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SCALED-FREE OBJECTS

WILL GRILLIETTE

Abstract. Several functional analysts and C*-algebraists have been
moving toward a categorical means of understanding normed objects.
In this work, I address a primary issue with adapting these abstract
concepts to functional analytic settings, the lack of free objects.

Using a new object, called a “crutched set”, and associated categories,
I devise generalized construction of normed objects as a left adjoint
functor to a natural forgetful functor. Further, the universal property
in each case yields a “scaled-free” mapping property, which extends
previous notions of “free” normed objects. In particular, I construct the
following types of scaled-free objects: Banach spaces, Banach algebras,
C*-algebras, operator spaces, and operator algebras.

In subsequent papers, this scaled-free property, coupled with the as-
sociated functorial results, will give rise to a new view of presentation
theory for C*-algebras, which inherits many properties and construc-
tions from its algebraic counterpart.
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1. Introduction

The circle of ideas regarding free objects, particularly the notion of a pair
of adjoint functors, is well-known in the literature of category theory and
abstract algebra, such as resources [3] and [11]. However, free objects rarely
exist in categories of normed objects.

To illustrate this, fix F ∈ {R,C}. Let FNVec1 denote the category whose
objects are normed F-vector spaces and whose arrows are F-linear transfor-
mations which are contractive. Also, let Set denote the category whose ob-
jects are sets and whose arrows are functions. Further, distinguish O := {0},
the zero space.

Let C be a subcategory of FNVec1. As every V ∈ Ob(C ) is a set, there
is a natural forgetful map to Ob(Set), where one regards V merely as a set.
Similarly, given V,W ∈ Ob(C ) and φ ∈ C (V,W ), φ is a function from V to
W above all else. One can quickly check that these two associations define
a functor FC : C → Set, where one ignores all the algebraic and topological
data from C .

Proposition 1.1. Let S be a nonempty set. If there is V ∈ Ob(C ) such
that V 6∼=FNVec1 O, then S has no reflection along FC .

Proof. Assume for purposes of contradiction that S had a reflection (R, η)
along FC . As V 6∼=FNVec1 O, there is some v ∈ V with ‖v‖V 6= 0. For n ∈ N,
define φn ∈ Set (S,FCV ) by φn(s) := nv, a constant function. Then, there

must exist φ̂n ∈ C (R,V ) such that FC φ̂n ◦ η = φn for all n ∈ N.
Define rs := η(s) ∈ R. As each φ̂n is an arrow in FNVec1, for all n ∈ N

and s ∈ S,

‖rs‖R ≥
∥

∥

∥
φ̂n (rs)

∥

∥

∥

V
=
∥

∥

∥

(

FC φ̂n ◦ η
)

(s)
∥

∥

∥

V
= ‖φn(s)‖V = n‖v‖V .

As ‖v‖V 6= 0, the right-hand side increases without bound. Hence, ‖rs‖R
cannot have a finite value for any s ∈ S, which cannot occur in R. As such,
this R is complete fiction.

�

This proposition has said something quite poignant. Unless one restricts
to a trivial class of normed vector spaces, i.e. just isomorphic copies of O,
or considers an empty set of generators, there is no normed F-vector space
with the free mapping property, regardless of all other restrictions of object
class or sets of contractive homomorphisms.

Since the free mapping property is a cornerstone to many constructions
in pure algebra, particularly presentation theory, this is a most discouraging
fact. Therefore, some sacrifice must be made to remedy the situation, which
has spawned several avenues of research into generators and relations.

However, in the definition of “relation” itself, there has been much debate.
In references [4] and [11], when one considers an algebraic context with a
free object, a relation is simply an element of this free object. Yet, without
a free object, how does one then define “relation”?
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One response to this question for C*-algebras can be found in [12, p. 23].
However, while examples are shown of conditions which should be “rela-
tions”, like norm bounds and *-polynomials, the actual criteria for such a
condition are left nebulous.

All C*-algebraists agree that *-polynomials should be considered as “rela-
tions” like the algebraic case. Most also include norm bounds as “relations”
since one can restrict to certain types of “admissable” representations to
build a C*-algebra with a universal mapping property, as shown in [2]. How-
ever, the functional calculi are most agreeable with *-homomorphism, where
applicable, as shown in [2] and [12]. Some conditions can force certain norm
conditions as well, such as C*-algebras of graphs and other combinatorial
objects in [7], and [19].

While all of these are examples of what a “relation” should be, a clear
definition remains elusive. Hence, one returns to the base question of how
to replace the free object in the picture of universal algebra for C*-algebras
and *-homomorphisms. Within [9], a “free C*-algebra” is defined to be
the *-monoid C*-algebra of the free *-monoid on a given set. Similarly, [6]
stated that this algebra is “the closest one gets to free C*-algebras”, though
in [12, p. 25], it is noted that this algebra is clearly not free, corroborated
by Proposition 1.1 of the present work.

One potential replacement is suggested in [10]. Though it does have
a connection to a certain kind of freeness, this is not a C*-algebra. It
is more closely related to the pro-C*-algebras developed in [18], created
by changing categories to topological *-algebras over C and continuous *-
homomorphisms.

There are more categorical approaches as well. In [13] and [14], a “C*-
relation” is defined by considering a full subcategory of a comma category.
However, this point of view obscures the classical picture, as well as the
intuitive notion of a “relation” described above.

In a different direction, [15] considers a functor, unital C*-algebras and
unital *-homomorphisms to groups and group homomorphisms by taking
the unitary group. Here, the functor is shown to have a left adjoint, namely
the group C*-algebra functor, and a few of its functorial properties are
considered.

In [16] and [17], several unit ball functors are considered in an attempt
to understand the categorical nature of the algebraic theory of C*-algebras
and *-homomorphisms. In each case, a left adjoint exists, recreating the
C*-algebraic structure. Further, they each explore the operations to build
the equational theory. However, both recognize that the “free C*-algebra”,
again the universal C*-algebra of a set of contractions, is difficult to under-
stand so this equational theory is very vague and unclear.

On the other hand, [8] introduced a new category of objects, sets with a
positive-valued function, and used these objects to build a “free” C*-algebra,
isomorphic again to the universal C*-algebra of a set of contractions. A
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substantial portion of this present work was completed before [8] came to
the author’s attention so there is some overlap.

The present work develops the same category of objects, but also gener-
alizes it and identifies the properties of both. Using these categories, the
present work builds not only C*-algebras, but other normed objects of inter-
est. In particular, the same method can be used to construct Banach spaces,
Banach algebras, operator spaces, and operator algebras with the analogous
universal property. Further, the constructions generalize the work of [9],
[16], and [17].

And, it is this “scaled-free” mapping property that is of interest. In subse-
quent papers, this mapping property, coupled with the associated functorial
results, will be shown to give rise to a new view of presentation theory for
C*-algebras, which retains many properties and constructions of its algebraic
counterpart. In particular, a clear and intuitive definition of a “C*-algebraic
relation” is forthcoming, analogous to the well-known algebraic definition
from [4] and [11]. With this presentation theory, a Tietze transformation
theorem for C*-algebras exists, analogous to the classical result of [20].

2. Crutched Sets

In this section, an object is defined and explored, creating a working
environment for a forgetful functor. Since a normed object cannot be re-
constructed if all its structure is stripped away, something more must be
retained. Specifically, as Proposition 1.1 shows, the norm is the component
causing the issue. Hence, the central notion taken here is that of a forgetful
functor which strips away all data save two components: the underlying
set and the norm. This object was previously introduced in [8], which also
recognized this norm issue.

Here, the target categories of the forgetful functors of the present work
are described and their properties explored. These properties and construc-
tions are of interest as they starkly mirror those of categories of normed
objects and distinguish both categories from Set. Further, the coproduct in
Proposition 2.2.9 will be used in decomposition theorems and constructions
not only in this work, but in subsequent papers.

2.1. Definitions & Basic Results. The objective is to construct a cate-
gory so that a forgetful functor from a category of normed objects and its
homomorphisms will have a left adjoint. Explicitly, the objects will be a set
with a “sizing” function.

Definition. A crutched set is a pair (S, f), where S is a set and f a function
from S to [0,∞). The function f is called the crutch function. For s ∈ S, s
is said to be crutched by the value f(s), and f(s) is the crutch value of s.

In Section 3, the nomenclature “crutched” becomes more clear, where this
nonnegative-valued function supports, much like a crutch, the algebraic free
construction to the construction of a normed object. Arguably, one could
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call this property “normed”, but the author chooses not to use this term as
there is no linearity assumed on f . Indeed, f is simply any set mapping
from S to [0,∞). This object was also considered in [8].

Example 2.1.1. Given any normed vector space V , define fV : V → [0,∞)
by fV (v) := ‖v‖V , the norm function. Then, (V, fV ) is a crutched set.

Example 2.1.2. Let (an)n∈N ⊂ [0,∞). Define f~a : N → [0,∞) by f~a(n) :=
an. Then, (N, f~a) is a crutched set.

In many cases, it will be advantageous to regard a crutched set as a
collection of tuples, an element of S and a nonnegative real value, rather
than a set and a function. As such, it will be a common practice to write
a crutched set as tuples or a sequence, like the previous example, when the
set is countable.

Example 2.1.3. Let S := {s, t} and f : S → [0,∞) be a crutch function. Let
λ := f(x) and µ := f(y). Then, (S, f) can be also written as

{(s, λ), (t, µ)}.

The arrows between two crutched sets should preserve the structure,
specifically the crutch function. To that end, the following definitions are
made purposefully analogous to the notion of linear continuity for normed
structures.

Definition. Given two crutched sets (S, f) and (T, g), a function φ : S → T
is bounded if there is M ≥ 0 such that for all s ∈ S, g (φ(s)) ≤Mf(s). This
will be denoted φ : (S, f) → (T, g). Let

crh(φ) := inf {M ∈ [0,∞) : g (φ(s)) ≤Mf(s)∀s ∈ S} ,

the crutch bound of φ. If crh(φ) ≤ 1, φ is constrictive.

Similarly, use of existing terminology like “norm” or “contraction” is
avoided, as there is no concept of linearity or distance in this setting. How-
ever, as these notions are analogous, familiar results follow immediately from
definition.

First, the relationship between the crutch bound of a bounded function
and the crutch functions of its domain and codomain directly mirrors the
relationship between the norm of a bounded linear map and the norms of
its domain and codomain.

Proposition 2.1.4. Let (S, f) and (T, g) be crutched sets and φ : (S, f) →
(T, g) be bounded. Then, for all s ∈ S,

g(φ(s)) ≤ crh(φ)f(s).

Proof. For n ∈ N, there is Mn ∈ {M ∈ [0,∞) : g (φ(s)) ≤Mf(s)∀s ∈ S}

such that crh(φ) ≤Mn ≤ crh(φ) +
1

n
. For each s ∈ S,

g(φ(s)) ≤Mnf(s) ≤

(

crh(φ) +
1

n

)

f(s).
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Letting n→ ∞, g(φ(s)) ≤ crh(φ)f(s).
�

Observe that as a result, if φ : (S, f) → (T, g) is constrictive, g(φ(s)) ≤
f(s) for all s ∈ S. This is taken as definition for the maps considered in [8].

The above proposition immediately yields the following result regarding
compositions of bounded functions, reflecting its counterpart for bounded
linear maps.

Corollary 2.1.5. Let (S, f), (T, g), and (U, h) be crutched sets and φ :
(S, f) → (T, g) and ψ : (T, g) → (U, h) be bounded. Then, ψ ◦ φ : S → U is
bounded and

crh(ψ ◦ φ) ≤ crh(ψ) crh(φ).

Corollary 2.1.6. Let (S, f), (T, g), and (U, h) be crutched sets and φ :
(S, f) → (T, g) and ψ : (T, g) → (U, h) be constrictive. Then, ψ ◦ φ :
(S, f) → (U, h) is constrictive.

Also, the computation of the crutch bound can be reformulated from an
infimum to a supremum in a familiar way.

Proposition 2.1.7. Let (S, f) and (T, g) be crutched sets and φ : (S, f) →
(T, g) be bounded. Then,

crh(φ) = sup

({

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

∪ {0}

)

.

Proof. Let L := sup

({

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

∪ {0}

)

. For all s 6∈ f−1(0),

0 ≤ g(φ(s)) ≤ crh(φ)f(s)

so

0 ≤
g(φ(s))

f(s)
≤ crh(φ).

Thus, L ≤ crh(φ).

For s 6∈ f−1(0),
g(φ(s))

f(s)
≤ L so g(φ(s)) ≤ Lf(s). For s ∈ f−1(0),

0 ≤ g(φ(s)) ≤ crh(φ)f(s) = 0.

Then, g(φ(s)) = 0 = Lf(s). Therefore, crh(φ) ≤ L.
�

From this result, alternate criteria for boundedness can be devised.

Proposition 2.1.8. Let (S, f) and (T, g) be crutched sets. A function φ :
S → T is bounded if and only if

sup

({

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

∪ {0}

)

<∞

and g(φ(s)) = 0 for all s ∈ f−1(0).
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Proof. (⇒) This direction is the content of Proposition 2.1.7.
(¬ ⇒ ¬) Assuming that φ is not bounded, then for each M ≥ 0, there is

sM ∈ S such that g (φ (sM )) > Mf (SM ). If some sM ∈ f−1(0), then

g (φ (sM )) > Mf (sM) = 0.

If sM 6∈ f−1(0) for all M ≥ 0, then

g (φ (sM ))

f (sM )
> M

for every M ≥ 0. Hence,

sup

({

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

∪ {0}

)

= ∞.

