are bounded complexes with non-zero cohomologies in exactly the same
degrees, the isomorphism « is only possible when d = —dim X. On the other hand, the diagram (2.37) on
the level of the corresponding Fourier—Mukai kernels is just

0®Id
—_—

(3.6) k @ k[d] k[d]
|
k & k[d]

where o is the isomorphism induced by «. The diagram commutes if o’ restricts to the identity morphism
on the component k[d] and we can achieve that by multiplying any given « by an appropriate scalar in k.

We conclude that E is spherical over Spec k if and only if either F is 0 or if R Homx (E, E) = k®k[— dim X
and £ ~ F ® wy, which is precisely the definition given in [ST01]. And since the base Spec k is a single
point, any object spherical over Spec k is orthogonally spherical.

3.3. A cohomological criterion for sphericity. We now introduce the object in the derived category D(Z)
of the base Z which is the relative case version of the cone of the natural morphism & — RHomx (E, E) of
the Example 3.5 where the base Z is just the single point Spec k:

Definition 3.6. For any perfect object E of D(Z x X) denote by Lg the object of D(Z) which is the cone
of the following composition of morphisms:

(3.7) OZ — WZ*OZXX — M7« RHO’mZXx(E,E) — T« RHO’mZXx(Wﬁ(WX*E7E).

Here the first morphism is induced by the adjunction unit Idpz) — mz.77, the second by the adjunction
unit Idp(zxx) - RHom(E, E® —) and the third by the adjunction co-unit 7% 7x. — Idpzx x)-

Let p be any closed point of the base Z. Apply the pullback functor ¢; to the composition (3.7) to obtain
a morphism k — L;’/TZ* RHomzux(mimxE, E). We have a sequence of natural isomorphisms:

base change iso. around (3.1)

(38) L;ﬂ'z* RHomZXx(’IT;(’]TX*E,E) Wk*L}pR’HomZXx(ﬂ'}ﬂ'X*E,E)

[I1171b], Prps. 7.1.2

(3.9) Thstxp RHOomzx x (mx7x. B, E) Tex RHomx (U, TxTx B, Uy, )

ﬂxOLXp:Id

3.10 e RHomx (W, m5xmx« B, 0% E 2 e RHomx (tx+E, E,) ~ RHomx (7x+ E, E,).
Xp''X Xp P P



12 RINA ANNO AND TIMOTHY LOGVINENKO

One can check that these natural isomorphisms identify ¢5 (3.7) with the morphism
(311) k *)RHOIHD(X)(WX*E,EP)

which sends 1 to the natural composition 7x,FE = L}}p T Tx+ L TxTx-1d E, where the isomorphism is due
to the scheme map identity 7x otx, = Idx. Thus we see that the pointwise restrictions of the morphism (3.7)
give us a natural morphism & — R Hompx)(7x«FE, E,) for each fibre E, of E over a closed point p € Z.
It turns out that for an orthogonal E the criterion for the left co-twist Fg of E to be an autoequivalence of
D(Z) is for the cone of each of these morphisms to be k[d] for some d € Z:

Proposition 3.7. Let E be a perfect object of D(Z x X) orthogonal over Z. The following are equivalent:
(1) For every closed point p € Z such that the fibre E, is non-zero we have

RHompx)(mx+E, Ep) = k@ k[dy]  for some d, € Z.

(2) The object Lg is an invertible object of D(Z). That is - on every connected component of Z it is
isomorphic to a shift of a line bundle (see [AIL10], §1.5 for more detail).
(3) The left co-twist Fg of the transform ®g: D(Z) — D(X) is an autoequivalence of D(Z).

When the conditions above are satisfied:

e Locally around any closed point p € Z we have Lg ~ Ogz[d,] where

Q- the same integer as in (1) if E, #0
P if E, =0

e Fg is isomorphic the functor Lg & (-)[—1]

We see therefore that for the orthogonally spherical objects the geometric meaning of the object £g defined
rather abstractly above is that its restriction to each connected component of Z is a (shifted) line bundle
which describes the autoequivalence of D(Z) produced by taking the left co-twist of ®g.

To prove Proposition 3.7 we need two technical lemmas. Recall that by the Proposition 2.2 the adjunction

unit Idp(z) — @gdj @ is isomorphic to morphism of the Fourier-Mukai transforms induced by the morphism

2.27)—(2.30)
5

(3.12) A0z 4 Q = mize (112 E @ 733 EY @ myymx Ox)

of the objects of D(Z x Z). Here m;; are the natural projection morphisms in the following commutative
diagram:

(3.13) ZxXXZ
T12 i ™23
T3

Zx X A X xZ

1 X X T2
Z X 7

Lemma 3.8. Let E be a perfect object of D(Z x X) and let p € Z be a closed point. Then the following two
morphisms in D(Z) are isomorphic:

(3.14) . (A*(’)Z (@21)-230, Q)

and

(3.15) Oy % 7wz« RHom(nxmx.E, E)
(3.11)

Consequently, for every closed point p € Z the natural morphism k —— RHomx (7x.E, E,) is isomorphic
t0 Tk (Op adg. unit, @gdjq)E(Op)) and therefore m. Fr(0p) ~ 1y Lp[—1].
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Proof. For the first claim we need to show that Oy ﬁg 7wz« RHom(minx.E, E) is isomorphic to:

Id—mz.my,

(3.16) ﬁl*A*(Oz) 77'1*A*7TZ*7T*Z(OZ
(3.17) Ty (0g) S2EEE 8 2 Avng (E® EY @ 14(02))
(3.18) T1 AW T 7 (E®EV ®7T2(02)) ~ 7~'('1,.<71'13,.<A*AI (WT2E®7T§3EV ®7T§37T}X(OX>)
(3.19) T1aT13: A A (T12FE @ m3EY ® 71';3771)(((9)()) L£.4 21, T34 (1o E @ 33 EY ® 71';3771)(((9)())

By the scheme map identity 71 o A = Idz we have 71.A, ~ Idp(z) and this identifies (3.16) and (3.17)
with the first and the second morphisms in the composition (3.7). It remains to show that

(3.20) mzs RHomx(E, E) TxTXxd Tze RHom(mimx«E, E)
is isomorphic to

)) ALA'SId L

(3.21)  FrmizALA (r1,E @ m33EY ® Ty (Ox T1amige (T, E @ m33EY ® 7r§37rIX((9X)) .

By the scheme morphism identity 71 o w13 = 7z o w12 (see (3.13)) we have 71,713+ =~ Tz.T124. By the

independent fibre square (see [Lip09], §3.10)

(3.22) IxXxZ22s>XxZ

ZxX———>X

! ! .
we also have m3;my ~ m,m% . We can therefore rewrite (3.21) as

* * Al * *
(3.23) T a2 A A (r1,E @ m33EY @ WIIQOZXX) N R (r1,E @ m33EY @ WiQOZXX) .

Now observe that 75, E is perfect, while 75, EY ® w30z x is a tensor product of a perfect object and a
mio-perfect object and therefore itself myo-perfect. Hence, even though A is not perfect, by Lemma 2.1 the
natural map A'(mHE @ mis BV @ m,0zxx) — A* (15, F) @ A (13, EY @ 7,0z« x) is still an isomorphism.
It therefore follows? from Lemma 2.3 of [AL10] that (3.23) is isomorphic to

(3.24) 74 (E @ T12: AL A (7‘(‘;3EV ® 77!120Z><X)> M) 74 (E ® T124 (7T§3Ev ® 71'!12OZ><X)) .

It remains to show that

(3.25) RHomx(E,OZXx) mxTx.1d R’Hom(ﬂ'}ﬂ'X*E,OZXx)
is isomorphic to

(3.26) T2 ALA' R Hom (71';3E, 7T!12(’)Zxx) A4 T12« R Hom (7r§3E, 77!12(9ZXX) .

