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ON ASYMPTOTICS OF I'y(z) AS ¢ APPROACHING 1

RUIMING ZHANG

ABsTRACT. In this note we give a derivation of the asymptotic main term for
the g-Gamma function as g approaching 1. This formula is valid on all the
complex plan except at the poles of the Euler Gamma function.

1. INTRODUCTION
Recall that the ¢-Gamma function is defined as [I} 2, [3]
(¢:9)oo

I',(z) = ,
&) = T o
where
(@:9) = [[ (1 —ad"), aeC, ge(0,1).
k=0

All the standard textbooks on g-series present W. Gosper’s heuristic argument for
lim I'y(z) = I'(2),
q—1
where T'(z) is the Euler Gamma function, without verifying the validity of the term
by term limiting process, [, 2 [B]. An alternative proof by T. Koorwinder is given
in [I] using a convexity argument, but all the proofs failed to give an error term.
In [5] we give a proof using a g-Beta integral from [1I]. In this note we will give yet

another proof with error term valid on the whole complex plane except at poles of
I'(z).

2. MAIN RESULTS
Lemma 1. Let

2] <1, 0<g<1,

then
2. (s59) >
2.1 25q) oy = €XP 4 — —_ .
—k(1—q~)
Proof. From
log(1—2) = —Z?, lz] <1
k=1
we have
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log(2,q),, = Y log(l—2¢') ==> % =
=0 §=0 k=1
= _ifiqﬂc__i 2"
k=1 k j=0 k 1k(1_qk)

for g € (0,1), where all the logarithms are taken as their principle branches. (21))
follows by taking exponentials. (Il

Lemma 2. Let

g=e¢ ", 7>0, Rw)>0,

then,

w \/%ww—l/QeXp( 7r)
(22) @ = T LT 1O ),
as T — 0.

Proof. Take z = ge~™™" in (2.I)) with R 0 to obtain

(w) >
e kefkﬂ'rw
(qefﬂ'rw7 q) . = { Z 1 — q }

=1

and
$ gt ke { ¢ 11 ’W}
e —q*
—k(l-¢") & ok bra o2
%) e_]m—ww 1 1 krT
+2 k {E;;—_i _35_}
k=1
1 X e hrmw | X poktrw oo
_ S 1 1 T —krmw
D D e P e DS
k=1 k=1 ht
1 T
g 1. _ 21 1 —TTWw
b (exp(=mrw)) o glog (1= e77™) 4 e Ty
where
0 efkrﬂ'w 1 1 1 krr
S = Err 2 12
; L {ekﬂ -1 krr 2 12 }
and
oo Zn
le(z)—zﬁa 2] <1
k=1
From

Lig (z) + Lia (1 — 2) = % —logz-log (1 — 2)



ON ASYMPTOTICS OF TI'4(z) AS ¢ APPROACHING 1

to get
2
Lis (exp(—77w)) = —Lis (1 — exp(—77w)) + % + mrwlog (1 — exp(—7Tw))
2
= —7mTw + % + mrwlog (1 — exp(—mTw)) + O (%),

hence
k —kTmw
q“e 1 T
—=5- — — ) log (1 — —
k(1—g*) W 6 + ( 2) og (1 — exp(—mrw)) + 12 (exp(rtmw) — 1)

k=1
as 7 — 07. From

1 log(27) /°° 1 1 1 emtw
logT(w) = (w— = | logw — w + 25 S dt
og I(w) <w 2) ogwmwt——* a7 T e—1) ¢

to obtain
> /1 1 t 1 —tw
/ S R B |
o \2 7t 12 e—1) Tt
1 _ log(2m) 1
=logT - —— 1 -
og'(w) <w ) ogw + w 5 90

for R(w) > 0. Write
> /1 1 t 1 eTtw
1= S_oo_ dt
/ <2 t 12+t—1) ¢

e e} knT —tw
t 1 e
= Sy dt
Z/ ( 12+et—1> t

and

then
for t = 0% and

for t — +o00. Hence,

S—1= i/kﬂ dt/tkm f'(y)dy

=1V (k=1)7T

0 kmT Yy
-3 / ') / dtdy
k—1)mT (k—1)mT

kmT
= Z/ — (k= 1)r7)dy,

1)7r‘r
thus,
S~ 1| <77 / ') dy
0

and

S—I=0((n7)

+0O(7),
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as 7 — 0T. Thus,

k ,—krmw
q~e 1 log(27)
¢  _ogT(w) — (w—= ) logw —
2 KO =5 ogT'(w) (w 2) og w 5

+ 2 ! S
12 \exp(rrw) —1 77w 67
+ (w + 1) log (1 — exp(—m7Tw)) + O (1)

= logI'(w) — <w— %) logw — @

+ % + <w + %) log (1 — exp(—7m7Tw)) + O (1),

as 7 — 0. Hence, for R(w) > 0 we have

) \/ﬁww_lm ex

and

Tw?"1/2 ex
(0"50)0e = (L —e77™) (g7, q) , = 1:/(_2) T Tf;gw 1/)2 {1+0(n)}

as 7 — 0T,

Theorem 3. Let ¢ = exp (—n7) with T > 0, then
(2.3) [y (w) =T (w) {1+ 0(7)}
as T — 0% for —z ¢ NU{0}.

Proof. From (Z2) to get

0 = 22208 Loy
(I—e"m)
as 7 — 07, Hence, for R(w) > 0 we have
w) — (3 0) Dy d LT w3 i
) = it =t G | o)

as 7 — 0. The above equation and

1— e TTW w—3
lvasem)  trow
as 7 — 0Fimply 23)) for R(w) >0
From [4]

(v]t) = 22 plkt1/2)? sin(2k + 1)7mv

01 (v]t) = 2p"/* sin T (p%; p?)oe (P2€*™; D) o (PP 2™ p%) oo
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v 1 . t v
n(f1-3) =i,

where p = €™ (t) > 0, to get

ot

and

exp (5 +25°) 01 (w] )
V27 sinh 5%

(¢, ¢ "9 =

and .
V2exp () 07 (0]%)

3 p—
( ’ )oo - 7T7'3/2

for ¢ = exp(—n7) and 7 > 0. Hence

)’ 2sinh 55561 (012)
Dy (1+w)Ty (1 —w) = - = W
a(1+w) Ty (1 —w) (0, 4", ¢*"";q) e TTexp (”2”2) 01 (w|%)

and
(e —1)6; (0]%)

TT exp (w) 0, (w|%)

Ty (0) Tyl =) = T Ty 1+ w) =

for w ¢ Z. From
e™ —1

T

%(m¥>=mmm%—%g{r+0@n,

=14+0(r),

24 . s
61 (w|?) = 2sin Tw exp (—;) {1+0(7)}
and

P(w)T(1-w)=——, w¢Z

to obtain
™ 1
r =
a () sinTw I' (1 —w)

for R(w) < 1 and w ¢ Z as 7 — 07. The theorem follows by combining the
R(w) > 0 and R(w) < 1 cases. O

{1+0()} =T (w){1+0(n)}
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