�

Now, observe that the criterion on f−1(0) is necessary. Without linearity
in φ, f−1(0) does not necessarily get mapped into g−1(0).

Example 2.1.9. Let V and W be normed vector spaces and φ : V →W be a
bounded linear function. Let fV and fW be crutch functions on V and W ,
respectively, defined as in Example 2.1.1. By Propositions 2.1.7 and 2.1.8,
φ is a bounded function from (V, fV ) to (W,fW ) and crh(φ) = ‖φ‖B(V,W ).

Example 2.1.10. Given a crutched set (S, f), let idS : S → S be given by
idS(s) := s, the identity function. Then, as f ◦ idS = f , idS is constrictive
with

crh (idS) =

{

1, S 6= f−1(0),
0, otherwise.

Example 2.1.11. Let S := T := N. Define f : S → [0,∞) by f(n) := n and

g : T → [0,∞) by g(n) :=
1

n
. Further, let φ : S → T by φ(n) := n. Then,

for each n ∈ S,

g(φ(n))

f(n)
=

1
n

n
=

1

n2
≤ 1,

meaning φ is bounded and crh(φ) = 1 by Propositions 2.1.7 and 2.1.8. In
particular, φ is constrictive.

However, let ψ : T → S by ψ(n) := n, the inverse set map of φ. For
n ∈ T ,

f(ψ(n))

g(n)
=
n
1
n

= n2.

Thus, ψ is unbounded by Proposition 2.1.8.
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2.2. Category of Crutched Sets & Constrictive Maps. Next, a de-
tailed study is conducted of crutched sets and constrictive functions between
them. This combination of objects and maps was considered previously in
[8]. For notation, the symbol CSet1 will be used to denote the following
data:

• Ob (CSet1) := the class of all crutched sets;
• For (S, f), (T, g) ∈ Ob(CSet1), define

CSet1((S, f), (T, g)) :=

{

φ ∈ Set(S, T ) :
φ constrictive from

(S, f) to (T, g)

}

.

Equipping this structure with function composition, the following results
from Corollary 2.1.6 and Example 2.1.10.

Proposition 2.2.1. CSet1 is a category.

With this new structure defined, one considers some of its basic proper-
ties and constructions. Many of these will be very familiar to anyone with
experience with Set. However, most interestingly, the basic constructions
immediately resemble their counterparts in normed structures. This seems
to indicate the dependency of these notions on the positive function, not
algebraic structure or notions of linearity or distance.

To begin, consider the primary properties of constrictive mappings and
criteria for isomorphism. This proposition makes precise the statements
made in Remark 1.1.9 from [8].

Proposition 2.2.2. Let (S, f) and (T, g) be crutched sets and φ : (S, f) →
(T, g) be constrictive. The following characterizations hold.

(1) φ is a monomorphism in CSet1 iff φ is one-to-one;
(2) φ is an epimorphism in CSet1 iff φ is onto;
(3) φ is a section in CSet1 iff φ is one-to-one, g ◦ φ = f , and for all

t 6∈ φ(S), there is st ∈ S such that f (st) ≤ g(t);
(4) φ is a retraction in CSet1 iff for all t ∈ T , φ−1(t) ∩ f−1(g(t)) 6= ∅;
(5) φ is an isomorphism in CSet1 iff φ is one-to-one, onto, and g ◦φ =

f .

Proof. (1) (⇒) Assume that φ is a monomorphism in CSet1. Let s, ŝ ∈
S such that φ(s) = φ(ŝ). Let U := {0} and h(0) := max{f(s), f(ŝ)}.
Define α(0) := s and β(0) := ŝ. Clearly, α and β are both constric-
tive, and

(φ ◦ α)(0) = φ(s) = φ(ŝ) = (φ ◦ β)(0).

Hence, α = β, meaning s = α(0) = β(0) = ŝ.
(⇐) Assume φ is one-to-one. Then, for any crutched set (U, h),

let α, β : (U, h) → (S, f) be constrictive such that φ ◦ α = φ ◦ β. For
all u ∈ U , φ(α(u)) = φ(β(u)). Since φ is one-to-one, α(u) = β(u),
meaning α = β.



SCALED-FREE OBJECTS 9

(2) (⇒) Assume φ is an epimorphism in CSet1. Let U := {0, 1} and
h(u) := 0. Define α, β : T → U by α(t) := 0 and

β(t) :=

{

0, t ∈ ran(φ)
1, t 6∈ ran(φ)

.

Clearly, α and β are both constrictive, and for all s ∈ S,

(α ◦ φ)(s) = 0 = (β ◦ φ)(s).

Thus, α = β, so for all t ∈ T , β(t) = α(t) = 0. Therefore, T =
ran(φ).

(⇐) Assume φ is onto. Then, for any crutched set (U, h), let
α, β : (T, g) → (U, h) be constrictive such that α ◦ φ = β ◦ φ. For
all t ∈ T , there is some s ∈ S such that t = φ(s). Thus, α(t) =
(α ◦ φ)(s) = (β ◦ φ)(s) = β(t), so α = β.

(3) (⇒) Assume that φ is a section in CSet1. By definition, there is a
constrictive ψ : (T, g) → (S, f) such that ψ ◦ φ = idS . From basic
function results, φ must be one-to-one. For all s ∈ S,

f(s) = (f ◦ idS) (s) = (f ◦ ψ ◦ φ)(s) ≤ (g ◦ φ)(s) ≤ f(s)

so f(s) = (g ◦ φ)(s), meaning f = g ◦ φ. Lastly, let st := ψ(t) for
each t ∈ T . Then, f (st) ≤ g(t).

(⇐) Assuming the result, define ψ : T → S by

ψ(t) :=

{

s, t = φ(s),
st, t 6∈ φ(S).

As φ is one-to-one, this is a well-defined function, and ψ ◦ φ = idS
by design. To prove ψ constrictive, observe that for s ∈ S,

f(ψ(φ(s))) = f(s) = g(φ(s))

and for t 6∈ φ(S),

f(ψ(t)) = f (st) ≤ g(t).

(4) (⇒) Assume that φ is a retraction in CSet1. By definition, there is
a constrictive ψ : (T, g) → (S, f) such that φ ◦ ψ = idT . For t ∈ T ,
let st := ψ(t). Observe that φ (st) = t and

g(t) = (g ◦ idS) (t) = (g ◦ φ ◦ ψ)(t) ≤ f(ψ(t)) = f (st) ≤ g(t).

Thus, g(t) = f (st), so st ∈ φ−1(t) ∩ f−1(g(t)).
(⇐) Assuming the result, let st ∈ φ−1(t) ∩ f−1(g(t)) and define

ψ : T → S by ψ(t) := st. Then, φ ◦ ψ = idT by design. To prove ψ
constrictive, observe that for all t ∈ T ,

f(ψ(t)) = f (st) = g(t).

(5) (⇒) Assume that φ is an isomorphism in CSet1. By definition,
there is a constrictive ψ : (T, g) → (S, f) such that ψ ◦ φ = idS and
φ◦ψ = idT . Then, φ is both a section and a retraction, in particular,
an epimorphism. Hence, φ is one-to-one, onto, and f = g ◦ φ.
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(⇐) Assuming the result, φ is an epimorphism since it is onto.
Further, T \ φ(S) = ∅ by this fact, meaning φ is furthermore a
section. Hence, φ is an isomorphism.

�

It is of some note that each of the conditions in Item 5 are necessary.
In particular, the condition f = g ◦ φ is reminiscent of isometry in normed
spaces. However, these constrictive functions are not linear so this condition
alone does not imply even monomorphism, let alone isomorphism.

Example 2.2.3. Let S := {0}, f(0) := 1, and g(0) := 0. Define φ : S → S
by φ(0) := 0, a constrictive map. However, while φ is both monic and epic,
it is not a section or retraction. This example concretely demonstrates the
statement made in Remark 1.1.9 of [8] about monic and epic constrictions
which are not sections or retractions.

Example 2.2.4. Let S := N, f(n) := 1, T := {0}, and g(0) := 1. Define
φ : S → T by φ(n) := 0, a constrictive map. Then, φ is a retraction and
g ◦ φ = f , but it is not a monomorphism.

Similarly, define ϕ : T → S by ϕ(0) := 1, another constrictive map. Then,
ϕ is section, but it is not an epimorphism.

Next, consider the standard universal constructions in CSet1.

Proposition 2.2.5. Let (S, f) and (T, g) be crutched sets and α, β : (S, f) →
(T, g) constrictive maps. Let

K := {s ∈ S : α(s) = β(s)},

k := f |K , and ι : K → S by ι(s) := s. Then,

EqCSet1
(α, β) ∼=CSet1 (K, k).

Further, given any L ⊆ S, define l := f |L. Then, (L, l) can be realized as
an equalizer of two parallel arrows from (S, f).

Proof. From definition, ι is constrictive and α ◦ ι = β ◦ ι. To check the
universal property, let (U, h) be a crutched set and φ : (U, h) → (S, f) be
constrictive such that α ◦ φ = β ◦ φ.

(K, k)
ι // (S, f)

α ,,

β
22 (T, g)

(U, h)

φ

::vvvvvvvvv

Then, for all u ∈ U , (α ◦ φ)(u) = (β ◦ φ)(u). Hence, φ(u) ∈ K so define

φ̂ := φ|K , restricting its codomain. Since the crutch function is likewise

restricted, φ̂ is constrictive. Also, φ = ι ◦ φ̂ by expansion of codomain.
Assume that there was ϕ : (U, h) → (K, k) such that φ = ι ◦ ϕ. Then,

ι ◦ ϕ = ι ◦ φ̂ and as ι is one-to-one, ϕ = φ̂.
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For (L, l), let T := {0, 1} and g(t) := 0. Define α, β : S → T by α(s) := 0
and

β(s) :=

{

0, s ∈ L
1, s 6∈ L

.

Then,
EqCSet1

(α, β) ∼=CSet1 (K, k) = (L, l).

�

For a coequalizer, notice that the crutch function sharply reflects the
quotient norm in normed algebraic structures.

Proposition 2.2.6. Let (S, f) and (T, g) be crutched sets and α, β : (S, f) →
(T, g) constrictive maps. Let

P :=
{

(α(s), β(s)) ∈ T 2 : s ∈ S
}

and ∼P be the equivalence relation on T generated by P . Define Q := T/ ∼P ,
q([t]) := inf{g(τ) : τ ∼P t}, and ξ : T → Q by ξ(t) := [t]. Then,

CoeqCSet1
(α, β) ∼=CSet1 (Q, q).

Further, given any equivalence relation ∼ on T , define r : T/ ∼→ [0,∞) by
r([t]) := inf{g(τ) : τ ∼ t}. Then, (T/ ∼, r) can be realized as a coequalizer
of two parallel arrows to (T, g).

Proof. From definition, ξ is constrictive and ξ ◦ α = ξ ◦ β. To check the
universal property, let (U, h) be a crutched set and φ : (T, g) → (U, h) be
constrictive such that φ ◦ α = φ ◦ β.

(S, f)
α ,,

β
22 (T, g)

ξ //

φ

##HH
HH

HH
HH

H
(Q, q)

(U, h)

Consider ∼φ:=
{

(t, τ) ∈ T 2 : φ(t) = φ(τ)
}

. Note that ∼φ is an equivalence
relation. Further, for all s ∈ S, (φ ◦ α)(s) = (φ ◦ β)(s). Hence, P ⊆∼φ so
∼P⊆∼φ. Thus, if t ∼P τ , t ∼φ τ , or rather, φ(t) = φ(τ). Hence, define

φ̂ : Q → U by φ̂([t]) := φ(t). By the above argument, this is well-defined.
For all t ∈ T ,

(

φ̂ ◦ ξ
)

(t) = φ̂([t]) = φ(t),

meaning φ̂ ◦ ξ = φ. Now, for all τ ∈ [t],
(

h ◦ φ̂
)

([t]) = (h ◦ φ)(τ) ≤ g(τ).

Hence,
(

h ◦ φ̂
)

([t]) ≤ q([t]), meaning φ̂ is constrictive.

Assume there was some other constrictive ϕ : (Q, q) → (U, h) such that
φ = ϕ ◦ ξ. Then, for all t ∈ T ,

ϕ([t]) = (ϕ ◦ ξ)(t) = φ(t) = φ̂([t]).
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Thus, ϕ = φ̂.
For (T/ ∼, r), let S :=∼ and f(t, τ) := max{g(t), g(τ)}. Define α, β :

S → T by α(t, τ) := t and β(τ) := τ . Then,

CoeqCSet1
(α, β) ∼=CSet1 (Q, q) = (T/ ∼, r).

�

The product in CSet1 should be compared to the ℓ∞-sum of normed
spaces.

Proposition 2.2.7. For an index set I, let (Si, fi) be crutched sets for i ∈ I.
Define

P :=

{

~s ∈ Set

(

I,
⋃

i∈I

Si

)

: ~s(i) ∈ Si∀i ∈ I, sup {fi (~s(i)) : i ∈ I} <∞

}

,

f : P → [0,∞) by f (~s) := sup {fi (~s(i)) : i ∈ I}, and πi : P → Si by
πi (~s) := ~s(i). Then,

∏

i∈I

CSet1
(Si, fi) ∼=CSet1 (P, f).

Proof. From definition, πi is constrictive for each i ∈ I. To check the uni-
versal property, let (U, h) be a crutched set and φi : (U, h) → (Si, fi) be
constrictive.