Rewriting (3.25) and (3.26) in terms of the relative duality theory D, /7y x (see Section 2.1) we obtain

Id— AL A* opPPp

opp
T Tx«—1d
Dujzxx (W}WX*E Txmx-2d, E) and  Dyzux (7712*77;315 ldoa.at, wlg*A*A*ﬂ'SgE)

respectively and these are isomorphic by [AL10], Lemma 2.4. This settles the first claim of this lemma.
For the second claim, we have a commutative fibre square

(3.27) 7" 77,
Spec k .z
and for any A € D(Z x Z) we have a standard isomorphism

(3.28) PA(Op) = 15 A

2 This lemma is stated in [AL10] for quasi-perfect scheme maps, but the proof works unchanged for any concentrated scheme
maps as it never actually uses the fact that the map denoted in the lemma by x4 is actually an isomorphism.
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which is functorial in A. The adjunction unit morphism O, — @gdj @5 (0,) is isomorphic to the morphism

Dn,0,(0,) = 0(O,) induced by A, O (220~ (230), @ and is therefore isomorphic to ¢, (A*OZ (2:20)-(2:30), Q>

By the base change around (3.27) we have 7.ty » =~ 1771, and therefore 7. (Op - oy E((’)p)> is isomor-

phic to ¢y 714 (A*Oz w) Q) and hence, by the first claim, to ¢, (OZ ﬂ Tz« RHom(mkmx. E, E)) ,

which is precisely the natural morphism k G2, R Hom x(mx+«E, E,). This settles the second claim of the
lemma and the last claim follows immediately by taking cones. O

Lemma 3.9. Let E be a perfect object of D(Z x X). Then E is orthogonal over Z if and only if the support
of the object @ is contained within the diagonal A C Z x Z. Consequently, if E is orthogonal over Z then for
any closed point p € Z the object Fr(O,), if non-zero, is supported at precisely the point p.

Proof. Let g1 and g be closed points of Z, let ¢ = (¢1,¢2) be the corresponding point of Z x Z and denote
by ¢4 the closed embedding ¢ — Z x Z. From the standard spectral sequence L L;Hj Q= L' 7@ it follows
that ¢ € Suppyz z @ if and only if 17Q) # 0.

We have a commutative square:

(3.29) X ZxXxZ

Spec k " zxz
Then:
(3.30) Q= timiz. (T E @ 33 EY ® 7r§‘37r!X(’)X) ~
~ Thatkq (T12E @ m33EY ® 7T;37TE)(OX) ~
~ T (RHom(Ey,, Eq) ® L*Xq271'!XOX)

We have a pair of independent fibre squares:

(3.31) X— " g x ™ o x
ﬂ-ki Wzl lﬂk
Spec k — Z — Spec k
a2

and so by the base change 7T!XO x = 7y Dgp, where Dy is the dualizing complex W;C(k) on Z. Therefore
L}qzﬂ!XOX o~ L}qzﬂ'EDz/k ~ Tila, Dz/1, and so finally:

(3.32) Q= T (R’Hom(qu, Ey)® ik, n!XoX) ~
~ Ty (RHom(Ey,, Eq,) @ w1t Dyyp) ~
~ mp RHom(Ey,, Ey,) ® 3, Dz ~ RHomp(x)(Ey,, Eq,) @ tg, Dz

By [AIL10], Lemma 1.3.7 the support of any semi-dualizing (and, in particular, of any dualizing) complex
on a noetherian scheme is the whole of the scheme. Therefore ¢}, D7/, is non-zero for any g2 € Z. It then
follows from (3.32) that (7@ # 0 if and only if Homzb(X)(Eqw E,,) # 0 for some i € Z. Therefore the support
of Q in Z x Z consists precisely of all points (¢1, ¢2) for which Homzb(X)(qu ,Eq,) # 0 for some i € Z. Whence
the assertion that F is orthogonal over Z if and only if the support of @ lies within the diagonal of Z x Z.

For the second assertion, recall that @?dj O5(0,) ~ Ly 7@ and therefore ¢ ,@ fits into an exact triangle

Op = 1y, 7,Q — Fr(0Op)[1]

in D(Z). Since the support of O, is p and the support of ty 7@ lies within L;lz Suppz, 7 Q C L;IZA =p, it
follows that the support of Fg(O,) also lies within the point p. If the object F(O,) is non-zero its support
is closed and non-empty and must therefore be precisely p. O
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Proof of Proposition 3.7. (1) < (2): By [AIL10], Theorem 1.5.2 the object L is invertible if and only if
for every closed point p € Z it is isomorphic in the neighborhood of p to Oz[d,] for some d, € Z. This is
equivalent to having 1y L = k[d,]. We have an exact triangle

(3.11)
(3.33) k—— RHOHID(X)(WX*E,EP) — L;[,E
in D(Vect). Hence 1;Lp = k[dp] for some d, € Z is equivalent to either R Hompx)(mx«E, E,) = 0 and
d, = 1 or to RHompx)(7x«FE, E,) = k @ k[dp] and (3.11) not being the zero morphism. Therefore to
establish (1) < (2) and the first of the two assertions in the end it remains only to show that if (3.11) is the
zero morphism then E, = 0.

By Lemma 3.8 the morphism (3.11) is isomorphic to 7. applied to the adjunction unit O, — @?dj@E((’)p).
And this adjunction unit being zero is precisely equivalent to E, = ®5(0,) = 0. In Lemma 3.9 we've
demonstrated that both O, and @?dj@ 5(0p) are supported at p € Z. It suffices therefore to show the
functor 7y, is faithful on the full subcategory D,(Z) of D(Z) consisting of the complexes whose cohomology
is supported at p € Z. Indeed, let U be any open affine subset of Z containing p, let ¢y be the corresponding
open immersion and observe that vy, restricts to an equivalence ¢y, : Dp(U) = D,y(X ) whose inverse is -
On the other hand, D,(U) ™ D(Vect) decomposes as

(3.34) D,(U) L5 D,(0x (U)-Mod) 2™, D(Vect)
Here I'* is the derived global sections functor and it is an equivalence since U is affine. The functor of
forgetting the Ox (U)-module structure is also faithful. The claim now follows.

(2) < (3): The object L is invertible if and only if for every closed point p € Z we have ¢, (L) = k[d,] for
some d;, € Z. By Lemma 3.8 we have ¢;(Lg) = T« Fr(0,)[1]. By Lemma 3.9 the object Fp(0O,) is contained
within the full subcategory D,(Z) of D(Z) consisting of the complexes whose cohomology is supported at
p. Finally, the decomposition (3.34) makes it clear that the only object of D,(Z) whose image in D(Vect)
under 7y, is precisely k is the point sheaf O,. We conclude that Lg is invertible if and only if

(3.35) VpeZ, Fg(O,) =0, for some d € Z.

Suppose (3.35) holds. Let @’ be the Fourier-Mukai kernel of the left co-twist Fis. Since ¢y Q" ~ F(Op),
by the semicontinuity theorem ([GD63], Théoréme 7.6.9) the shift d in (3.35) is constant on every connected
component of Z. Let U be such a connected component, then the spectral sequence argument of [Bri99],
Lemma 4.3 to shows that the restriction of Q' to U x Z is the shift by d of a coherent sheaf flat over U,
whose restriction to the fibre {p} x Z over every point p € U is precisely O,. Any such sheaf is necessarily
a line bundle supported on the diagonal U — U x Z. We conclude that globally Q' = A.L’ for some
invertible object £" of D(Z). This immediately implies that the corresponding Fourier—-Mukai transform Fg
is an equivalence.

Conversely, suppose Fg is an equivalence. Let p be any closed point of Z. As Fg is an equivalence we
have Homg(()z) (Fg(0,), Fg(0O,)) = 0 and Hom%(z) (Fg(0,), Fg(O,)) = k. By Lemma 3.9 the support of
Fg(0,) is precisely p. Now the same spectral sequence argument as in Proposition 2.2 of [BO01] shows that
Fg(0,) = O,[d] for some d € Z.