(P, f)
πi // (Si, fi)

(U, h)

φi

::uuuuuuuuu

For each u ∈ U , observe that (fi ◦ φi) (u) ≤ h(u). Hence,

sup {(fi ◦ φi) (u) : i ∈ I} <∞

so define φ : U → P by φ(u)(i) := φi(u). Then, πi ◦ φ = φi for each i ∈ I.
Also,

(f ◦ φ)(u) = sup {(fi ◦ φi) (u) : i ∈ I} ≤ h(u),

making φ constrictive.
Assume there was some other constrictive ϕ : (U, h) → (P, f) such that

πi ◦ ϕ = φi. Then, for each i ∈ I and u ∈ U ,

(πi ◦ ϕ) (u) = φi(u)

Hence, ϕ(u)(i) = φi(u) = φ(u)(i), meaning ϕ(u) = φ(u). Therefore, ϕ = φ.
�

Notice that there are times when a product of nontrivial objects is trivial.
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Example 2.2.8. Define S := {0} and fn(0) := n for all n ∈ N. Then,
∏

n∈NCSet1
(S, fn) ∼=CSet1

(

∅,0[0,∞)

)

,

the empty set and the empty function into [0,∞). Further, the canonical
projections from the product to S are empty functions, which are hardly
onto mappings.

Dually, a coproduct of CSet1 is more closely related to the disjoint union
in Set. This is of interest as it gives a canonical way of writing any crutched
set in terms of singletons.

Proposition 2.2.9. For an index set I, let (Si, fi) be crutched sets for i ∈ I.
Define

C :=

{

(i, s) ∈ I ×

(

⋃

i∈I

Si

)

: s ∈ Si

}

,

f : C → [0,∞) by f(i, s) := fi(s), and ρi : Si → C by ρi(s) := (i, s). Then,

∐

i∈I

CSet1
(Si, fi) ∼=CSet1 (C, f).

Further, for any crutched set (T, g),

(T, g) ∼=CSet1

∐

t∈T

CSet1
{(t, g(t))} .

Proof. From definition, ρi is constrictive for each i ∈ I. To check the uni-
versal property, let (U, h) be a crutched set and φi : (Si, fi) → (U, h) be
constrictive.

(C, f) oo ρi
(Si, fi)

(U, h)
zz φi

uuuuuuuuu

Define φ : C → U by φ(i, s) := φi(s). Then, for each i ∈ I and s ∈ Si,

(φ ◦ ρi) (s) = φ(i, s) = φi(s)

meaning φ ◦ ρi = φi. Also,

(h ◦ φ)(i, s) = (h ◦ φi) (s) ≤ fi(s) = f(i, s)

so φ is constrictive.
Assume that there was some other constrictive ϕ : (C, f) → (U, h) such

that ϕ ◦ ρi = φi. Then, for each i ∈ I and s ∈ Si,

ϕ(i, s) = (ϕ ◦ ρi) (s) = φi(s) = φ(i, s).

Therefore, ϕ = φ.
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Given a crutched set (T, g), note that
{

(t, τ) ∈ T ×

(

⋃

t∈T

{t}

)

: τ ∈ {t}

}

= {(t, t) : t ∈ T} ∼=Set T

and

f(t, t) = g|{t}(t) = g(t).

Thus, the second result follows.
�

An empty product yields a terminal object, {(0, 0)}, and the empty co-
product an initial object,

(

∅,0[0,∞)

)

. AsCSet1 has all products and equaliz-
ers, all the other standard limit processes can be performed. Dually, colimit
processes follow from the existence of all coproducts and coequalizers. Sum-
marily, this may be stated as follows.

Corollary 2.2.10. The category CSet1 is complete and cocomplete.

However, Set also shares these completion properties. This is not un-
expected as CSet1 adds relatively little structure to Set. Indeed, this is
actually desired so as to remain close to the classical construction of a free
object.

Yet, CSet1 is not isomorphic to Set as categories. To see this, recall that
every object in Set is projective with respect to all epimorphisms in Set.
However, the idea of constriction almost completely forbids this behavior in
CSet1.

Proposition 2.2.11. Let (S, f) be a crutched set.

(1) (S, f) is projective relative to all epimorphisms in CSet1 iff S = ∅.
(2) (S, f) is injective relative to all monomorphisms in CSet1 iff S 6= ∅

and f = 0.

Proof. (1) (⇐) Assume that S = ∅. Then, f = 0[0,∞). Let (T, g) and
(U, h) be crutched sets and α : (U, h) → (T, g) be an epimorphism.
As (∅,0[0,∞)) is initial, there is only one function from it to any
other crutched set, the empty function. Let 0T and 0U be the empty
functions to T and U , respectively. Then, 0T = α ◦ 0U trivially.

(¬ ⇐ ¬) For purposes of contradiction, assume that S 6= ∅ and
(S, f) is projective relative to all epimorphisms. For each n ∈ N,
define g, hn : S → [0,∞) by g(s) := 0 and hn(s) := n. Also, let
φ, αn : S → S by φ(s) := αn(s) := s. Then, consider the following
diagram in CSet1 for each n.

(S, f)

φ
��

(S, g) oooo
αn

(S, hn)
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Since αn is onto and (S, f) projective to epimorphisms, there must
be a constrictive φn : (S, f) → (S, hn) such that φ = αn ◦ φn. Then,
for each s ∈ S and n ∈ N,

s = φ(s) = (α ◦ φn)(s) = φn(s)

and
n = (hn ◦ φn)(s) ≤ f(s).

Thus, f cannot have a finite value, contradicting that (S, f) was a
crutched set.

(2) (⇒) Assume that (S, f) is injective relative to all monomorphisms.
Let 0S : ∅ → S and 0{0} : ∅ → {0} be the empty functions into S
and {0}, respectively. Consider the following diagram in CSet1.

(S, f)
OO

0S

(∅,0[0,∞)) //
0{0}

// {(0, 0)}.

As (S, f) is injective relative to 0{0}, there must be a constric-
tive map from {(0, 0)} to (S, f). Hence, there is a function from
a nonempty set into S, forcing S 6= ∅.

Define h : S → [0,∞) by h(s) := 0. Also, let φ, α : S → S by
φ(s) := α(s) := s. Then, consider the following diagram in CSet1.

(S, f)
OO

φ

(S, f) //
α

// (S, h).

Then, there is a constriction φ̂ : (S, h) → (S, f) such that φ = φ̂ ◦ α.
Then, for each s ∈ S,

s = φ(s) =
(

φ̂ ◦ α
)

(s) = φ̂(s)

and
0 ≤ f(s) =

(

f ◦ φ̂
)

(s) ≤ h(s) = 0.

(⇐) Assume that f = 0 and S 6= ∅. Let (T, g) and (U, h) be
crutched sets and α : (T, g) → (U, h) be a monomorphism. Define

Û := ran(α) and observe that α|Û is bijective. Given any φ : T → S,

choose any s0 ∈ S and define φ̂ : U → S by

φ̂(u) :=

{

φ(s), u = α(s)

s0, u 6∈ Û
.

As α is one-to-one, this is a well-defined function. Clearly, φ = φ̂◦α,
and since f = 0, φ̂ is trivially constrictive.

�
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There is precisely one isomorphism class of a projective object relative to
all epimorphisms in CSet1, but Set has a proper class of such isomorphism
classes. Hence, the distinction follows.

Corollary 2.2.12. CSet1 and Set are not isomorphic as categories.

To close this section on CSet1, this category can be used to extend the
failure result of Proposition 1.1. As before, let C be a subcategory of CSet1.
There is a natural forgetful map from Ob(C ) to Ob(Set), where one strips
away the crutch function. Similarly, given (S, f), (T, g) ∈ Ob(C ) and φ ∈
C ((S, f), (T, g)), φ ∈ Set(S, T ) by definition of CSet1. One can quickly
check that these two associations define a functor FC : C → Set, where one
ignores all the numeric properties from C .

Proposition 2.2.13. Let S be a nonempty set. Assume that for each n ∈ N,
there is an object (Sn, fn) ∈ Ob(C ) with an element sn ∈ f−1

n ([n,∞)). Then,
S has no reflection along FC .

Proof. For purposes of contradiction, assume that S has a reflection ((R, f), η)
along FC . For each n ∈ N, define φn ∈ Set (S,FCSn) by φn(s) := sn, a con-

stant function. Then, there is a unique φ̂n ∈ C ((R, f), (Sn, fn)) such that

FC φ̂n ◦ η = φn for all n ∈ N.
For each s ∈ S, let rs := η(s) ∈ R and observe that for each n ∈ N,
f (rs) ≥ fn

(

φ̂n (rs)
)

= fn

((

FC φ̂n ◦ η
)

(s)
)

= fn (φn(s)) = fn (sn) ≥ n.

Hence, f (rs) cannot have finite value for any s ∈ S, which cannot occur in
(R, f). As such, this reflection is fiction.

�

In the case of Proposition 1.1, all the Sn were the same nontrivial normedF-vector space and the sn multiples of a nonzero vector. Thus, the above
proposition genuinely resolves to Proposition 1.1 when C is a nontrivial
subcategory of FNVec1.

However, this generalization allows the elements of increasing size to come
from different objects in C , which seems to sour any possibility of classical
free objects in most categories of interest. For example, the any subcategory
of CSet1 containing the singleton crutched sets {(0, n)} for n ∈ N cannot
have a reflection along the forgetful functor for any nonempty set S.

2.3. Category of Crutched Sets & Bounded Maps. Likewise, crutched
sets and bounded functions between them can be studied, comparing this
structure to CSet1. For notation, the symbol CSet∞ will be used to denote
the following data:

• Ob (CSet∞) := the class of all crutched sets;
• For each (S, f), (T, g) in Ob(CSet∞), define

CSet∞((S, f), (T, g)) :=

{

φ ∈ Set(S, T ) :
φ bounded from
(S, f) to (T, g)

}

.
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Equipping this structure with function composition, the following results
from Corollary 2.1.5 and Example 2.1.10.

Proposition 2.3.1. CSet∞ is a category.

With this new structure defined, one considers some of its basic proper-
ties and constructions. At first glance, CSet∞ is very similar to CSet1,
and most of its constructions are identical. However, there are some no-
table distinctions between the two, reminiscent of the differences between
considering Banach spaces with bounded linear maps and contractive linear
maps.

To begin, consider the primary properties of bounded mappings and cri-
teria for isomorphism.

Proposition 2.3.2. Let (S, f) and (T, g) be crutched sets and φ : (S, f) →
(T, g) be bounded. Define K := T \ φ(S), h := g|K , and

λ := inf

{

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

.

(1) φ is a monomorphism in CSet∞ iff φ is one-to-one;
(2) φ is an epimorphism in CSet∞ iff φ is onto;
(3) φ is a section in CSet∞ iff φ is one-to-one, λ > 0, and there is a

bounded function α : (K,h) → (S, f);
(4) φ is a retraction in CSet∞ iff there are (st)t∈T ⊆ S such that

φ (st) = t for all t ∈ T , f (st) = 0 for all t ∈ g−1(0) and

sup

({

f (st)

g(t)
: t 6∈ g−1(0)

}

∪ {0}

)

<∞;

(5) φ is an isomorphism in CSet∞ iff φ is one-to-one, onto, and λ > 0.

Proof. (1) Use bounded α and β in the proof of Proposition 2.2.2.
(2) Use bounded α and β in the proof of Proposition 2.2.2.
(3) (⇒) Assume that φ is a section in CSet∞. By definition, there

is a bounded ψ : (T, g) → (S, f) such that ψ ◦ φ = idS . From
basic function results, φ must be one-to-one. Letting α := ψ|K ,
α : (K,h) → (S, f) is bounded as ψ was. If there is s 6∈ f−1(0),
observe that

0 < f(s) = (f ◦ idS) (s) = (f ◦ ψ ◦ φ)(s) ≤ crh(ψ)(g ◦ φ)(s)

so crh(ψ) 6= 0 and

1

crh(ψ)
≤

(g ◦ φ)(s)

f(s)
.

Hence, λ ≥
1

crh(ψ)
> 0.

If S = f−1(0), then λ = ∞ by convention.
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(⇐) Assuming the conclusion, define ψ : T → S by

ψ(t) :=

{

s, t = φ(s),
α(t), t ∈ K.

As φ is one-to-one, this is a well-defined function, and ψ ◦ φ = idS
by design. To prove ψ bounded, note that for all t ∈ K,

f(α(t)) ≤ crh(α)h(t) = crh(α)g(t)

since α is bounded. If t = φ(s) for some s ∈ S, consider when
g(t) = 0. If f(s) 6= 0, then λ = 0, contradicting the assumption.
Thus, f(s) = 0 ≤ crh(α)g(t).

If S = f−1(0), the proof is complete here as all t = φ(s) would
satisfy g(t) = 0 by Proposition 2.1.8. If not, consider when t =
φ(s) and g(t) 6= 0. By the converse of Proposition 2.1.8, f(s) 6= 0,
meaning λ 6= ∞. Hence,

f(s) =
f(s)

(g ◦ φ)(s)
· (g ◦ φ)(s) ≤

1

λ
g(t).

Therefore, for all t ∈ T ,

f(ψ(t)) ≤ max

{

1

λ
, crh(α)

}

g(t),

meaning ψ is bounded.
(4) (⇒) Assume that φ is a retraction in CSet∞. By definition, there

is a bounded ψ : (T, g) → (S, f) such that φ ◦ ψ = idT . For t ∈ T ,
let st := ψ(t). Observe that φ (st) = t. Also, by Proposition 2.1.8,
f (st) = 0 for all t ∈ g−1(0) and

sup

({

f (st)

g(t)
: t 6∈ g−1(0)

}

∪ {0}

)

<∞.