For the second of the two assertions in the end: it follows from the definition of Fr that Q' is the object

Q)1

of D(Z x Z). Therefore by Lemma 3.8 we have 71,.Q’ ~ Lg[—1]. Above we’ve shown that Q' = A, L’ for
some invertible object £’ € D(Z) and since 71.A, ~ Idp(z) it follows that £ ~ Lp[-1]. O

Cone (A*OZ —>(2'27)_(2'30)

Suppose now that F satisfies the equivalent conditions of Proposition 3.7. Then the left co-twist Fg is an
autoequivalence of D(Z) whose Fourier-Mukai kernel is A,Lg[—1]. There exists a unique morphism x which
completes the morphism (2.27)-(2.30) to an exact triangle

(2.27)—(2.30)

(3.36) A, Oy Tise (T E @ T35(BY @ T Ox)) = ALp

in D(Z x Z). Denote by kg the corresponding natural transformation in the exact triangle
adj. unit

(3.37) 1d
of Fourier-Mukai transforms D(Z) — D(Z).

PP EEMy B[]



16 RINA ANNO AND TIMOTHY LOGVINENKO

The object E was defined to be spherical over Z if and only if @5 is a spherical functor. By the definition
of a spherical functor ® is spherical if and only if Fg is an autoequivalence and the natural composition

;oY (ld—»opolgY j i K adj
(3.38) pradi 25 WDPEVE ) gradigy  gladj wrar, o) glad)

is an isomorphism of functors. The Fourier-Mukai kernel of @%’dj is EY ® 7' (Ox) and the Fourier-Mukai
kernel of FE[l]‘I)lng is
5(Lp) ® (BY @7y, (0z)) ~ BV @ 1, (LE).

Proposition 2.3 affords us a canonical choice (2.31)-(2.34) of a morphism of Fourier-Mukai kernels which

underlies the adjunction unit Id — ® E@Edj , and we can therefore define:

Definition 3.10. Define a to be the morphism

EY @y (0x) S EY @ny,(LE)
of Fourier Mukai kernels which underlies the natural moprhism (3.38) if we choose (2.31)-(2.34) and & as
underlying morphisms of Id — & E@Edj and kg7, respectively.

By Lemma 2.4 the composition (3.38) is an isomorphism if and only if the underlying morphism « is. We
therefore obtain immediately the main result of this section:

Theorem 3.1. Let X and Z be two separable schemes of finite type over k. Let E be a perfect object of
D(Z x X) orthogonal over Z. Then E is spherical over Z if and only if

(1) For every closed point p € Z such that the fibre E, is not zero we have
R Hompx)(mx+E, Ep) =k @ k[dy]  for some d, € Z.
(2) The canonical morphism
EV o1y (0x) 5 EY @ry, (LE) (see Definition 3.10)
s an isomorphism.

Whenever E is orthogonally spherical over Z, the object Lg is invertible in D(Z) and so locally around
any closed point p € Z we have Lg ~ Oz[d,] for some d, € Z. Over the locus where Z and X are not too
degenerate this integer is precisely the difference in dimensions between X and Z:

Proposition 3.11. Let E be an object of D(Z x X) orthogonally spherical over Z. Let (p,q) € Z x X be a
Gorenstein point in the support of E if such exists. Then

d, = —(dimy X — dim, Z)
Proof. If E is spherical over Z the canonical map
EY @y (0x) S EY @ny,(LE)

is an isomorphism. Let us restrict it to Spec Oz x (p,q)- Since Ozyxx (pq) = Ozp @ Ox 4 is Gorenstein,
the structure map Spec Ozyx (p,q) — Spec k is Gorenstein. Therefore the projections 7z, and 7x , are
Gorenstein, since we can filter Spec Oz x (p,q) = Spec k through them

(3.39) Spec Ozyx.(p.g) —2> Spec Ox
mi l
Spec Oz, k

and for perfect maps (and therefore for flat maps such as these) the composition of two maps is Gorenstein
if and only if both composants are ([AF90], Prop. 2.3). Therefore

T20(02p) = Oz x,(p.) [diM Oz x (p.q) — diM O] = Oz 4[dim Ox ]
Tx 0(0x.q) = Ozxx,(p.o) [diM Oz x (p.¢) — dim Ox ¢] = O,4[dim O]
and so « restricts to Spec Oz x (p,q) aS
EY |0, x, [dim Ozp] = E¥]0,, ) [dim Ox g + d,]
Since (p, q) lies in the support of E, the restriction EV|(’)2xx,<p,q) is a non-zero bounded complex. So
dim Oz, =dimOx 4 + d,

whence the claim. O



ORTHOGONALLY SPHERICAL OBJECTS AND SPHERICAL FIBRATIONS 17

3.4. Concerning the canonical morphism «. A reader who wasn’t at all disturbed by the words “the
canonical morphism « is an isomorphism” in Theorem 3.1 probably doesn’t need to read this section.

However, to apply Theorem 3.1 to show that an object is spherical one needs to compute the canonical
morphism

EY @y (0x) S EY @1y, (LE)

described in Definition 3.10 and show it to be an isomorphism. In all but few very simple examples computing
this morphism directly, by computing the morphisms of the kernels underlying both terms of (3.38) and then
composing them, is not a very pleasant endeavour.

Fortunately Lemma 2.7 gives us a different characterisation of a by telling us that « is the unique morphism
from EV @7 (Ox) to EY @7}, (Lg) such that the induced morphism a gy of the corresponding Fourier—Mukai
transforms makes the diagram

(3.40) VP — > Fi1]

OFM
l /E[l]f(q»‘gdj O p—1d)

Fpl]0sY oy
commute. Hence showing that « is an isomorphism is equivalent to exhibiting some isomorphism
EV® 7T'X(Ox) S EY® 7T'Z(£E)

and then showing that it makes (3.40) commute.
We first use this to produce an alternative, more direct description of the morphism a:

Proposition 3.12. Let E be a perfect object of D(Z x X) orthogonal over Z and suppose that Lg is an
invertible object of D(Z). Then the canonical morphism « of Definition 3.10 is precisely the image of the
morphism k defined by the exact triangle

N (2.27)—(2.30)

T13+ (T2 E @ m35(EY @ 71'!X(9X)) 5 ALE.
under the following chain of isomorphisms between Hom spaces:

(3.41)
HOIHD(ZXz)(7T13*(7TT2E®7T§3(EV®71’!X(Ox))) , ALp

adjunction (A*,A.)

A" 134 (7] -@T 5-) 2T 24 (-®-)

HOHID(Z)(A*ng*(ﬂ'TQE@’ﬂ';g‘(Ev®7T!X(OX))) y L:E

N N N N~

adjunction (m *,ﬂ"!
HOmD(Z)(WZ*(E@)EV@w!X(OX)) . Lg junction (mz.,7 )
adjunction (E®-,EY ®-
Hompzxx) (E ® EY @ ' (Ox) . 7y (LE) junction (E®-,E" ®-)
HomD(ZXX)(EV(X)ﬂ'E)((OX) , E\/®7T'Z<£E)

Proof. Let o’ be the morphism which corresponds to x under the chain of adjunctions and isomorphisms
in (3.41). It follows from [AL10], Theorem 2.1 that the morphism underlying FE[l]q)lgd] ®p — Fg[l] is the
composition

Id—ALA"
e

(3.42) i3« (112 E ® 753(E @ 75 (L)) AN Tz (71 E @ w3 (BY @ 75(LE)))

)) A" 134 (T]5-@T5-) = 724 (-®-)

(343) A*A*ﬂ'lg* (7TI2E ® 7T53(Ev X 7T|Z(£E A*TFZ* (E ® (EV X W'Z(Z:E)))