(⇐) Assuming the result, define ψ : T → S by ψ(t) := st. Then,
φ ◦ ψ = idT by design. Further, by Proposition 2.1.8, ψ is bounded.

(5) (⇒) Assume that φ is an isomorphism in CSet∞. Then, there is a
bounded ψ : (T, g) → (S, f) such that ψ ◦ φ = idS and φ ◦ ψ = idT .
Thus, φ is both a section and a retraction, in particular also an
epimorphism. Hence, φ is one-to-one, onto, and λ > 0.

(⇐) Assuming the result, φ is an epimorphism as it is onto. Fur-
ther, T \φ(S) = ∅ by this fact, meaning φ is further a section. Hence,
φ is an isomorphism.

�

Much like Proposition 2.2.2, each of the criteria in Item 5 are necessary.
In particular, the infimum criterion is identical to the notion of “bounded
below” for bounded linear maps, but like its “isometric” counterpart in
Proposition 2.2.2, this fact alone does not imply monomorphism, let alone
isomorphism. Examples 2.2.3 and 2.2.4 also demonstrate the necessity of
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the criteria in Item 5, but Example 2.1.11 demonstrates this bounded below
idea in a less trivial way.

Next, equalizers for parallel arrows in CSet∞ are computed precisely the
same way they are in CSet1.

Proposition 2.3.3. Let (S, f) and (T, g) be crutched sets and α, β : (S, f) →
(T, g) bounded maps. Let

K := {s ∈ S : α(s) = β(s)},

k := f |K , and ι : K → S by ι(s) := s. Then,

EqCSet∞
(α, β) ∼=CSet∞ (K, k).

Since the notions of equalizer in CSet1 and CSet∞ determine the same
object up to isomorphism in CSet1, the following definition seems very
natural.

Definition. Given a crutched set (S, f), a crutched subset of (S, f) is a pair
(K, k), where K ⊆ S and k = f |K .

Similarly, coequalizers for parallel arrows in CSet∞ are also share the
same structure as their CSet1 counterparts.

Proposition 2.3.4. Let (S, f) and (T, g) be crutched sets and α, β : (S, f) →
(T, g) bounded maps. Let

P :=
{

(α(s), β(s)) ∈ T 2 : s ∈ S
}

and ∼P be the equivalence relation on T generated by P . Define Q := T/ ∼P ,
q([t]) := inf{g(τ) : τ ∼P t}, and ξ : T → Q by ξ(t) := [t]. Then,

CoeqCSet∞
(α, β) ∼=CSet∞ (Q, q).

Again, as the notions of coequalizer correspond between the two categories
in question, the following definition appears sensical.

Definition. Given a crutched set (S, f) and an equivalence relation ∼ on
S, the crutched quotient set of (S, f) by ∼ is (Q, q), where Q := S/ ∼ and
q([t]) := inf{f(τ) : τ ∼ t}.

Turning attention toward products, CSet∞ begins to show more differ-
ences from CSet1. Computation of binary product in CSet∞ is identical
to its CSet1 counterpart.

Proposition 2.3.5. Let (S1, f1) and (S2, f2) be crutched sets. Define

P := S1 × S2,

f : P → [0,∞) by f (s1, s1) := max {f1 (s1) , f2 (s2)}, and πi : P → Si by
πi (s1, s2) := si for i = 1, 2. Then,

(S1, f1)
∏CSet∞

(S2, f2) ∼=CSet∞ (P, f).
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AsCSet∞ has binary products and has a terminal object, namely {(0, 0)},
it immediately has any finitary product by iteration of the binary product.
However, CSet∞ does not have arbitrary product objects. This is similar
to the case of Banach spaces with bounded linear maps.

Example 2.3.6. For n ∈ N, let Sn := [0,∞) and fn : Sn → [0,∞) by
fn(λ) := λ. Assume for purposes of contradiction that (Sn, fn)n∈N has a
product (P, f) in CSet∞. For n ∈ N, define φn : S1 → Sn by φn(λ) := λ,
each a constrictive map with crh (φn) = 1. Then, there is a unique bounded
function φ : (S1, f1) → (P, f) such that φn = πn ◦ φ for each n ∈ N. By
Proposition 2.1.5,

1 = crh (φn) ≤ crh (πn) crh(φ).

Thus, crh (πn) 6= 0.
Let T := {0} and g : T → [0,∞) by g(0) := 1. For n ∈ N, define ψn : T →

Sn by ψn(0) := n crh (πn), each a bounded map with crh (ψn) = n crh (πn).
Then, there is a unique bounded function ψ : (T, g) → (P, f) such that
ψn = πn ◦ ψ for all n ∈ N. In this case,

n crh (πn) = crh (ψn) ≤ crh (πn) crh(ψ).

Hence, n ≤ crh(ψ) for all n ∈ N, contradicting that ψ was bounded. Thus,
(Sn, fn)n∈N cannot have a product in CSet∞.

Therefore, as CSet1 and Set both have arbitrary products, CSet∞ must
be distinct from both.

Corollary 2.3.7. CSet∞ is not isomorphic to Set or CSet1 as categories.

Similarly, CSet∞ also has binary coproducts, computed just as in CSet1.

Proposition 2.3.8. Let (S1, f1) and (S2, f2) be crutched sets. Define

C := {(i, s) ∈ {1, 2} × (S1 ∪ S2) : s ∈ Si} ,

f : C → [0,∞) by f(i, s) := fi(s), and ρi : Si → C by ρi(s) := (i, s) for
i = 1, 2. Then,

(S1, f2)
∐CSet∞

(S2, f2) ∼=CSet∞ (C, f).

AsCSet∞ has binary coproducts and has an initial object, namely
(

∅,0[0,∞)

)

,
it immediately has any finitary coproduct by iteration of the binary co-
product. However, just as with products, CSet∞ does not have arbitrary
coproduct objects.

Example 2.3.9. For n ∈ N, define Sn := {0} and fn : Sn → [0,∞) by
fn(0) := 1. Assume for purposes of contradiction that (Sn, fn)n∈N has a
coproduct (C, f) in CSet∞. For n ∈ N, define φn : Sn → S1 by φn(0) :=
0, each constrictive with crh (φn) = 1. Then, there is a unique bounded
function φ : (C, f) → (S1, f1) such that φn = φ ◦ ρn for each n ∈ N. By
Proposition 2.1.5,

1 = crh (φn) ≤ crh(φ) crh (ρn) .
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Thus, crh (ρn) 6= 0.
Let T := N and g : T → [0,∞) by g(n) := n crh (ρn). Define ψn : Sn → T

by ψn(0) := n, each a bounded map with crh (ψn) = n crh (ρn). Then, there
is a unique bounded function ψ : (C, f) → (T, g) such that ψn = ψ ◦ ρn for
all n ∈ N. In this case,

n crh (ρn) = crh (ψn) ≤ crh(ψ) crh (ρn) .

Hence, n ≤ crh(ψ) for all n ∈ N, contradicting that ψ was bounded. Thus,
(Sn, fn)n∈N cannot have a coproduct in CSet∞.

Still, as CSet∞ has all finitary products and equalizers, all finitary limit
processes may be performed. Likewise, finitary colimit processes follow from
finitary coproducts and coequalizers. In summary, these facts can be stated
in the following way.

Corollary 2.3.10. The category CSet∞ is finitely complete and finitely
cocomplete.

To close the comparison between CSet∞ and CSet1, the standard pro-
jective and injective objects can be completely characterized.

Proposition 2.3.11. Let (S, f) be a crutched set.

(1) (S, f) is projective relative to all epimorphisms in CSet∞ iff card(S) <
ℵ0 and f(s) 6= 0 for all s ∈ S.

(2) (S, f) is injective relative to all monomorphisms in CSet∞ iff S 6= ∅
and f = 0.

Proof. (1) (⇐) If card(S) = 0, use the same proof as Proposition 2.2.11,
considering bounded maps.

Assume 0 < card(S) < ℵ0. Let (T, g) and (U, h) be crutched
sets and α : (U, h) → (T, g) be an epimorphism. Given a bounded
function φ : (S, f) → (T, g), consider the diagram below in CSet∞.

(S, f)

φ
��

(T, g) (U, h)α
oooo

For each s ∈ S, choose us ∈ α−1(φ(s)), which is nonempty as α is

onto. Define φ̂ : S → U by φ(s) := us. Note that φ = α◦ φ̂. Further,
as f(s) 6= 0 for all s ∈ S and S is a finite set,

sup

({

g(φ(s))

f(s)
: s 6∈ f−1(0)

}

∪ {0}

)

<∞

so φ is bounded by Proposition 2.1.8.
(¬ ⇐ ¬) For purposes of contradiction, assume first that there is

s0 ∈ S such that f (s0) = 0 and that (S, f) is projective relative to all
epimorphisms. Define g, h : S → [0,∞) by g(s) := 0 and h(s) := 1.
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Also, let φ, α : S → S by φ(s) := α(s) := s. Then, consider the
following diagram in CSet∞.

(S, f)

φ
��

(S, g) oooo
α (S, h)

Since α is onto and (S, f) projective to epimorphisms, there must be

a bounded φ̂ : (S, f) → (S, h) such that φ = α ◦ φ̂. Then, for each
s ∈ S,

s = φ(s) =
(

α ◦ φ̂
)

(s) = φ̂(s)

so

1 =
(

h ◦ φ̂
)

(s0) ≤ crh
(

φ̂
)

f (s0) = 0,

which is nonsense.
Assume instead that card(S) ≥ ℵ0, that f is strictly positive, and

that (S, f) is projective relative to all epimorphisms. Let (sn)n∈N be
a sequence of distinct elements in S. Further, let T := N, g, h : T →
[0,∞) by g(n) := nf (sn) and h(n) := 0, α : T → T by α(n) := n,
and φ : S → T by

φ(s) :=

{

n, s = sn,
1, s 6= sn.

Observe that φ and α are both bounded. Consider the following
diagram in CSet∞.

(S, f)

φ
��

(T, h) (T, g)α
oooo

By assumption, there is a bounded function φ̂ : (S, f) → (T, g) such

that φ = α ◦ φ̂. Then, for each n ∈ N,
n = φ (sn) =

(

α ◦ φ̂
)

(sn) = φ̂(sn)

and

nf (sn) = g(n) = g
(

φ̂ (sn)
)

≤ crh
(

φ̂
)

f (sn) .

Therefore, n ≤ crh
(

φ̂
)

for all n ∈ N, contradicting that φ̂ was

bounded.
(2) Use the same proof as Proposition 2.2.11, considering bounded maps.

�
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Notice that the inclusion of more maps between objects increased the
number of projective objects, from one unique object in CSet1 to a count-
able family of isomorphism classes in CSet∞. However, the number of
injective objects remained unchanged.

To conclude discussion ofCSet∞, this category can also extend the failure
results of Propositions 1.1 and 2.2.13. As before, let C be a subcategory of
CSet∞. There is a natural forgetful map from Ob(C ) to Ob(Set), where
one strips away the crutch function. Similarly, given (S, f), (T, g) ∈ Ob(C )
and φ ∈ C ((S, f), (T, g)), φ ∈ Set(S, T ) by definition of CSet∞. One can
quickly check that these two associations define a functor FC : C → Set,
where one ignores all the numeric properties from C .

Proposition 2.3.12. Let S be an infinite set. Assume that there is an
object (T, g) ∈ Ob(C ) with elements tn ∈ g−1([n,∞)) for all n ∈ N. Then,
S has no reflection along FC .

Proof. For purposes of contradiction, assume that S has a reflection ((R, f), η)
along FC . Define φ : S → T by φ(s) := t1. Then, there is a unique bounded

φ̂ : (R, f) → (T, g) such that FC φ̂ ◦ η = φ. For each s ∈ S, define rs := η(s)
and observe that

1 ≤ g (t1) = g(φ(s)) = g
((

FC φ̂ ◦ η
)

(s)
)

= g
(

φ̂ (rs)
)

≤ crh
(

φ̂
)

f (rs) .

Thus, f (rs) 6= 0.
Let (sj)

∞
j=1 ⊆ S be distinct. For each j ∈ N, choose nj ∈ N such that

nj ≥ j · f
(

rsj
)

. Define ψ : S → T by

ψ(s) :=

{

tnj
, s = sj,

t1, s 6= sj.

Then, there is a unique ψ̂ : (R, f) → (T, g) such that FC ψ̂ ◦ η = ψ. By
Proposition 2.1.8,

crh
(

ψ̂
)

≥
g
(

ψ̂
(

rsj
)

)

f
(

rsj
)

=
g
((

FC ψ̂ ◦ η
)

(sj)
)

f
(

rsj
)

=
g (ψ (sj))

f
(

rsj
)

=
g
(

tnj

)

f
(

rsj
)

≥
nj

f
(

rsj
)

≥
j · f

(

rsj
)

f
(

rsj
)

= j
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for all j ∈ N. Then, ψ̂ is unbounded, a contradiction.
�

The above proposition does not have quite the impact that Propositions
1.1 and 2.2.13 had due to the loss of the constrictive property. To illustrate
this, consider the following examples.

Example 2.3.13. Consider the entire category CSet∞. Given a finite set S,
let R := S, η := idS , and f : R→ [0,∞) by f(r) := 1 for all r ∈ R. Given a

crutched set (T, g) and φ ∈ Set(S, T ), define φ̂ : R→ T by φ̂ := φ. Observe

that φ̂ is trivially bounded by Proposition 2.1.8, and FCSet∞ φ̂ ◦ η = φ in an
apparent way. Further, if ϕ : (R, f) → (T, g) such that FCSet∞ϕ ◦ η = φ,
observe that for all s ∈ S,

φ(s) = (FCSet∞ϕ ◦ η) (s) = ϕ(s).