E®EY®—Id

(344) ATz (E &® (Ev ® W'Z(ﬁE))) _ A*WZ*TIZ(EE)
(3.45) Autgery(Lr) A £
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By Lemma 2.7 to establish that o = o it suffices to show that o’ makes the diagram of the Fourier-Mukai
kernel morphisms commute:

(346) T13% (FT2E®7T§3(EV ®7T'XOX)) *H>A*£E
s (712 BT (o ))J/ (3.42)—(3.45)
T3« (11 ® m33(EY @ 7, L))
The morphism o’ was defined as the unique morphism corresponding to s under the chain of adjunctions

and isomorphisms listed in (3.41). The reader may now readily check that applying these adjunctions and
isomorphisms to the diagram (3.46) turns it into the diagram

(3.47) EY @ (Ox) == EY @ 7y (L)

N

Ev ® W'Z(EE)

Since the diagram (3.47) clearly commutes, so must the diagram (3.46) which corresponds to it under several
adjunctions and isomorphisms. O

Suppose now that we could show that the Hom space
(3.48) Homp(zx0)( B & 7 (Ox). Y & 5 (L)

is a one-dimensional k-vector space and that « is a non-zero element in it. Then if any non-zero element
of (3.48) were to be an isomorphism, so would be all its scalar multiples. Since the space (3.48) is one-
dimensional, this would mean that all of its non-zero elements would have to be isomorphisms, including «.
We could then replace the words “the canonical morphism « is an isomorphism” in Theorem 3.1 by words
“there exists some isomorphism EY ® 'y (Ox) ~ EV @ 15, (LEg)".

By Lemma 3.12 it is enough to show the Hom space

(3.49) HOHlD(sz) ( T13% (7TT2E ® 7'(;3(EV ® 7T'X(OX))) , A*ﬁE)

to be one-dimensional and k to be non-zero. In view of the exact triangle

ALOy (2.27)—(2.30)

it isn’t entirely an unreasonable thing to expect when Lg is a non-trivial shift of a line bundle. We make
these ideas precise in:

13+ (7TT2E ®7T;S(Ev ® 7T'XO)()) £ ALEg

Proposition 3.13. Let E be a perfect object of D(Z x X) orthogonal over Z and suppose that Lg is an
invertible object of D(Z). Assume (for simplicity) that Z is connected, then Lg = L[d] for some line bundle
L € PicZ and d € Z. Assume further that d < 0 or, more generally, that d # 0,1 and

Ext% ., ,(AOz, AL) = 0.

Then existence of any isomorphism EV ® 7r!X((’)X) 5 EY® WIZ(EE) implies that the canonical map o s
an isomorphism.
Proof. Denote by @ the object T3, (7, E @ m33(EY ® 7 (Ox))). We have an exact triangle in D(Z x Z):

A0y Z2N7C0 4 mOA L)
Denote by H’ the functor of taking i-th cohomology of a complex. Since d # 0, 1, the associated long exact
sequence of cohomologies shows that the complex () has exactly two non-zero cohomologies: A,Oz in degree
0 and A, L in degree —d. More precisely, it shows that the morphisms

0 - —d(,
A.O, HO((2.27)—(2.30)) H(Q) and H-Q) H (k) AT

are isomorphisms. Use them from now to identify the spaces involved. Then, tautologically, the image of k
under the map

(3.50) Homp (7 x)(Q, AvLld)) 22 Homyzy (AL, ALL) = Homy (L, L) = T(O)

is the element 1 of I'(Oy).
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Claim: The map (3.50) is injective.
Clearly it suffices to show that the map %~ in (3.50) is an isomorphism. Choose an injective resolution I°®
of A,. There is a standard spectral sequence associated to the filtration by columns of the total complex of
the bicomplex Hom(Q*, I*®):

Ep~" = Extl, ,(HY(Q),A.L) = EZ¢=Hom} % . (Q A.L).

We are interested in the space Homp(zx x)(Q, A«L[d]) which is the limit EZ of the above spectral sequence.
Since the complex @ has cohomology only in two degrees, there are only two potentially non-zero terms E5 4
with p — ¢ = d. These are Eg’_d = Homgyz(AL,A,L) and Eg’o EthXZ(A*(’)Z, A,L). The space Eg’o is
0 by assumption, so we have EZ = E%~9. But observe that there are no non-zero elements EP? with p < 0,
and therefore at every page of the spectral sequence the incoming differential E"~9+"~1 — E%~d will be
zero. Thefore we have natural inclusions ES;__ld < E%~? and the spectral sequence technology ensures that
the natural map

Hompzxx)(Q, A« L[d ]) 0 — EY -

lifts along each of these inclusions. Let 8 denote the map we obtain at the limit:

—d
(351) HOHID ZxX) Q,A L © EO —d
Since E%~? is the only surviving component of E< the map 3 is an isomorphism, and the claim follows.
If Z is proper the proof ends here, since then I'(Oz) is one-dimensional, and hence so is the space
Hompzxx)(Q, A«L[d]). The argument outlined immediately before this Proposition would then complete

the proof.
In general case, the argument is a bit more involved. Suppose, indeed, there exists an isomorphism o’

EV @y (0x) %5 BY @ 1y (Ly).
Let @’ denote the object
T34 (112 B © w33 (EY @ (L)),
then o/ induces an isomorphism Q — @’ and therefore a Hom space isomorphism

(3.52) Hom 7,2 (@', A Lld]) = Homp(z,2)(@, AcL[d) 225 T(07)
Let f € T(Oz) be the image under (3.50) of the natural morphism (3.42)-(3.45) which underlies the morphism
LE® @gdj‘bE — Lrp®Idz. Then the commutation condition of Lemma 2.7 is equivalent to saying that f =1,
as 1 € I'(Oy) is the image of k under (3.50).

It therefore suffices to show that f is invertible in I'(Oy), as then by Lemma 2.7 we would have o = %o/
and therefore an isomorphism. But if f isn’t invertible, then there exists some closed point p € Z such that

f(p) = 0. But then the restriction of the morphism @’ BA)7E), A .L[n] to the fibre of Z x Z ™ Z over
p would vanish. This means precisely that the induced morphism of Fourier—Mukai transforms vanishes on
Oy, and therefore

ladj adj. co-unit
Py ‘I)E(Op) — 0

is a zero map. Therefore E, = ®(0,) = 0. But then by Proposition 3.7 we must have d = 1, which
contradicts our assumptions. Il

Corollary 3.14. Let E be a perfect object of D(X) orthogonal over Z and suppose that Lg is an invertible
object of D(Z). Suppose that for any closed point p € Z we have d, < 0 where dy, is the unique integer such
that Lg ~ Oz[dy] locally around p.

Then in Theorem 3.1 we can replace the condition that the canonical map « is an isomorphism by the
condition that there exists an arbitrary isomorphism

EY @7y (0x) ~ EY @1, (LE).
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4. SPHERICAL FIBRATIONS

The results of Section 3 are rather general and category-theoretic, owing to a rather general and category-
theoretic nature of the objects it considers - arbitrary complexes in the derived category of the fibre product
Z x X. We now choose to restrict ourselves to a setup more geometric in its nature, and study what these
results imply for the geometry involved.

Firstly, we assume Z and X to be abstract varieties. Previously we have assumed them to only be separated
schemes of finite type over k, now we assume them to also be reduced and irreducible. Strictly speaking,
neither assumption is essential for what we prove below. However without them the arguments would become
more technically involved and the results - less concise.

Secondly, and more importantly, we restrict the range of objects we consider from arbitrary complexes in
D(Z x X) to subschemes of X flatly fibred over Z.

4.1. Flat and perfect fibrations with proper fibres.

Definition 4.1. A flat fibration D in X over Z is a scheme D equipped with a closed immersion &: D < X
and a flat surjective map m: D — Z. For any closed point p € Z we denote by D, the set-theoretic fibre of
D over p:

(4.1) D, ¢ DX

Trkl ™

Spec k (7Z

LDp

Denote by tp the map D < Z x X given by the product of 7 and ¢. We have { = wxotp and 7 =z o0tp.
Denote by &, the composition § o tp,, it is the inclusion of the fibre D), into X. Let E denote the object
tp+Op of D(Z x X). We think of this object as representing D in the derived category D(Z x X).

The flatness of D over Z ensures that the category-theoretic notion of a fibre considered in the Section 3
coincides for D with the usual set-theoretic one:

Lemma 4.2. Let D be a flat fibration in X over Z, let £ be an object of D(D) and let E = 1p.E be the
corresponding object in D(Z x X). For any closed point p € Z denote by &, the fibre L*ng, then we have

B, ~ &5,
as objects of D(X). In particular, when &= Op, we have
Ep >~ gp*ODp .

Proof. The fibre square in the diagram (4.1) decomposes into two fibre squares:

(4.2) D, . p

T

XCLX—I)>Z><X?X

Spec k ——— 7

The fibre Ej, of E at p was defined to be the object ¢y E of D(X). We have therefore &, = 1% tp.Op.
Consider the base change map

(4.3) Lx,tp. = &pilh,
for the top fibre square in the diagram (4.2). Applying it to Op yields a morphism
By, = &.Ep.

It suffices therefore to prove that the top fibre square in (4.2) is independent (see [Lip09], §3.10), since then
the base change map (4.3) would be an isomorphism.

Observe that the bottom fibre square in (4.2) is independent since 7z is a projection morphism and therefore
flat. Also, the composition (4.1) of the two fibre squares in (4.2) is independent since m was assumed to be
flat. And it can be easily seen that if a composition of two fibre squares is independent and the second square
in the composition is independent, then the first square has to be independent as well. (|
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In particular, this makes it clear that ¢p.Op is an object of D(Z x X) which is orthogonal over Z. Because
for any two distinct points p and ¢ of Z the fibres D, and D, are disjoint in X and therefore all Hom’s between
£p+Op, and ;. Op,_ vanish.

In Section 3 we had to make two technical assumptions on the object E of D(Z x X) that we were working
with. These were necessary for all the adjoints of the Fourier—Mukai transform ®g to exist and to behave in
a sensible way. The first assumption was that the support of F is proper over Z. The support of tp,.Op in
Z x X is the image of D under ¢p, so this assumption is equivalent to saying that the fibration morphism
m: D — Z is proper. And 7 being proper is equivalent to all the fibres of D over closed points of Z being
schemes proper over k ([GD61], Corolaire 5.4.5).

The second assumption was that E is a perfect object of D(Z x X). This corresponds to tp.Op being
perfect and we say that a fibration D is perfect if this holds. This condition can also be checked fibre per
fibre, owing to the flatness of 7:

Lemma 4.3. Let D be a flat fibration in X over Z. Then it is perfect if and only if for every closed p € Z
the object £,.Op, is perfect in D(X).

Proof. We first claim that ¢p.Op is perfect relative to the morphism 7z : Zx X — Z. There is a commutative
diagram

(4.4) D> 7ZxX

| A

Z

and since tp is a closed immersion, and therefore proper, it takes m-perfect object to mz-perfect objects
([M171a], Proposition 4.8). By the definition of 7 being flat the structure sheaf Op is w-flat and therefore
most certainly m-perfect. We conclude that ¢p.Op is always mz-perfect.

By the fibre-wise criterion for perfection ([IlI71a], Corollaire 4.6.1) an object of D(Z x X)) is globally perfect
if and only if it is mz-perfect and its fibre over every closed point of Z is globally perfect in D(X). And by
Lemma 4.2 the fibre of tp.Op over any closed p € Z is precisely £,.Op,. The claim now follows. g

We have therefore several common scenarios in which ¢p.Op is perfect in D(Z x X):

Corollary 4.4. Let D be a flat fibration in X over Z. Then any one of the following conditions is sufficient
for D to be perfect:

(1) X is smooth.
(2) Z is smooth and &: D < Z is a regular immersion.

Proof. By Lemma 4.3 it suffices to prove that for every closed p € Z the object &,.Op, is perfect in D(X).

If X is smooth, then every object of D(X) is perfect and the claim follows trivially.

Assume now that Z is smooth and & is a regular immersion. To prove that &,.Op, is perfect in D(X)
it suffices to prove that £, is a regular immersion. This is because a regular immersion is both proper and
perfect, and therefore takes perfect objects to perfect objects ([Il71a], Corollaire 4.8.1). Recall now the
commutative diagram (4.1). Smoothness of Z is equivalent to ¢, being a regular immersion for every closed
point p of Z. Since 7 is faithfully flat, ¢, is a regular immersion if and only if .p, is a regular immersion.
Since &, is the composition

LD €
D, — D= X
and since a composition of two regular immersions is again a regular immersion, we conclude that &, is indeed
a regular immersion for every closed p € Z. O

Thus we arrive at the class of objects we want to work with: flat and perfect fibrations in X over Z with
proper fibres. For such fibrations the results of Section 3 can be re-stated in a more natural way and improved
upon. Our goal is to give a satisfying description of what does it mean for such fibrations to possess the
following property:

Definition 4.5. Let D be a flat and perfect fibration in X over Z with proper fibres. We say that D is a
spherical fibration if the object E = 1p.Op is spherical over Z in D(Z x X).

So let D be a flat and perfect fibration in X with proper fibres and let £ = ¢p,.Op be the corresponding
object in D(Z x X). Recall that the left co-twist Fg of the Fourier-Mukai transform ®5 was defined as the

cone of the adjunction unit Idp(z) — @ E@de and that the first of the two conditions for E to be spherical
was for @ to be an autoequivalence of D(Z).



22 RINA ANNO AND TIMOTHY LOGVINENKO

Denote by Lp the object Lg of D(Z), which was defined in Definition 3.6 to be the cone of a certain
composition (3.7) of natural morphisms in D(Z). This composition was later shown in Lemma 3.8 to be
precisely the pushdown from Z x Z to Z via 71, of the composition (2.27)-(2.30) of morphisms in D(Z x Z).
Recall that (2.27)-(2.30) is the composition of morphisms which defines on the level of Fourier-Mukai kernels
the adjunction unit Idpzy — @ Eq)fgdj . Now, in [AL10], Section 3, we have demonstrated that whenever
the object E of D(Z x X) is a pushforward of an object from some closed subscheme Z x X, as is the case
here, there exists a better, more economical decomposition of this morphism of Fourier-Mukai kernels than
(2.27)-(2.30). It makes sense to assume that a pushdown of this more economical decomposition to Z via 7y
would produce a better description of the defining morphism of £ than the composition (3.7). For the sake
of simplicity we choose to state this better description directly and prove directly that it is isomorphic to the
composition (3.7). An interested reader could check that dualising the composition in Corollary 3.5 of [AL10]
in the way described in Section 2.2 of this paper and applying 71, would yield precisely the following:

Proposition 4.6. Let D be a flat and perfect fibration in X with proper fibres and let E = 1p.Op be the
corresponding object in D(Z x X).
Then the natural morphism in (3.7)

Id—7 .7} 1d—»R Hom(E,E®— S mx . —1d) PP
O7 272, 7. Ogxx — om(EEe) iz« RHomzy x (E, E) (i 21 Tz« RHomzy x (T mx.E, E)
is isomorphic to the natural morphism
* *¢,—Id)oPP
(4.5) 0y Mo L o eI L ee0p)Y.

In particular, the object Lp is isomorphic to the cone of (4.5).