Thus, ϕ = φ̂. Hence, ((R, f), η) is a reflection of S along FCSet∞ .

Example 2.3.14. Consider the category of F-Banach spaces with bounded
linear maps, FBan∞. Given a finite set S, let R := ℓ1(S) with its usual
norm and η : S → R by η(s) := δs, the point mass at s ∈ S. Given anotherF-Banach space X and a set map φ : S → X, define φ̂ : R→ X by

φ̂(x) :=
∑

s∈S

xsφ(s),

where x =
∑

s∈S

xsδs is the decomposition of x with respect to the linear basis

(δs)s∈S . A quick check shows that φ̂ is an F-linear transformation, and since

ℓ1(S) is finite-dimensional, φ̂ is automatically continuous. Further,

(

FFBan∞ φ̂ ◦ η
)

(s) = φ̂ (δs) = φ(s)

so FFBan∞ φ̂ ◦ η = φ.
If ϕ : R→ X such that FFBan∞ϕ ◦ η = φ, observe that for all s ∈ S,

φ(s) = (FFBan∞ϕ ◦ η) (s) = ϕ (δs) .

Hence, ϕ (δs) = φ̂ (δs) so by linearity, ϕ = φ̂. Therefore, (R, η) is a reflection
along FFBan∞ .

What Proposition 2.3.12 has done is forbidden classical free objects gener-
ated by countable or larger sets in nontrivial categories of normed structures
with bounded maps, i.e., copies of the zero space O. Classical free objects
may still exist for finite generation sets as shown in the above two examples,
but this would require more particular attention to the type of structure.
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3. Scaled-Free Constructions

With an understanding of CSet1 and CSet∞, attention turns to modify-
ing algebraic free constructions for normed objects. As such, this construc-
tion will be familiar to anyone who has studied universal algebraic objects.
In particular, this method should be thought of as a generalization of the
constructions done in [2] and [9] with the viewpoint of [16]. The use of the
crutch function is analogous to the “X -norms” in [10], but the universal
objects created here are proper normed structures, as opposed to a general
topological ones.

The modified construction shown in the present work is not entirely new,
previously done for C*-algebras and LMC*-algebras within Section 1.3 of
[8]. However, this presentation of the material explicitly carried the universal
maps of both free *-semigroup and free *-algebra constructions throughout
each result. The present work aims to streamline and generalize the con-
struction for normed objects, moving directly from the original crutched set
to the constructed structure.

3.1. Banach Spaces. Fix F ∈ {R,C} and consider the category of F-
Banach spaces with bounded F-linear maps, FBan∞. Most of the con-
structions done here will be prototypical for those that follow so this case
will be considered in detail.

As every V ∈ Ob (FBan∞) is a set with a nonnegative function fV : V →
[0,∞) by fV (v) := ‖v‖V , there is a natural forgetful map to Ob (CSet∞),
where one regards V as a crutched set (V, fV ), ignoring all structure ex-
cept the norm function. Similarly, given V,W ∈ Ob (FBan∞) and φ ∈FBan∞(V,W ), φ is firstly a function from V to W , and

‖φ(v)‖W ≤ ‖φ‖B(V,W )‖v‖V

for all v ∈ V since φ is bounded. Hence, φ ∈ CSet∞ ((V, fV ) , (W,fW )).

One can quickly check that these two associations define a functor FCSet∞FBan∞
:FBan∞ → CSet∞, where one ignores all data from FBan∞ save the set

and norm.
Now, fix a crutched set (S, f), thought of as a set of generators normed

by their values under f . The objective is to build a reflection of (S, f) along

FCSet∞FBan∞
. To do so, define

VS := {v ∈ Set(S,F) : supp(v) is finite} ,
all functions from S to F with finite support. Under point-wise addition and
scalar multiplication, VS is naturally an F-vector space with F-linear basis
(δs)s∈S , the point masses. Let ǫS : S → VS by ǫ(s) := δs, the association of
generators.

To continue the construction, one must norm VS , which is where the
numeric value of the crutch function arises. Observe that given any function
φ : VS → T where (T, g) is a crutched set, φ ◦ ǫS : S → T . Thus, one can
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ask that this through-map be a bounded function from (S, f) to (T, g). In
the case below, T will be a F-Banach space regarded as a crutched set.

Lemma 3.1.1. For each v ∈ VS, define

Sv :=







‖φ(v)‖W
crh (φ ◦ ǫS)

:
W ∈ Ob (FBan∞) ,
φ : VS →W F-linear,
crh (φ ◦ ǫS) 6= 0,∞







∪ {0}.

and ρf : VS → [0,∞) by ρf (v) := supSv. Then, ρf is a semi-norm on VS.

Proof. Fix v ∈ VS and write it as

n
∑

j=1

λjδsj .

Since 0 ∈ Sv, the main concern is the finiteness of its supremum. Given
any φ : VS →W such that crh (φ ◦ ǫS) 6= 0,∞, observe that

‖φ(v)‖W
crh (φ ◦ ǫS)

≤
1

crh (φ ◦ ǫS)

n
∑

j=1

|λj |
∥

∥φ
(

δsj
)
∥

∥

W

=
1

crh (φ ◦ ǫS)

n
∑

j=1

|λj | ‖(φ ◦ ǫS) (sj)‖W

≤
1

crh (φ ◦ ǫS)

n
∑

j=1

|λj | crh (φ ◦ ǫS) f (sj)

=

n
∑

j=1

|λj |f (sj) ,

which is independent of W and φ. Thus, ρf (v) <∞.
Now, for any v,w ∈ VS and λ ∈ F, the following result, since ‖ · ‖W is anF-Banach space norm and φ an F-linear map.

‖φ(v + w)‖W
crh (φ ◦ ǫS)

≤
‖φ(v)‖W

crh (φ ◦ ǫS)
+

‖φ(w)‖W
crh (φ ◦ ǫS)

≤ ρf (v) + ρf (w),

‖φ(λv)‖W
crh (φ ◦ ǫS)

= |λ|
‖φ(v)‖W

crh (φ ◦ ǫS)
.

By taking suprema, ρf is a semi-norm on VS.
�

To ensure that ρf is a norm, let Nf := {v ∈ VS : ρf (v) = 0}, which is
quickly seen to be an F-subspace of VS . Thus, VS/Nf is a normed F-vector
space. Therefore, the completion, denoted VS,f , is an F-Banach space. There
is a canonical association ηS,f : S → VS,f by ηS,f (s) := [δs]. This pair

(VS,f , ηS,f ) is a candidate for the reflection of S along FCSet∞FBan∞
.

Theorem 3.1.2. The pair (VS,f , ηS,f ) is a reflection of (S, f) along FCSet∞FBan∞
.
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Proof. For each s ∈ S, by the proof of Lemma 3.1.1,

‖ηS,f (s)‖VS,f
= ‖[δs]‖VS,f

≤ ρf (δs) ≤ f(s).

Thus, ηS,f is constrictive from (S, f) to FCSet∞FBan∞
VS,f .

To check the universal property, let W be an F-Banach space and φ ∈

CSet∞

(

(S, f), FCSet∞FBan∞
W
)

. Define φ̂ : VS → W by φ̂ (δs) := φ(s) and

extend by F-linearity, obtaining an F-linear map.
Observe that for all s ∈ S,

(

φ̂ ◦ ǫS
)

(s) = φ̂(δs) = φ(s)

so crh
(

φ̂ ◦ ǫS
)

= crh(φ) <∞ by assumption. If crh(φ) 6= 0,

∥

∥

∥
φ̂(v)

∥

∥

∥

W
≤ crh(φ)ρf (v)

for all v ∈ V . If crh(φ) = 0, φ̂ is the immediately the zero map and will also
satisfy the above inequality.

For all v ∈ Nf ,

0 ≤
∥

∥

∥
φ̂(v)

∥

∥

∥

W
≤ crh(φ)ρf (v) = 0.

Thus, Nf ⊆ ker
(

φ̂
)

so there is an F-linear map φ̃ : VS/Nf → W by

φ̃([v]) = φ̂(v). By the above inequality,
∥

∥

∥
φ̃([v])

∥

∥

∥

W
≤ crh(φ)‖[v]‖VS/Nf

so

φ̃ is bounded and, therefore, continuous. Hence, φ̂ can be extended by
continuity to ϕ ∈ FBan∞ (VS,f ,W ). Observe that for each s ∈ S,
(

FCSet∞FBan∞
ϕ ◦ ηS,f

)

(s) = FCSet∞FBan∞
ϕ ([δs]) = ϕ ([δs]) = φ̃ ([δs]) = φ̂ (δs) = φ(s).

Thus, FCSet∞FBan∞
ϕ ◦ ηS,f = φ.

Assume there was some other ψ ∈ FBan∞ (VS,f ,W ) such that FCSet∞FBan∞
ψ◦

ηS,f = φ. Then, for each s ∈ S,

φ(s) =
(

FCSet∞FBan∞
ψ ◦ ηS,f

)

(s) = FCSet∞FBan∞
ψ ([δs]) = ψ ([δs])

Hence, ψ = ϕ by F-linearity and continuity.
�

Further, since (S, f) was arbitrary, the following functorial result is ob-
tained.

Corollary 3.1.3. There is a unique functor FBanSp∞ : CSet∞ → FBan∞

such that FBanSp∞(S, f) = VS,f , and FBanSp∞ ⊣ FCSet∞FBan∞
.

With this adjoint pair, consider its immediate properties. Interestingly,
there is a tight relationship between the crutch bound of a bounded function
and the norm of the extension.
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Theorem 3.1.4 (Explicit Universal Property of FBanSp∞ ⊣ FCSet∞FBan∞
). Let

(S, f) be a crutched set and W be an F-Banach space. For any bounded

map φ : (S, f) → FCSet∞FBan∞
W , there is a unique bounded F-linear map φ̂ :FBanSp∞(S, f) →W such that φ̂ ◦ ηS,f = φ. Moreover,

crh(φ) =
∥

∥

∥
φ̂
∥

∥

∥

B(FBanSp∞(S,f),W )
.

Proof. All that remains to prove is the equality of the crutch bound on φ
and the norm of φ̂. From the proof of Theorem 3.1.2,

crh(φ) ≥
∥

∥

∥
φ̂
∥

∥

∥

B(VS,f ,W)
.

If crh(φ) = 0, equality is immediate.
If crh(φ) 6= 0, then S 6= f−1(0). To prove equality in this case, the norms

of the generators [δs] are first computed. From Theorem 3.1.2, ‖[δs]‖VS,f
≤

f(s). Define ψ : (S, f) → F by ψ(s) := f(s), the crutch function itself.
Observe that crh(ψ) = 1. By Theorem 3.1.2, there is a unique boundedF-linear map ψ̂ : BanSp∞(S, f) → F such that ψ̂ ([δs]) = f(s). For all s ∈ S,

f(s) ≤ crh(ψ) ‖[δs]‖VS,f
≤ ‖[δs]‖VS,f

,

forcing equality. Now, for all s 6∈ f−1(0),

∥

∥

∥
φ̂
∥

∥

∥

B(VS,f ,W)
≥

∥

∥

∥
φ̂ ([δs])

∥

∥

∥

W

‖[δs]‖VS,f

=
‖φ(s)‖W
f(s)

,

giving

crh(φ) ≤
∥

∥

∥
φ̂
∥

∥

∥

B(VS,f ,W)
.

�

This numeric condition actually shows that there is a second adjoint re-
lationship here. Specifically, consider the category of F-Banach spaces with
contractive F-linear maps, FBan1. Let FCSet1FBan1

: FBan1 → CSet1 be the

restriction of FCSet∞FBan∞
to FBan1.

Then, Theorem 3.1.4 yields the following results immediately.

Corollary 3.1.5. The pair (VS,f , ηS,f ) is a reflection of (S, f) along FCSet1FBan1
.

Corollary 3.1.6. There is a unique functor FBanSp1 : CSet1 → FBan1

such that FBanSp1(S, f) = VS,f , and FBanSp1 ⊣ FCSet1FBan1
.

Corollary 3.1.7 (Explicit Universal Property of FBanSp1 ⊣ FCSet1FBan1
). Let

(S, f) be a crutched set and W be an F-Banach space. For any constrictive

map φ : (S, f) → FCSet1FBan1
W , there is a unique contractive F-linear map

φ̂ : FBanSp1(S, f) →W such that φ̂ ◦ ηS,f = φ. Moreover,

crh(φ) =
∥

∥

∥
φ̂
∥

∥

∥

B(FBanSp1(S,f),W )
.
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By means of this constrictive version, two other useful incarnations of
the universal property can be determined. In many applications, a crutch
function may not be readily available or gleaned from context, but this is
not a horrible impediment. For any particular F-Banach space W , one can
“steal” its norm to fabricate a crutch function.

Corollary 3.1.8 (Norm-Stealing Form). Let S be a set and W be an F-
Banach space. For any function φ : S → W , define fφ : S → [0,∞)

by fφ(s) := ‖φ(s)‖W . Then, there is a unique contractive F-linear φ̂ :FBanSp1 (S, fφ) →W such that φ̂ ([δs]) = φ(s) for all s ∈ S.

Yet, the next form of the universal property motivates the name of this
paper.

Corollary 3.1.9 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and W be an F-Banach space. For any function φ : S → W , there is a

unique contractive F-linear map φ̂ : FBanSp1(S, f) → W such that for all
s ∈ S,

‖φ(s)‖W · φ̂ ([δs]) = f(s) · φ(s).