Proof. We have m = mz 0outp and £ = mx otp. Decomposing Id = 7, 7* as Id = 72,7}, = Tzwlp«tpTy We
see that (4.5) is the composition of Id — 7z, 7}, with the image under 7z, of

Id—ipath v(Op)

* opp
LD*OD — LD« R’HomD((’)D,(’)D) M>

Ozxx tps RHomp (L mx«tp«Op,Op)

where given an object A we denote by v(A) the adjunction unit Id - RHom(A, A®-). On the other hand
(3.7) is the composition of Id — 7z.7} with the image under 7z, of

Y(tp+Op) (7% 7 x «—1d)°PP
—_— B

Ozxx RHomzxx(tp«Op,tp«Op) RHomzxx(mx7Tx+tp+Op,tp«Op).

We claim that these two compositions are identified by

a(tp)
LDx RHOMD(LBTF}WX*LD*OD, OD) E— R’HOWLZX)((W}’/TX*LD*OD, LD*OD)

where a(cp) is the natural bifunctorial isomorphism ¢p. R Hom(¢})-,-) = RHom(-, tp«-).
Dualizing the Proposition 3.1 of [AL10] under the relative duality theory D, x (where X is in the notation
of loc. cit.) we see that the morphism

tpx O
Ozxx RICZLLIN RHomzxx(tp+Op,tp«Op)
is equal to the morphism
Id—upath +(Op) B(p)
Ozxx ———— tpxOp —— tp« RHomp(Op,O0p) —= RHomzxx(tp+Op,tp+Op)

where given a scheme map f we denote by 3(f) the natural morphism f, RHom(,) = RHom(fs, f+).
It remains to establish the commutativity of the diagram

(L tps—1d)°PP (% mx 2 —1d)°PP

LDx RHomD(C’)D,(’)D) LD*RHOMD(L*DLD*OD,OD) LD« RIHOWLD(L*D’JT}WX*LD*OD,OD)

\Lﬂ(m) Of(LD)i

RHomzyx(tp«Op,tp«Op) RHomzyx(m%mx«tp+Op,tp+Op)

(% 7 x» —1d)°PP
By the functoriality of a(tp) it suffices to show that the diagram

(5 epy—1d)°PP

(4.6) tpx RHomp(Op,Op) tpx RHomp(t5Htp«Op,Op)

ﬂ(to)i /
D

RHomzxx(tp«Op,tp+Op)
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commutes. But the isomorphism a(tp) was defined as the composition

L d—ipatt,)°PP
tpx RHom(i})-,-) blp), RHom(tp«th, tp«-) 1d7en-1p) RHom(-,tps-)
and therefore we can re-write the diagram (4.6) as

(Lt pw—1d)°PP

LDx R'HomD(OD,OD)

[3(LD)\L lﬁ(m)
(Id—s1pu )PP

RHomzxx(tp«Op,tp«Op) RHomzxx(tpstptp«Op,tp«Op)

LDx RHOT)’LD(L*DLD*OD, OD)

By the functoriality of (tp) it remains only to check that the diagram

LDx RHomD((’)D,OD)

RHomzxx(tp+Op,tp+Op)
B(p)

B(LD)\L l(L*DLD*_ﬂd)Opp
(Id—tpst] )PP

RHomzxx(tp«Op,tp«Op) <————RHomzxx(tp«tHtp+Op,tp+Op)

commutes, which it certainly does since

Id—tp«th tHipx—1d

*
tp«Op tp«tptp«Op tp+Op

is an identity morphism. O

We have a direct analogue of Proposition 3.7 for our setting, giving us a criterion for determining when
the left co-twist Fip is an autoequivalence:

Proposition 4.7. Let D be a flat and perfect fibration in X over Z with proper fibres. The following are
equivalent:
(1) For every closed point p € Z we have
R Hompx)(§+O0p,&p«Op,) = k ® kld,]  for some d, € Z.
(2) We have Lp ~ L[d] for some L € PicZ and d € Z.
(3) The left co-twist Fg is an autoequivalence of D(Z).
When the conditions above are satisfied Fg ~ (-) ® Lp[—1] and for any p € Z the integer d,, in (1) equals the

integer d in (2).

Proof. Since £ = mx o tp we have Tx.E = mx.tp+Op = &Op. By Lemma 4.2 the categorical fibre E,, is
precisely &,+Op,. Therefore (1) is equivalent to the item (1) of Proposition 3.7.

Since Z was assumed to be irreducible the invertible objects of D(Z) are precisely shifts of line bundles
([AIL10], Theorem 1.5.2). Therefore (2) is equivalent to the item (2) of Proposition 3.7.

Hence the assertion of this Proposition follows directly from that of Proposition 3.7. g

One could simlarly re-state Theorem 3.1 word for word in our present setting, however under some mild
non-degeneracy assumption on D we can apply the results of Section 3.4 to make a stronger and more
geometric statement. Observe that since Z and X are abstract varieties they are generically non-singular.
Hence the Gorenstein locus of Z x X is certaily dense in Z x X and our non-degeneracy assumption is that
the graph of D doesn’t lie completely outside this locus:

Theorem 4.1. Let D be a flat and perfect fibration in X with proper fibres. Then D is spherical if:
(1) For any closed p € Z we have

R Homx (£.0p, &p«Op,) = k © k[—(dim X — dim Z)]
(2) There exists an isomorphism
LD*fl(Ox) 1) LD*W!(,CE)

If the graph of D in Z x X doesn’t lie completely outside the Gorenstein locus of Z x X, then the reverse
implication also holds.
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Proof. We have the following natural isomorphisms:
LD*fl(Ox) l) LDx RHO’IHZX)((OD, L|D7T'X(OX)) l) RHOTTLZX)((LD*OD,W!X(O)()) :) Ev ® 7T'X(Ox)

where the second isomorphism is due to the sheafified Grothendieck duality and the third is due to £ = tp.Op
being perfect. Similarly we obtain tp.7'(Lg) ~ EY ® n,(Lp). Therefore (2) is equivalent to there exists
some isomorphism

EY ® 7T!X(Ox) ~FEV® TI'!Z(EE).

Suppose now that (1) and (2) hold. Then by Proposition 3.7 the assumption (1) implies that the left co-
twist Fi is an autoequivalence and the object £ is isomorphic to £[—(dim X —dim Z)] for some L € Pic(Z).
Since dim X —dim Z > 0 it follows by Proposition 3.13 that an existence of any isomorphism EY ®7r!X((’) x)
EY @ (L) implies that the canonical morphism a of Definition 3.10 is an isomorphism. We conclude that
Fg is an autoequivalence, the canonical morphism « is an isomorphism and so F is spherical over Z.

Conversely, suppose that F is spherical over Z and that the graph of D doesn’t lie completely outside
the Gorenstein locus of Z x X. Since E is spherical, then the left co-twist E is an autoequivalence and
so by Proposition 3.7 the object Lg is isomorphic to L[d] for some L € PicZ and d € Z. By the non-
degeneracy assumption there exists a point p € D such that (p) is Gorenstein in X and 7(p) is Gorenstein
in Z. Then by Proposition 3.11 we must have d = —(dim X — dim Z). Applying Proposition 3.7 again yields
the assertion (1). On the other hand, since E is spherical the canonical morphism « is an isomorphism
EY @7y (0x) = EY @ 15,(LE) and so the assertion (2) also holds. O

Recall now the notion of a Gorenstein map (see [AIL10], §2.4 or [AF90] for the local picture). A scheme
map f: S — T is called Gorenstein if it is perfect and if f'(Or) is an invertible object of D(S). If S is
connected, this means that f'(Or) is a shift of some line bundle in Pic.S. We call this line bundle the relative
dualizing sheaf and denote it by wg/p. For any Gorenstein scheme S over k the (global) dualizing sheaf of S
is the relative dualizing of S — Spec k and we denote it simply by wg. Needless to say that for a smooth §
this is precisely its canonical bundle.

In our setting: the map m: D — Z is faithfully flat, so it is Gorenstein if and only if its fibres are Gorenstein
schemes ([AIL10], Prop. 2.5.10). On the other hand, the map & is the composition

D2 Zx XI5 X

The closed immersion ¢p is perfect since ¢tp.Op was assumed to be perfect ([IlI71a], Prop. 4.4). Hence £ is
perfect as it is a composition of two perfect maps. So ¢ is Gorenstein if and only if ¢'(Ox) is invertible.