Proof. Let V := FBanSp1(S, f) and define ϕ : S →W by

ϕ(s) :=







f(s)

‖φ(s)‖W
φ(s), ‖φ(s)‖W 6= 0,

0, otherwise.

Observe that for all s ∈ S, ‖ϕ(s)‖W ≤ f(s), making ϕ constrictive from

(S, f) to FCSet1FBan1
W . By Theorem 3.1.4, there is a unique contractive F-linear

map φ̂ : V →W such that for all s ∈ S,

φ̂ ([δs]) = ϕ(s) =







f(s)

‖φ(s)‖W
φ(s), ‖φ(s)‖W 6= 0,

0, otherwise.

For all s ∈ S satisfying ‖φ(s)‖W 6= 0, a multiplication yields the desired
equality. In the case that ‖φ(s)‖W = 0, then φ(s) = 0 so

‖φ(s)‖W · φ̂ ([δs]) = 0 = f(s) · φ(s).

�

This particular version of the universal property is termed the scaled-free
mapping property, because an element s ∈ S can be mapped anywhere in
W , and [δs] is sent to a nonnegative scalar multiple of this location.

Further, in the next example, observe that given any F-Banach space, one
can find some crutched set (S, f) such that FBanSp1(S, f) maps surjectively
and contractively onto it. This is one of the desired properties for the free
object for most algebraic settings.
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Example 3.1.10. Given an F-Banach space W , let S := W , the underlying
set of W , and f : S → [0,∞) by f(s) := ‖s‖W . Define φ : S → W by
φ(s) := s, the identity map. Trivially, φ is a constriction from (S, f) to

FCSet1FBan1
W . By Theorem 3.1.4, there is a unique contractive F-linear map

φ̂ : FBanSp1(S, f) → W such that φ̂ ([δs]) = φ(s) for all s ∈ S. Then, for

all w ∈W , w = φ̂ ([δw]). Hence, φ̂ is surjective.

Example 3.1.11. Given an F-Banach spaceW , let S := {s ∈W : ‖s‖W = 1},
the hypersphere of W , and f : S → {1} be constant. Define φ : S → W
by φ(s) := s, the inclusion map. Trivially, φ is a constriction from (S, f)

to FCSet1FBan1
W . By Theorem 3.1.4, there is a unique contractive F-linear map

φ̂ : FBanSp1(S, f) → W such that φ̂ ([δs]) = φ(s) for all s ∈ S. Then, for

all b ∈ W \ {0}, w = ‖w‖W · φ̂

([

δ 1

‖w‖W
w

])

. Also, φ̂(0) = 0. Hence, φ̂ is

surjective.

Moreover, FBanSp1(S, f) is a very familiar space.

Theorem 3.1.12. Given a crutched set (S, f), let T := S \ f−1(0). Then,FBanSp1(S, f) ∼=FBan1
ℓ1F(T ).

Proof. Let X := ℓ1F(T ) and θ : S → X by

θ(s) :=

{

f(s)δs, s ∈ T,
0, s 6∈ T.

Showing that (X, θ) satisfies the universal property of Corollary 3.1.5 is
sufficient for the isomorphism. To this end, let W be an F-Banach space
and φ : S → FCSet1FBan1

W be constrictive. Letting Y := span {δs : s ∈ T}

be the F-linear span of the point masses δs in X, define φ̂ : Y → W by

φ̂ (δs) :=
1

f(s)
φ(s) and extending by F-linearity, obtaining an F-linear map.

However, notice that for any finite subset E ⊆ T and scalars (λs)s∈E,
∥

∥

∥

∥

∥

φ̂

(

∑

s∈E

λsδs

)
∥

∥

∥

∥

∥

W

≤
∑

s∈E

|λs|
∥

∥

∥
φ̂ (δs)

∥

∥

∥

W

=
∑

s∈E

|λs|

f(s)
‖φ(s)‖W

≤
∑

s∈E

|λs|

=

∥

∥

∥

∥

∥

∑

s∈E

λsδs

∥

∥

∥

∥

∥

X

.

Therefore, φ̂ is contractive and, therefore, continuous. Since Y is norm-

dense in X, φ̂ can be extended to all of X. Also, θ is a constrictive map
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from (S, f) to FCSet1FBan1
X satisfying for all s ∈ T ,

(

FCSet1FBan1
φ̂ ◦ θ

)

(s) = FCSet1FBan1
φ̂ (f(s)δs) = φ̂ (f(s)δs) = f(s)φ̂ (δs) = φ(s).

For s 6∈ T , note that 0 ≤ ‖φ(s)‖W ≤ f(s) = 0. Thus,
(

FCSet1FBan1
φ̂ ◦ θ

)

(s) = FCSet1FBan1
φ̂ (0) = φ̂ (0) = 0 = φ(s).

Therefore, FCSet1FBan1
φ̂ ◦ θ = φ.

If ψ : X → W is a contractive F-linear map satisfying FCSet1FBan1
ψ ◦ θ = φ,

then for all s ∈ T ,

φ(s) =
(

FCSet1FBan1
ψ ◦ θ

)

(s) = FCSet1FBan1
ψ (f(s)δs) = ψ (f(s)δs) = f(s)ψ (δs)

so ψ = φ̂ by F-linearity and continuity.
�

This characterization should be compared to the well-known unit ball
functor. Explicitly, the functor UF : FBan1 → Set by associating a Banach
space with its closed unit ball and a contraction with its restriction to the
unit ball. As shown in [1], every set S has a reflection along this functor,
namely ℓ1F(S).

However, with the functor UF, the norm has been hardcoded by the choice
of the unit ball. That is, any element of S must be sent to an element of
norm at most 1.

What the construction here has done is allowed the norms of generators to
vary, encoding the numeric data in the crutch function rather than the choice
of a subset. Indeed, the f in Theorem 3.1.4 is fixed prior to construction,
but has no restriction otherwise. In particular, it need not be constant or
bounded.

Also, the functors FCSet∞FBan∞
and FCSet1FBan1

only remove structure, not altering
the underlying set in any way. This aspect seems to give a more natural
“forgetful” feel like the classical situation of algebraic free objects.

Theorem 3.1.12 states that the properties of the unit ball functor are
recovered via this more general construction and are actually extended to the
case of bounded F-linear maps by Theorem 3.1.4. Arguably, one can choose
to scale all generators to norm 1, but in some cases, it may be preferable to
let individual generators have different crutched values.

3.2. Banach Algebras. Consider the category of F-Banach algebras with
bounded F-algebra homomorphisms, FBanAlg∞. Let

FCSet∞FBanAlg∞
: FBanAlg∞ → CSet∞

be the restriction of FCSet∞FBan∞
to FBanAlg∞.

As in the previous section, one would like to build a reflection along this
forgetful functor for any given crutched set. However, due to the introduc-
tion of multiplication, this is not possible except in trivial cases.
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Proposition 3.2.1. Let (S, f) be a crutched set such that S 6= f−1(0).

Then, (S, f) has no reflection along FCSet∞FBanAlg∞
.

Proof. For purposes of contradiction, assume that (S, f) has a reflection

(R, η) along FCSet∞FBanAlg∞
. Let rs := η(s) for all s ∈ S.

Define φ : S → F by φ(s) := f(s), the crutch function itself. Then,

crh(φ) = 1 so there is a unique bounded F-algebra homomorphism φ̂ : R→ F
such that φ̂ ◦ η = φ. For all s ∈ S,

f(s) = |φ(s)| ≤
∥

∥

∥
φ̂
∥

∥

∥

B(R,F) ‖rs‖R ≤
∥

∥

∥
φ̂
∥

∥

∥

B(R,F) crh(η)f(s)
since φ̂ and η are bounded. For s 6∈ f−1(0), a division yields

1 ≤
∥

∥

∥
φ̂
∥

∥

∥

B(R,F) crh(η),
forcing crh(η) 6= 0.

Define ψ : S → F by ψ(s) := 2 crh(η)f(s). Notice that crh(ψ) = 2 crh(η)

so there is a unique bounded F-algebra homomorphism ψ̂ : R→ F such that
ψ̂ ◦ η = ψ. For n ∈ N,

ψ̂ (rns ) = ψ̂ (rs)
n = ψ (s)n = 2n crh(η)nf(s)n

and
∣

∣

∣
ψ̂ (rns )

∣

∣

∣
≤
∥

∥

∥
ψ̂
∥

∥

∥

B(R,F) ‖rns ‖R ≤
∥

∥

∥
ψ̂
∥

∥

∥

B(R,F) ‖rs‖nR ≤
∥

∥

∥
ψ̂
∥

∥

∥

B(R,F) crh(η)nf(s)n.
Combining these for s 6∈ f−1(0), a division yields

2n ≤
∥

∥

∥
ψ̂
∥

∥

∥

B(R,F) ,
contradicting that ψ̂ was bounded.

�

This is initially discouraging, like Propositions 1.1, 2.2.13, and 2.3.12.
However, observe that the cause of the failure here was the ability to send a
generator to a value potentially larger than its crutch value. This, coupled
with the multiplicative structure, forced the norm of the fictional universal
map to grow without bound.

This behavior is disallowed in the constrictive case, where the scaled-free
construction works perfectly well. To see this, consider the category of F-
Banach algebras with contractive F-algebra homomorphisms, FBanAlg1.

Let FCSet1FBanAlg1
: FBanAlg1 → CSet1 be the restriction of FCSet∞FBan∞

toFBanAlg1.
Now, fix a crutched set (S, f), thought of as a set of generators normed by

their values under f . To build a reflection of (S, f) along FCSet1FBanAlg1
, let HS

be the set of all nonempty finite sequences of elements from S, thought of as
non-commuting monomials. Under concatenation of lists, HS is naturally a
semigroup, the free semigroup on S.
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Next, let BS be the set of all functions from HS to F whose support
is finite, thought of as non-commuting polynomials with coefficients fromF. Under point-wise addition and scalar multiplication, BS is naturally a F-
vector space with F-linear basis (δl)l∈HS

. Vector multiplication is determined
by the usual polynomial formula. At this point, BS is the free F-algebra on
S.

To norm BS , appropriate modifications are applied to Lemma 3.1.1, ac-
counting now for the multiplicative structure.

Lemma 3.2.2. For each a ∈ BS, define

Ta :=







‖π(a)‖B :
B ∈ Ob (FBanAlg1) ,
π : BS → B an F-algebra homomorphism,
‖π (δs)‖B ≤ f(s)∀s ∈ S







.

and σf : BS → [0,∞) by σf (a) := supTa. Then, σf is a sub-multiplicative
semi-norm on BS.

Let Kf := {a ∈ BS : σf (a) = 0}, a two-sided ideal of BS . Thus, BS/Kf

is a normed F-algebra, and the completion, BS,f , is an F-Banach algebra.
Let θS,f : S → BS,f by θS,f(s) := [δs]. Proof like Theorem 3.1.2 yields the
reflection result.

Theorem 3.2.3. The pair (BS,f , θS,f ) is a reflection of (S, f) along FCSet1FBanAlg1
.

As in the FBan1 case, several immediate results follow quickly from this
key fact.

Corollary 3.2.4. There is a unique functor FBanAlg : CSet1 → FBanAlg1

such that FBanAlg(S, f) = BS,f , and FBanAlg ⊣ FCSet1FBanAlg1
.

Corollary 3.2.5 (Explicit Universal Property of FBanAlg ⊣ FCSet1FBanAlg1
).

Let (S, f) be a crutched set and A be an F-Banach algebra. For any constric-

tive map φ : (S, f) → FCSet1FBanAlg1
A, there is a unique contractive F-algebra

homomorphism φ̂ : FBanAlg(S, f) → A such that φ̂ ◦ θS,f = φ.

Corollary 3.2.6 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and A be an F-Banach algebra. For any function φ : S → A, there is a

unique contractive F-algebra homomorphism φ̂ : FBanAlg(S, f) → A such
that for all s ∈ S,

‖φ(s)‖A · φ̂ ([δs]) = f(s) · φ(s).

Mimicking Example 3.1.10, for any F-Banach algebra, there is a crutched
set (S, f) such that FBanAlg(S, f) maps surjectively and contractively onto
it.

Toward characterization, consider a singleton crutched set {(x, λ)} for
some λ ≥ 0. While λ has some influence on the structure of the resulting
algebra, this influence is relatively minor.
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Proposition 3.2.7. Given λ ≥ 0,FBanAlg({(x, λ)}) ∼=FBanAlg1

{ O, λ = 0,FBanAlg({(x, 1)}), λ > 0.

Proof. For λ = 0, observe that σf (a) = 0 for all a ∈ B{x}, and the result
follows immediately.

For λ > 0, let A := FBanAlg({(x, λ)}) and B := FBanAlg({(x, 1)}).
Define φ : {x} → B by φ(x) := λ [δx]B, a constrictive map. By Theorem

3.2.5, there is a unique contractive F-algebra homomorphism φ̂ : A → B
such that φ̂ ([δx]A) = φ(x).

Similarly, define ϕ : {x} → A by ϕ(x) :=
1

λ
[δx]A, also a constrictive map.

By Theorem 3.2.5, there is a unique contractive F-algebra homomorphism
ϕ̂ : B → A such that ϕ̂ ([δx]B) = ϕ(x).

Note that
(

φ̂ ◦ ϕ̂
)

([δx]B) =
1

λ
φ̂ ([δx]A) =

1

λ
λ [δx]B = [δx]B .

By Theorem 3.2.5, φ̂ ◦ ϕ̂ = idB. Symmetrically,
(

ϕ̂ ◦ φ̂
)

([δx]A) = λϕ̂ ([δx]B) = λ
1

λ
[δx]A = [δx]A .