If either 7 or £ are Gorenstein, then we can re-state the second part of the Theorem 4.1 in terms of the
line bundles involved and get rid of the non-degeneracy assumption on D:

Proposition 4.8. Let D be a flat and perfect fibration in X over Z with proper fibres and assume that either
the immersion £&: D — X or the fibration m: D — X is Gorenstein. Then D is spherical if and only if:
(1) For any closed p € Z we have
R Homx (£&:0p, &« Op, ) = k @ k[—(dim X — dim Z)]
By Proposition 4.7 this implies that Lp = L|—(dim X — dim Z)] for some L € Pic Z.
(2) Both & and © are Gorenstein and there exists an isomorphism

wD/X >~ 7T*L®OJD/Z

in Pic D.
Proof. ‘If’: We have
¢ (0x) ~ wp,x[~(dim X — dim D)] 7(0x) ~ wp/z[dim D — dim Z]

and therefore the condition (2) implies to £'(Ox) ~ 7'(Lg). Therefore D is spherical by Theorem 4.1.
‘Only if : Suppose D is spherical, then arguing as in the proof of Theorem 4.1 we see that Lp is invertible
and that the canonical morphism « induces an isomorphism

(47) LD*S!(O)() :)LD*W!(ED).

Our assumptions imply that one of £'(Ox) or 7'(Lp) is invertible, which means that (4.7) is an isomorphism
of (shifted) coherent sheaves. But ¢p, is a closed immersion and therefore restricts to a fully faithful functor
Coh(D) — Coh(Z x X). Hence the isomorphism (4.7) lifts to an isomorphism

(48) fl(OX) l>7T'(£D)

Therefore ¢'(Ox) and 7'(Lp) are both invertible, and hence both 7 and ¢ are Gorenstein.
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Since Lg is invertible it is of form L[d] for some L € Pic Z and d € Z. We can then re-write (4.8) as
wp/x[—(dim X —dim D)] ~ 7* L[d] ® wp,z[dim D — dim Z]

whence d = —(dim X — dim Z) and the isomorphism (2). Finally, since £Lp ~ L[—(dim X — dim Z)] we can
apply Proposition 4.7 to obtain the assertion (1). O

It is worth pointing out explicitly the following:

Corollary 4.9. Let D be a spherical fibration in X over Z. Then £: D — X is a Gorenstein immersion if
and only if all the fibres of m: D — Z are Gorenstein schemes.

4.2. Regularly immersed fibrations. A most common type of a Gorenstein immersion is a regular im-
mersion. These possess a number of properties which are rather useful to our cause. A detailed introduction
can be found in [GD67], §16 and§19 and in [Ber71]. For now recall that a closed immersion ¢: ¥ < X of two
schemes is called regular if the ideal sheaf Zy- of Y in X is locally generated by a regular sequence. It follows
that locally on X the Koszul complex of Y is a resolution of the sheaf ¢,Oy by free sheaves. In particular,
the co-normal sheaf Zy /Z is a locally free sheaf on Y whose rank c is the codimension of Y in X. We denote
by Ny, x its dual (Zy /Z3 )Y, the normal sheaf of Y in X.
It quickly follows (see [Har66], §IIL.7) that

H(Ox) = ANy x[—c]

i.e. the relative dualizing sheaf wy,x is the line bundle /\CNy/ x[—¢]. We can also compute the cohomology
sheaves of the object t*1,Oy ([Ber71], Proposition 2.5) to obtain

H(nOy) = NNy, x ~ VieZ
Let now A be any object of D(Y'). By projection formula we have
Le(L7 14 A) > 1, AR 1Oy ~ 1, (AR 1" 1. Oy)

and since ¢, is fully faithful on the underlying abelian categories of coherent sheaves it follows that the
cohomology sheaves of t*1, A are isomorphic to those of A ® ¢*1,Oy .
It is an interesting question: when does ¢*1,.Oy actually splits up as a direct sum of its cohomology sheaves:

(4.9) L0y = @ NNY «i]

Clearly, this is true in case a global Koszul resolution of Y in X exists, i.e. when Y is carved out in X by a
section of vector bundle. For smooth X the general answer was provided by Arinkin and Caldararu in [AC10]:
t*1, Oy is isomorphic to @, A'Ny/ /x[d] if and only if the normal sheaf Ny x extends to the first infinitesimal
neighborhood of Y in X. The examples of when this condition holds include: when Y is carved out by a
section of a vector bundle, when the immersion ¢: Y < X can be split and when Y is the fixed locus of a
finite group action in X.

For arbitrary schemes we make the following definition, since the authors of [AC10] clearly couldn’t:

Definition 4.10. Let ¥ and X be a pair of schemes and let ¢: Y — X be a regular immersion. We say that
v is an Arinkin-Caldararu immersion if 1*1, Oy is isomorphic to @, A* ;//X[i] in D(X).

Back to our setting: we say that a fibration D in X over Z is regularly immersed if £: D — X is a regular
immersion. Knowing the cohomology sheaves of £*¢,.Op allows us to use a spectral sequence argument to
reduce the condition

R Homx (£&:0p, &« Op, ) = k @ k[—(dim X — dim Z)]
to a statement on the vanishing of the sheaf cohomology of A’A/ on D,,. And if £ is actually Arinkin-Caldararu

and £*¢,.Op breaks up as a sum of its cohomologies, then no spectral sequence is necessary and we immediately
obtain an implication running both ways:

Theorem 4.2. Let D be a regularly immersed flat and perfect fibration in X over Z with proper fibres. Let
¢ be the codimension of D in X, let d be the dimension of the fibres of D and let N be the normal sheaf of D
n X.

Then D is spherical if for any closed point p € Z the fibre D,, is a connected Gorenstein scheme and

(1) Hp (NNlp,) =0 unlessi=j=0ori=d, j=c.

(2) (wp/x)|p, ~ wp, where wp, is the dualizing sheaf of D,.
Conversely, if D is spherical, then each fibre D, is a connected Gorenstein scheme and (2) holds. And if § is
an Arinkin-Caldararu immersion, then (1) also holds.
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First we need the following lemma which gives a global version of the fibre-wise conditions of Theorem 4.2:

Lemma 4.11. Let D be a reqularly immersed flat and perfect fibration in X over Z with proper fibres. Assume
that for any closed point p € Z the fibre D, is a connected Gorenstein scheme.
Then having for every closed point p € Z

(4.10) Hp (NN|p,) =0 unlessi=j=0ori=d, j=c
WD/X\DP =Wwp,
is equivalent to having
(4.11) 7.0p =0z, 7 NN=0foral 0<j<c, m.wp/x = L[d],
wp/x =T L®wp,z
for some L € Pic Z. In particular, (4.10) implies that H%p(ODP) ~ H‘Lj‘7p (wp/x|p,) ~ k.
Proof. By flat base change around the square

DngD

Wkl J{Tf
Spec k <T> 7z

*
p

Wk*L*Dp(/\j./\/), we see that restricting (4.11) to any closed p € Z by ¢, immediately gives (4.10).
Conversely, assume that (4.10) holds for every closed p € Z. By the Grothendieck duality on D, we have
H}, (wp/x|p,) = Hp (wp,) = Hp (Op,)
and since Dy, is proper and connected we have H %p (Op,) =~ k. Therefore by the same base change we obtain
that for every closed p € Z we have

we have a functorial isomorphism ¢}, ~ Wk*LBp. Since H},p(/\j/\f |p,) is precisely the i-th cohomology of

L;ﬂ'* Oy ~k

e N Np, =0 forall0<j<c

Ly Wpx = k[—d]

Therefore 7, A N vanishes for 0 < j < ¢, while 7.Op ~ L' and mwp,x|[d] ~ L for some L', L € PicZ.
But then we must have L' ~ Oz since the adjunction unit Oz — mm*Oz gives a nowhere vanishing
morphism Oz — L’ of line bundles. This is because by flat base change the restriction of the adjunction unit
Oz = m*Oz to any p € Z is the adjunction unit & — 7.7} k& which certainly doesn’t vanish.
Similarly, observe that by the sheafified Grothendieck duality
\
L~ mwp/x[d] ~ . R”Hom(wB}X ®wp/z,wp)zd]) =~ (w*(wg}x ®wD/Z)) .