By Theorem 3.2.5, ϕ̂ ◦ φ̂ = idA.
�

Using Proposition 2.2.9 and Corollary 3.2.4, the following canonical form
may be taken.

Corollary 3.2.8. Given a crutched set (S, f),FBanAlg(S, f) ∼=FBanAlg1

∐

s 6∈f−1(0)

FBanAlg1FBanAlg({(0, 1)}).
Notice that this coproduct is the free product of the individual factors,

equipped with and completed relative to a universal norm like the case of
C*-algebras in [21]. While this is a highly abstract characterization, it does
mirror the algebraic case, where the free algebra on a set can be seen as the
free product of the polynomial algebra in one variable with itself.

3.3. C*-algebras. Consider the category of C*-algebras with *- homomor-
phisms, C∗. Let FCSet1

C∗ : C∗ → CSet1 be the restriction of FCSet∞CBan∞
to

C∗.
Fixing a crutched set (S, f), the construction of a reflection along FCSet1

C∗

is nearly identical to the case of CBanAlg1, though one now must take
into consideration the adjoint operation. This version of the construction
was done previously in Section 1.3 of [8]. However, this presentation of the
material explicitly carried the universal maps of both free *-semigroup and
free *-algebra constructions throughout each result. The present work aims
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to streamline the construction, moving directly from the original crutched
set to the constructed algebra.

Let Ŝ := S ⊎ S := {0, 1} × S, the disjoint union of S with itself. The
original set S is identified with {0}×S while elements of {1}×S are denoted

s∗, formal adjoints of elements in S. Let ĤS be the set of all nonempty finite
sequences of elements from Ŝ under concatenation of lists. This structure
has a natural involution by reversing order and swapping presence/absence

of the *. Hence, ĤS is a *-semigroup, the free *-semigroup on S.
Let B̂S be the set of all functions from ĤS to C whose support is finite

under point-wise addition, scalar multiplication, and polynomial multipli-
cation. The involution operation is done on each function by applying the
conjugate to the output and the involution of ĤS to the input. At this point,
B̂S is the free *-algebra over C on S.

Applying appropriate changes to Lemma 3.2.2 yields a viable semi-norm
for B̂S.

Lemma 3.3.1. For each a ∈ B̂S, define

Ua :=







‖π(a)‖B :

B ∈ Ob (C∗) ,

π : B̂S → B a *-homomorphism,
‖π (δs)‖B ≤ f(s)∀s ∈ S







.

and σ̂f : B̂S → [0,∞) by σ̂f (a) := supUa. Then, σ̂f is a sub-multiplicative

semi-norm on B̂S satisfying the C*-condition.

Let K̂f :=
{

a ∈ B̂S : σ̂f (a) = 0
}

, a two-sided *-ideal of B̂S . Thus, B̂S/K̂f

is a *-algebra over C with a C*-norm, and the completion, B̂S,f , is a C*-

algebra. Let θ̂S,f : S → B̂S,f by θ̂S,f(s) := [δs]. Similar proof methods yield
the reflection result and its consequences.

Theorem 3.3.2. The pair
(

B̂S,f , θ̂S,f

)

is a reflection of (S, f) along FCSet1
C∗ .

Corollary 3.3.3. There is a unique functor C*Alg : CSet1 → C∗ such that

C*Alg(S, f) = B̂S,f , and C*Alg ⊣ FCSet1
C∗ .

Corollary 3.3.4 (Explicit Universal Property of C*Alg ⊣ FCSet1
C∗ ). Let

(S, f) be a crutched set and A be a C*-algebra. For any constrictive map φ :

(S, f) → FCSet1
C∗ A, there is a unique *-homomorphism φ̂ : C*Alg(S, f) → A

such that φ̂ ◦ θ̂S,f = φ.

Corollary 3.3.5 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and A be a C*-algebra. For any function φ : S → A, there is a unique

*-homomorphism φ̂ : C*Alg(S, f) → A such that for all s ∈ S,

‖φ(s)‖A · φ̂ ([δs]) = f(s) · φ(s).
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Proposition 3.3.6. Given λ ≥ 0,

C*Alg({(x, λ)}) ∼=C∗

{ O, λ = 0,

C*Alg({(x, 1)}), λ > 0.

Corollary 3.3.7. Given a crutched set (S, f),

C*Alg(S, f) ∼=C∗

∐

s 6∈f−1(0)

C∗

C*Alg({(0, 1)}).

Here, the coproduct is again the C*-algebra free product of the C*-
algebras involved. As in Example 3.1.10, for any C*-algebra, there is a

crutched set (S, f) such that C*Alg(S, f) maps surjectively onto it.
A similar construction works in the category of unital C*-algebras and

unital *-homomorphisms, 1C∗. Little of the construction above actually
changes so only the main highlights will be described. Let FCSet1

1C∗ : 1C∗ →

CSet1 be the restriction of FCSet∞CBan∞
to 1C∗.

Fix a crutched set (S, f), and let MS free *-monoid on S, ĤS with the
empty list u included. Further, let AS be all functions from MS to C with
finite support, equipped with the extensions of the operations on B̂S .

Lemma 3.3.8. For each a ∈ AS, define

Va :=







‖π(a)‖B :
B ∈ Ob (1C∗) ,
π : AS → B a unital *-homomorphism,
‖π (δs)‖B ≤ f(s)∀s ∈ S







.

and τf : AS → [0,∞) by τf (a) := supVa. Then, τf is a sub-multiplicative
semi-norm on AS satisfying the C*-condition. Further, τf (δu) = 1.

Let Jf := {a ∈ AS : τf (a) = 0}, a two-sided *-ideal of AS . Thus, AS/Jf
is a unital *-algebra over C with a C*-norm, and the completion, AS,f , is a
unital C*-algebra. Let ιS,f : S → AS,f by ιS,f (s) := [δs].

Theorem 3.3.9. The pair (AS,f , ιS,f ) is a reflection of (S, f) along FCSet1
1C∗ .

Corollary 3.3.10. There is a unique functor 1C*Alg : CSet1 → 1C∗ such

that 1C*Alg(S, f) = AS,f , and 1C*Alg ⊣ FCSet1
1C∗ .

Corollary 3.3.11 (Explicit Universal Property of 1C*Alg ⊣ FCSet1
1C∗ ). Let

(S, f) be a crutched set and B be a unital C*-algebra. For any constrictive

map φ : (S, f) → FCSet1
1C∗ B, there is a unique unital *-homomorphism φ̂ :

1C*Alg(S, f) → B such that φ̂ ◦ ιS,f = φ.

Corollary 3.3.12 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and B be a unital C*-algebra. For any function φ : S → B, there is a

unique unital *-homomorphism φ̂ : 1C*Alg(S, f) → B such that for all s ∈ S,

‖φ(s)‖B · φ̂ ([δs]) = f(s) · φ(s).
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Proposition 3.3.13. Given λ ≥ 0,

1C*Alg({(x, λ)}) ∼=1C∗

{ C, λ = 0,

1C*Alg({(x, 1)}), λ > 0.

Corollary 3.3.14. Given a crutched set (S, f),

1C*Alg(S, f) ∼=1C∗

∐

s 6∈f−1(0)

1C∗

1C*Alg({(0, 1)}).

Here, the coproduct is again the C*-algebra free product of the C*-
algebras involved, amalgamated along their identities. As in Example 3.1.10,

for any unital C*-algebra, there is a crutched set (S, f) such that 1C*Alg(S, f)
maps surjectively onto it.

If one follows the unital construction the constant function 1, it is precisely
the construction of the universal C*-algebra on a set S of contractions,
studied in depth within [9] as a *-monoid algebra. In fact, this paper actually
terms this algebra the “free C*-algebra” on S. However, the statement is
qualified that the algebra is “free” precisely in the sense of Theorem 3.3.11.
Also, the scaled-free mapping property of Corollary 3.3.12 substantiates the
statement that this algebra is “the closest one gets to free C*-algebras” in
[6].

Similarly, [16] and [17] create this same algebra by considering the unit
ball functor, as with FBan1. Similarly, the norm has been hardcoded by the
choice of the unit ball, forcing any element of S to have norm at most 1. In
the construction of the present work, the norms of generators are allowed to
vary, and the properties of the unit ball functor are recovered. Further, the
functors FCSet1

C∗ and FCSet1
1C∗ only remove structure, leaving the underlying

set unchanged.
As stated before, Section 1.3 of [8] forms the non-unital algebra of con-

tractions in the way shown above. Section 4.1.2 of [8] holds a comparable
analysis of the structure of this object. However, while the initial formu-
lation in Section 1.1 of [8] mentions the forgetful functor and the adjoint
situation, the categorical properties of the left adjoint are not used in the
work.

In the present work, the properties of the left adjoint have produced the
decompositions of Corollaries 3.3.7 and 3.3.14. This functorial relationship
is very strong and will be used heavily in future constructions in these cat-
egories.

3.4. Operator Spaces. Consider the category of operator spaces with com-
pletely bounded maps, O∞. Here, the objects of O∞ will be regarded as
abstract operator spaces, each a C-vector space equipped with a matrix-
norm satisfying Ruan’s axioms in [5, p. 20] and complete on the first matrix
level. Since there are several norms in play, a choice is made to create the
forgetful functor used in the construction. Other choices may yield distinct
constructions which may be interesting in their own right.
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For V ∈ Ob (O∞), V is a set with a nonnegative function fV : V → [0,∞)
by fV (v) := ‖v‖V , norm on V itself. Thus, there is a natural forgetful map
to Ob (CSet∞), where one regards V as a crutched set (V, fV ), ignoring all
structure except the first norm function. Similarly, given V,W ∈ Ob (O∞)
and φ ∈ O∞(V,W ), φ is firstly a function from V to W , and

‖φ(v)‖W ≤ ‖φ‖CB(V,W )‖v‖V

for all v ∈ V since φ is completely bounded. Hence,

φ ∈ CSet∞ ((V, fV ) , (W,fW )) .

One can quickly check that these two associations define a functor FCSet∞
O∞

:
O∞ → CSet∞, where one ignores all data from O∞ save the set and the
first norm.

Since each operator space is also a Banach space, the construction of a
reflection along the above functor will be done by appealing to the con-
struction already established for CBan∞. Fixing a crutched set (S, f), let
VS,f and ηS,f : S → VS,f be the reflection and inclusion from Theorem
3.1.2. Already, this is a C-Banach space equipped with a constrictive map
from (S, f). Now, only the norms on the higher matrix levels must be de-
termined. This is accomplished similarly to Lemma 3.1.1, again using the
existing construction for CBan1.

Lemma 3.4.1. For each n ∈ N and A ∈Mn (VS,f ), define

WA,n :=







∥

∥φ(n)(A)
∥

∥

Mn(W )

‖φ‖B(VS,f ,W)
:

W ∈ Ob (O∞) ,
φ ∈ B (VS,f ,W ) ,
‖φ‖B(VS,f ,W) 6= 0







∪ {0}.

and νf,n : Mn (VS,f) → [0,∞) by νf,n(A) := supWA,n. Then, (νf,n)n∈N is a

matrix norm on VS,f . Moreover, νf,1(v) = ‖v‖VS,f
for all v ∈ VS,f .

Proof. Fix n ∈ N and A ∈Mn (VS,f), written as

A =
n
∑

j,k=1

ai,j ⊗ Ei,j,

where (Ei,j)
n
i,j=1 is the usual basis for Mn.
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To show νf,n(A) finite, let W be an operator space and φ : VS,f → W a
bounded C-linear map. Ruan’s axioms yield the following computation.

∥

∥

∥
φ(n)(A)

∥

∥

∥

Mn(W )
≤

n
∑

j,k=1

∥

∥

∥
φ(n) (ai,j ⊗ Ei,j)

∥

∥

∥

Mn(W )

=

n
∑

j,k=1

∥

∥

∥
Ej,1φ

(n) (ai,j ⊗ E1,1)E1,k

∥

∥

∥

Mn(W )

≤
n
∑

j,k=1

∥

∥

∥
φ(n) (ai,j ⊗ E1,1)

∥

∥

∥

Mn(W )

=
n
∑

j,k=1

‖φ (ai,j)‖W

≤
n
∑

j,k=1

‖φ‖B(VS,f ,W) ‖ai,j‖VS,f

Therefore,

νf,n(A) ≤
n
∑

j,k=1

‖ai,j‖VS,f
<∞.

Following the arguments of Lemma 3.1.1, νf,n is a semi-norm onMn (VS,f).
From the computation above, νf,1(v) ≤ ‖v‖VS,f

. Equality comes from con-
sidering the standard isometric embedding of VS,f into continuous functions
on the unit ball of its continuous dual space, considered with its canonical
operator space structure. This also ensures that νf,n is positive definite for
all n ∈ N.

To show satisfaction of Ruan’s axioms, let n,m ∈ N, A ∈ Mn (VS,f ),

B ∈Mm (VS,f), and α, β
T ∈Mm,n. Observe the following results due to the

assumptions on W and φ.

∥

∥φ(m)(αAβ)
∥

∥

Mm(W )

‖φ‖B(VS,f ,W)
=

∥

∥αφ(n)(A)β
∥

∥

Mm(W )

‖φ‖B(VS,f ,W)

≤ ‖α‖Mm,n

∥

∥φ(n)(A)
∥

∥

Mn(W )

‖φ‖B(VS,f ,W)
‖β‖Mn,m

≤ ‖α‖Mm,nνf,n(A)‖β‖Mn,m ,

∥

∥φ(n)(A⊕B)
∥

∥

Mn+m(W )

‖φ‖B(VS,f ,W)
=

∥

∥φ(n)(A)⊕ φ(m)(B)
∥

∥

Mn+m(W )

‖φ‖B(VS,f ,W)

= max

{
∥

∥φ(n)(A)
∥

∥

Mn(W )

‖φ‖B(VS,f ,W)
,

∥

∥φ(m)(B)
∥

∥

Mm(W )

‖φ‖B(VS,f ,W)

}



40 WILL GRILLIETTE

By taking suprema, (νf,n)n∈N is a matricial norm on VS,f .
�

From here forward, VS,f is considered as an operator space with matrix
norm (νf,n)n∈N. The following theorem is proved analogously to Theorem
3.1.2, as are the consequential results.

Theorem 3.4.2. The pair (VS,f , ηS,f ) is a reflection of (S, f) along FCSet∞
O∞

.

Corollary 3.4.3. There is a unique functor OSp∞ : CSet∞ → O∞ such

that OSp∞(S, f) = VS,f , and OSp∞ ⊣ FCSet∞
O∞

.

Corollary 3.4.4 (Explicit Universal Property of OSp∞ ⊣ FCSet∞
O∞

). Let

(S, f) be a crutched set and W be an operator space. For any bounded

map φ : (S, f) → FCSet∞
O∞

W , there is a unique completely bounded map

φ̂ : OSp∞(S, f) →W such that φ̂ ◦ ηS,f = φ. Moreover,

crh(φ) =
∥

∥

∥
φ̂
∥

∥

∥

CB(OSp∞(S,f),W )
.

As in the Banach space case, there is a second adjoint relationship. Specif-
ically, consider the category of operator spaces with completely contractive
maps, O1. Let F

CSet1
O1

: O1 → CSet1 be the restriction of FCSet∞
O∞

to O1.

Corollary 3.4.5. The pair (VS,f , ηS,f ) is a reflection of (S, f) along FCSet1
O1

.

Corollary 3.4.6. There is a unique functor OSp1 : CSet1 → O1 such that

OSp1(S, f) = VS,f , and OSp1 ⊣ F
CSet1
O1

.

Corollary 3.4.7 (Explicit Universal Property of OSp1 ⊣ F
CSet1
O1

). Let (S, f)
be a crutched set and W be an operator space. For any constrictive map

φ : (S, f) → FCSet1
O1

W , there is a unique completely contractive map φ̂ :

OSp1(S, f) → W such that φ̂ ◦ ηS,f = φ. Moreover,

crh(φ) =
∥

∥

∥
φ̂
∥

∥

∥

CB(OSp1(S,f),W )
.

Corollary 3.4.8 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and W be an operator space. For any function φ : S → W , there is a

unique completely contractive map φ̂ : OSp1(S, f) → W such that for all
s ∈ S,

‖φ(s)‖W · φ̂ ([δs]) = f(s) · φ(s).

As in Example 3.1.10, for any operator space, there is a crutched set (S, f)
such that OSp1(S, f) maps surjectively and completely contractively onto
it.

Moreover, OSp1(S, f) is just as familiar as CBanSp1(S, f).

Theorem 3.4.9. Given a crutched set (S, f), let T := S \ f−1(0). Then,

OSp1(S, f) ∼=O1
max

(

ℓ1C(T )) ,
the maximal operator space of ℓ1C(T ).
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Proof. Fix n ∈ N and A ∈Mn (VS,f). For a C-Hilbert space H and isometric
φ : VS,f → B(H),

∥

∥

∥
φ(n)(A)

∥

∥

∥

B(H)
≤ νf,n(A).

Conversely, let W be an operator space and ψ : VS,f →W be bounded and
nonzero. Normalizing the map, define

ϕ :=
1

‖ψ‖B(VS,f ,W)
ψ

and note that

ϕ(n) =
1

‖ψ‖B(VS,f ,W)
ψ(n).

By Ruan’s Theorem, there exists a C-Hilbert space K and a complete isom-
etry π :W → B(K). Then, π ◦ ϕ : VS,f →W is contractive and gives

∥

∥ψ(n)(A)
∥

∥

Mn(W )

‖ψ‖B(VS,f ,W)
=
∥

∥

∥
ϕ(n)(A)

∥

∥

∥

Mn(W )
=
∥

∥

∥

(

π(n) ◦ ϕ(n)
)

(A)
∥

∥

∥

B(K)

=
∥

∥

∥
(π ◦ ϕ)(n) (A)

∥

∥

∥

B(K)
≤ ‖A‖Mn(max(VS,f)).

Therefore, νf,n = ‖ · ‖Mn(max(VS,f)) for all n ∈ N. Already, Theorem 3.1.12

identified VS,f with ℓ1C(T ), finalizing the result.
�

3.5. Operator Algebras. Consider the category of operator algebras with
completely bounded homomorphisms,OA∞. Let FCSet∞

OA∞
: OA∞ → CSet∞

be the restriction of FCSet∞
O∞

to OA∞. Unfortunately, as is the case withCBanAlg∞, only trivial crutched sets have reflections along this functor.
The proof is analogous to Proposition 3.2.1

Proposition 3.5.1. Let (S, f) be a crutched set such that S 6= f−1(0).

Then, (S, f) has no reflection along FCSet∞
OA∞

.

However, all is well in the completely contractive category. Consider the
category of operator algebras with completely contractive homomorphisms,
OA1. Let F

CSet1
OA1

: OA1 → CSet1 be the restriction of FCSet∞
O∞

to OA1.

Fixing a crutched set (S, f), let BS be the free C-algebra on S as in theC-Banach algebra case. First, BS is normed in much the same way as before,
but with the category of interest changed. The proof is analogous to Lemma
3.2.2.

Lemma 3.5.2. For each a ∈ BS, define

Xa :=







‖π(a)‖B :
B ∈ Ob (OA1) ,
π : BS → B a C-algebra homomorphism,
‖π (δs)‖B ≤ f(s)∀s ∈ S







.
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and κf : BS → [0,∞) by κf (a) := supXa. Then, κf is a sub-multiplicative
semi-norm on BS.

Let Lf := {a ∈ BS : κf (a) = 0}, a two-sided ideal of BS . Thus, BS/Lf is

a normed C-algebra, and the completion, B̃S,f , is an C-Banach algebra. Let

θ̃S,f : S → B̃S,f by θ̃S,f(s) := [δs].
For the matrix norm structure, analogous arguments to those of Lemma

3.4.1 accomplish the following.

Lemma 3.5.3. For each n ∈ N and A ∈Mn

(

B̃S,f

)

, define

YA,n :=

{

∥

∥

∥
φ(n)(A)

∥

∥

∥

Mn(C)
:

C ∈ Ob (OA1) ,

φ : B̃S,f → C a contractive homomorphism

}

.

and µf,n : Mn

(

B̃S,f

)

→ [0,∞) by µf,n(A) := supYA,n. Then, (µf,n)n∈N is

a matrix norm on B̃S,f , which makes the multiplication on B̃S,f completely

contractive. Moreover, µf,1(a) = ‖a‖B̃S,f
for all a ∈ B̃S,f .

From here forward, B̃S,f is considered as an operator algebra with matrix
norm (µf,n)n∈N. As in the previous constructions, the consequential results
follow by appropriately modified proofs.

Theorem 3.5.4. The pair
(

B̃S,f , θ̃S,f

)

is a reflection of (S, f) along FCSet1
OA1

.

Corollary 3.5.5. There is a unique functor OAlg : CSet1 → OA1 such

that OAlg(S, f) = B̃S,f , and OAlg ⊣ FCSet1
OA1

.

Corollary 3.5.6 (Explicit Universal Property of OAlg ⊣ FCSet1
OA1

). Let (S, f)
be a crutched set and B be an operator algebra. For any constrictive map φ :
(S, f) → FCSet1

OA1
B, there is a unique completely contractive homomorphism

φ̂ : OAlg(S, f) → B such that φ̂ ◦ θ̃S,f = φ.

Corollary 3.5.7 (Scaled-Free Mapping Property). Let (S, f) be a crutched
set and B be an operator algebra. For any function φ : S → B, there is a

unique completely contractive homomorphism φ̂ : OAlg(S, f) → B such that
for all s ∈ S,

‖φ(s)‖B · φ̂ ([δs]) = f(s) · φ(s).

As in Example 3.1.10, for any operator algebra, there is a crutched set
(S, f) such that OAlg(S, f) maps surjectively and completely contractively
onto it.

4. Failure of Hilbert Spaces

The previous section showed that several categories have objects satisfying
the scaled-free mapping property. However, the cases of FBanAlg∞ and
OA∞ illustrated that the fundamental adjoint construction may not be
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achievable with certain classes of maps. This section considers another such
failure result for Hilbert spaces.

Specifically, consider the category of F-Hilbert spaces and F-linear con-
tractions, FHilb1. Let FCSet1FHilb1

: FHilb1 → CSet1 be the restriction

of FCSet∞FBan∞
to FHilb1. As in the previous failure cases, most interesting

crutched sets cannot have a reflection along this functor.

Proposition 4.1. Let (S, f) be a crutched set such that card
(

S \ f−1(0)
)

≥

2. Then, (S, f) has no reflection along FCSet1FHilb1
.

Proof. Consider first when F = C. For purposes of contradiction, assume
that (S, f) has a reflection (R, η) along FCSet1FHilb1

. Let vs := η(s) for all s ∈ S.
First, the norms of each generator are determined. Since η is constrictive,

‖vs‖R ≤ f(s) for all s ∈ S. Consider the function ψ : S → C by φ(s) := f(s),
the crutch function itself. Then, crh (ψ) = 1 so there is a unique C-linear
contraction ψ̂ : R→ C such that ψ̂ ◦ η = ψ. Therefore, for all s ∈ S,

‖vs‖R ≥
∣

∣

∣
ψ̂ (vs)

∣

∣

∣
= f(s),

which forces equality.
Next, consider the inner product of two generators via the polarization

identity. For n ∈ N and s 6= t,

‖vs + ınvt‖R ≤ ‖vs‖R + ‖vt‖R ≤ f(s) + f(t).

Define φs,t,n : S → C by

φs,t,n(u) :=







f(s), u = s,
ı−nf(t), u = t,

0, otherwise.

Then, crh (φs,t,n) = 1 so there is a unique C-linear contraction φ̂s,t,n : R→ C
such that φ̂ ◦ η = φ. Hence,

‖vs + ınvt‖R ≥
∣

∣

∣
φ̂s,t,n (vs + ınvt)

∣

∣

∣

=
∣

∣

∣
φ̂s,t,n (vs) + ınφ̂s,t,n (vt)

∣

∣

∣

=
∣

∣f(s) + ını−nf(t)
∣

∣

= f(s) + f(t),

forcing equality. Using the polarization identity,

〈vs, vt〉R =
1

4

3
∑

n=0

ın ‖vs + ınvt‖R =
1

4

3
∑

n=0

ın (f(s) + f(t)) = 0

Thus, (vs)s∈S is an orthogonal set in R.
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Using Parseval’s identity, for s 6= t,

‖vs + vt‖
2
R = ‖vs‖

2
R + ‖vt‖

2
R

= f(s)2 + f(t)2,

but
‖vs + vt‖

2
R = (f(s) + f(t))2

= f(s)2 + 2f(s)f(t) + f(t)2.

Together, these imply that if s 6= t, f(s)f(t) = 0. However, for distinct
s, t 6∈ f−1(0), this is impossible. Therefore, this reflection can never have
existed.

The case for F = R follows by considering the real version of the polar-
ization identity.

�

From the proof, the issue here was due to the incompatibility of the
universal property with Parseval’s identity. The universal property imposes
that the norm on the reflection be an ℓ1-norm, like the case of F-Banach
spaces, but this cannot happen in a F-Hilbert space other than F or O.

5. Universal Algebra for Normed Objects

After performing all the constructions of Section 3, consider the following
diagram of categories and functors.

C∗

F
CSet1
C∗

��

CBanAlg1
F

CSet1CBanAlg1

))SSSSSSSSSSSSSS
OA1

F
CSet1
OA1

vvnnnnnnnnnnnnnCBan1
F

CSet1CBan1

// CSet1 O1
F

CSet1
O1

oo

While not drawn, there are natural forgetful functors for the categories
placed on the exterior of this diagram, and they will automatically make this
large diagram commute. For example, there is a natural forgetful functor

F
CBanAlg1

C∗ : C∗ → CBanAlg1 by ignoring the involution and its properties.
A quick check shows that

FCSet1CBanAlg1
F
CBanAlg1

C∗ = FCSet1
C∗ .

Section 3 has shown that each of the functors to CSet1 has a correspond-
ing left adjoint functor, given by the appropriate scaled-free construction.
If the undrawn forgetful functors have left adjoints as well, general cate-
gory theory has that the composition of left adjoints is again a left adjoint.
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That is, the diagram given by the left adjoints would also commute, up to
a natural transformation.

This would give, in a sense, a coherent means of understanding normed
objects. This would be comparable to the understanding found in pure alge-
bra. In summary, consider the following commutative diagram of categories
and functors for a fixed ring R. Here, the functors are likewise forgetful
functors, stripping away structure.

RAlg
FSet
RAlg

((QQQQQQQQQQQQQ

FRMod
RAlg

��
RMod

FSet
RMod

// Set

For algebraic categories, Set plays a central role, allowing consideration
of objects with minimal structure. From the constructions of Section 3 and
the properties found in Section 2, CSet1 may play a similar role for normed
objects, a category of objects with structure similar to normed objects, but
minimal.

Plans are to investigate these relationships in subsequent papers, relying
heavily on the foundation laid in this work.
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