Therefore the adjunction co-unit 7*, (wB}X ®wp/z) — (wB}X ®wp/z) gives a nowhere vanishing line bundle

morphism 7*LY — wB}X ® wp/z, whence the final assertion that wp,x ~ "L ®@ wp/z. O

Proof of Theorem 4.2. ‘If’ direction: Since &, is the composition D, P2y p & X we have by adjunction
R Homx (£.0p, £+Op,) ~ RHomp(§*¢.Op, tp,«Ob,).
There is a standard spectral sequence
By = Exty (H 9 (€°€.0p), 1p,«Op,) = E7 = HomiD—ij)(f*f*OD, t0,+Op,))
and since for any j € Z we have H~7(£*¢,.0p) = ANV, it follows by adjunction that
By’ ~ Ext)(NNY,1p,.Op,) ~ Ext}, (VNY|p,,0p,) ~ H}, (NN|p,).
The fibers of D are proper and connected, so H%p (Op,) ~ k. We also have
Hp (wpx|p,) ~ Hf, (wp,) ~ H}, (Op,) ~ k.

by the assumption (2) and the Grothendieck duality.
So by the assumption (1) and by Lemma 4.11 all E5” are zero except for

EY0 = H%p(ODp) ~ k and B¢ = H%p(wD/X|Dp) =~ k.
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Since d + ¢ = dim X — dim Z # 0 the convergence of the spectral sequence tells us precisely that
R Homx (£,0p, &p«Op,) ~ k @ k[—(dim X — dim Z)].
Then, by Propositions 4.7 and 4.6, we have Lp ~ L]c+d] for some L € Pic Z and there is an exact triangle
Oz -1 RHom(£°¢.0p,0p) = L—(c+d)].

Since ¢ 4+ d > 0 it follows that the (¢ 4+ d)-th cohomology sheaf of the complex 7, R Hom(£*¢.Op, Op) is
isomorphic to L. On the other hand, we can compute this cohomology sheaf via a spectral sequence similar to
the one above and the computation gives W*wD/X[d]. Therefore by Lemma 4.11 we have wp,x ~ 7" L®wp/z.
We can therefore conclude by Proposition 4.8 that D is spherical.

‘Only If’ direction:

Conversely, suppose D is spherical. By Proposition 4.8 the fibres of m are Gorenstein schemes and we have

R Hom (6,0p,&,.0p,) ~ k & k[—(dim X — dim Z)]

for each fibre D,,. On the other hand, the same spectral sequence as before shows that the 0-th cohomology
of the complex R Hom' (£, 0p, &,.Op,) is isomorphic to HODP (Op,). Therefore H%p(@pp = k) and so the
fibers D,, are connected. Also, by Proposition 4.8 we have Lp ~ L[—(dim X — dim Z)] for some L € PicZ
and wp/x ~ 7L ®wp,z. Restricting this to every fiber gives the assertion (2).

Finally, suppose that ¢ is Arinkin-Caldararu. Then £*¢,0p ~ @, A'NY[—i], so

R Homx (£.0p, §,«Op,) ~ RHomp(£*¢.Op, tp,«Op, ) ~
~ PR Homp(A'NY, 1p,.Op, )[i] ~ @ R Homp, (Op,, N'N)[i]

and we see that the assertion (1) is equivalent to

RHomX(f*OD,Ep*ODP) ~ ko k‘[—(dlmX — dim Z)]

APPENDIX A. AN EXAMPLE

It is well-known that the derived category D(T*Fl,,) where Fl,, is the full flag variety for some Lie algebra
g carries an action of the affine braid group [KT07], [Bez06]. It is shown in [KT07] that the action of the usual
braid group Br,, is by spherical twists T;, ¢ = 1,...,n — 1 in spherical functors S;: D(T*P;) — D(T*Fl,,),
where P; are the partial flag varieties with the space of dimension ¢ missing from the flag. The functor S; is
obtained as the composition ¢,7*, where ¢: D; — T*Fl,, is the embedding of the divisor D; = Fl,, xp, T*P;,
and 7: D; — T*P; is a P!-bundle. The Fourier-Mukai kernel of S; is an example of a spherical fibration,
being the structure sheaf of D; C T*Fl,, x T*P; where D; embeds into T*F,, and is fibered over T*P;.

Recall that the usual braid group is generated by n—1 “crossings” t1,...,t,—1, with the relations ¢;t;,11t; =
tiv1tit;r1. The affine braid group is generated by the same ¢i,...,t,—1, plus a “rotation” generator r (if
the affine braid group is viewed as the group of braids in an annulus, this generator shifts strands, say,
counterclockwise). The relations then are rtyr~! =t;41 and r2t,r~2 =t;. One can add one more ”crossing”
r itir = tg = t, = rty,_17 "', keeping the relations titiy1t; = tira1titir1. In the above affine braid group
action on D(T*Fl,) the action of the functor corresponding to t, is not known to have an interpretation as
a spherical twist. This can be mended in a specific case, and the relative spherical object that induces the
twist will not be a structure sheaf of a subscheme. For the details and proofs, please see [Ann08].

Let g be sl,(C). Consider the Grothendieck-Springer resolution 7 : T*Fl,, — N of the nilpotent cone
N C g. It is also well-known [Bez06] that this action of the affine braid group on D(T*Fl,) is local with
respect to N and thus can be transferred to any U C T*Fl,, that is a preimage of some S C . Let 22, be
a nilpotent element of sly, (C), with two Jordan blocks of rank n, let S3,, C A be a transversal slice to the
orbit of zg, under the adjoint action of SLs,(C), and let Uz, C T*Fly, be the preimage of S, under the
resolution 7. This Us, is a complex symplectic variety of complex dimension 2n. The preimage A5, of z3, is
a projective variety of dimension n. It is a union of smooth components intersecting normally. For simplicity,
denote the derived category Dy, (Usy) by Day,.

This geometric setting (the choice of za, € A) is special, since for all 4 the preimages of the Springer fiber
Sap, in T*P; are isomorphic to Us,—2 (see [Ann08], Section 4), hence the functors .S; may be viewed as having
the same source Dy, _5. Thus, there are n — 1 spherical functors S; : Da,,_o — Ds,, such that the twists T; in
them generate the (usual) braid group action on Ds,. Moreover, there is an autoequivalence R : Dy, — Da,
(constructed in [Ann08], section 4.1) that corresponds to the affine generator r (see above). The remaining
twist T}, can be obtained by conjugating T7 or T5,_1 by R.
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It is proven in [Ann08], that the generator T, is indeed a twist in some functor S, : Da,—2 — Da,. In
fact, S, is isomorphic to RS; or R~!S5,_1. The remarkable thing about .S, is that being a composition of
Sy (or Sg,—1) and an autoequivalence of Dy, it retains many properties of S;’s. In particular, its kernel
K € D(Usp—2 X Uay,) is orthogonally spherical over Us,—o. At the same time K is a genuine object of the
derived category D(Uap—2 X Uy ), that is, not isomorphic to the direct sum of its cohomology sheaves. It may
be seen in the computation carried out in [Ann08], section 7.2, for n = 2; in this case Uy, _o = Uy ~ T*P!,
and while the image of Op: is a sheaf on Uy, the image of Opi(—1) is not. If K was actually a spherical
fibration, that is, a structure sheaf of some D C U, fibered over Us, this would not be possible.
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