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ARENS REGULARITY OF TENSOR PRODUCTS AND WEAK
AMENABILITY OF BANACH ALGEBRAS

KAZEM HAGHNEJAD AZAR

Abstract. In this note, we study the Arens regularity of projective tensor prod-
uct A⊗̂B whenever A and B are Arens regular. We establish some new condi-
tions for showing that the Banach algebras A and B are Arens regular if and
only if A⊗̂B is Arens regular. We also introduce some new concepts as left-
weak∗-weak convergence property [Lw∗wc−property] and right-weak∗-weak con-
vergence property [Rw∗wc−property] and for Banach algebra A, suppose that
A∗ and A∗∗, respectively, have Rw∗wc−property and Lw∗wc−property. Then
if A∗∗ is weakly amenable, it follows that A is weakly amenable. We also offer
some results concerning the relation between these properties with some special
derivation D : A → A∗. We obtain some conclusions in the Arens regularity of
Banach algebras.

1. Preliminaries and Introduction

Suppose that A and B are Banach algebras. Ülger in [22], has been studied that the
Arens regularity of projective tensor product A⊗̂B. He showed that when A and B
are Arens regular in general, A⊗̂B is not Arens regular. He introduced a new concept
as biregular mapping and showed that a bounded bilinear mapping m : A × B → C

is biregular if and only if A⊗̂B is Arens regular. In this paper, we establish some
conditions for Banach algebras A and B which follows that A⊗̂B is Arens regular.
Conversely, we investigated if A⊗̂B is Arens regular, then A or B are Arens regular.
In section three, for Banach A − module B, we introduce new concepts as left −
weak∗ − weak convergence property [ Lw∗wc−property] and right − weak∗ − weak
convergence property [ Rw∗wc−property] with respect to A and we show that if A∗

and A∗∗, respectively, have Rw∗wc−property and Lw∗wc−property and A∗∗ is weakly
amenable, then A is weakly amenable. We have also some conclusions regarding Arens
regularity of Banach algebras. We introduce some notations and definitions that we
used throughout this paper.
Let A be a Banach algebra and let B be a Banach A− bimodule. A derivation from
A into B is a bounded linear mapping D : A → B such that

D(xy) = xD(y) +D(x)y for all x, y ∈ A.

The space of all continuous derivations from A into B is denoted by Z1(A,B).
Easy example of derivations are the inner derivations, which are given for each b ∈ B
by

δb(a) = ab− ba for all a ∈ A.
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The space of inner derivations from A into B is denoted by N1(A,B). The Banach
algebra A is amenable, when for every Banach A−bimodule B, the only inner deriva-
tion from A into B∗ is zero derivation. It is clear that A is amenable if and only if
H1(A,B∗) = Z1(A,B∗)/N1(A,B∗) = {0}. The concept of amenability for a Banach
algebraA, introduced by Johnson in 1972, has proved to be of enormous importance in
Banach algebra theory, see [13]. A Banach algebra A is said to be a weakly amenable,
if every derivation from A into A∗ is inner. Equivalently, A is weakly amenable if and
only if H1(A,A∗) = Z1(A,A∗)/N1(A,A∗) = {0}. The concept of weak amenability
was first introduced by Bade, Curtis and Dales in [2] for commutative Banach alge-
bras, and was extended to the noncommutative case by Johnson in [14].
Let A be a Banach algebra and A∗, A∗∗, respectively, be the first and second dual of
A. For a ∈ A and a′ ∈ A∗, we denote by a′a and aa′ respectively, the functionals in
A∗ defined by 〈a′a, b〉 = 〈a′, ab〉 = a′(ab) and 〈aa′, b〉 = 〈a′, ba〉 = a′(ba) for all b ∈ A.
The Banach algebra A is embedded in its second dual via the identification 〈a, a′〉 -
〈a′, a〉 for every a ∈ A and a′ ∈ A∗. We say that a bounded net (eα)α∈I in A is a left
bounded approximate identity (= LBAI) [resp. right bounded approximate identity
(= RBAI)] if, for each a ∈ A, eαa −→ a [resp. aeα −→ a].
Let X,Y, Z be normed spaces and m : X × Y → Z be a bounded bilinear mapping.
Arens in [1] offers two natural extensions m∗∗∗ and mt∗∗∗t of m from X∗∗ × Y ∗∗ into
Z∗∗ as following
1. m∗ : Z∗ × X → Y ∗, given by 〈m∗(z′, x), y〉 = 〈z′,m(x, y)〉 where x ∈ X , y ∈ Y ,
z′ ∈ Z∗,
2. m∗∗ : Y ∗∗ × Z∗ → X∗, given by 〈m∗∗(y′′, z′), x〉 = 〈y′′,m∗(z′, x)〉 where x ∈ X ,
y′′ ∈ Y ∗∗, z′ ∈ Z∗,
3. m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, given by 〈m∗∗∗(x′′, y′′), z′〉 = 〈x′′,m∗∗(y′′, z′)〉
where x′′ ∈ X∗∗, y′′ ∈ Y ∗∗, z′ ∈ Z∗.
The mapping m∗∗∗ is the unique extension of m such that x′′ → m∗∗∗(x′′, y′′) from
X∗∗ into Z∗∗ is weak∗ − to−weak∗ continuous for every y′′ ∈ Y ∗∗, but the mapping
y′′ → m∗∗∗(x′′, y′′) is not in general weak∗− to−weak∗ continuous from Y ∗∗ into Z∗∗

unless x′′ ∈ X . Hence the first topological center of m may be defined as following

Z1(m) = {x′′ ∈ X∗∗ : y′′ → m∗∗∗(x′′, y′′) is weak∗ − to− weak∗ − continuous}.

Let now mt : Y × X → Z be the transpose of m defined by mt(y, x) = m(x, y) for
every x ∈ X and y ∈ Y . Then mt is a continuous bilinear map from Y ×X to Z, and
so it may be extended as above to mt∗∗∗ : Y ∗∗ ×X∗∗ → Z∗∗. The mapping mt∗∗∗t :
X∗∗ × Y ∗∗ → Z∗∗ in general is not equal to m∗∗∗, see [1], if m∗∗∗ = mt∗∗∗t, then
m is called Arens regular. The mapping y′′ → mt∗∗∗t(x′′, y′′) is weak∗ − to − weak∗

continuous for every y′′ ∈ Y ∗∗, but the mapping x′′ → mt∗∗∗t(x′′, y′′) from X∗∗ into
Z∗∗ is not in general weak∗− to−weak∗ continuous for every y′′ ∈ Y ∗∗. So we define
the second topological center of m as

Z2(m) = {y′′ ∈ Y ∗∗ : x′′ → mt∗∗∗t(x′′, y′′) is weak∗ − to− weak∗ − continuous}.

It is clear that m is Arens regular if and only if Z1(m) = X∗∗ or Z2(m) = Y ∗∗. Arens
regularity of m is equivalent to the following

lim
i
lim
j
〈z′,m(xi, yj)〉 = lim

j
lim
i
〈z′,m(xi, yj)〉,
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whenever both limits exist for all bounded sequences (xi)i ⊆ X , (yi)i ⊆ Y and
z′ ∈ Z∗, see [5, 20].
The regularity of a normed algebra A is defined to be the regularity of its algebra
multiplication when considered as a bilinear mapping. Let a′′ and b′′ be elements
of A∗∗, the second dual of A. By Goldstin,s Theorem [4, P.424-425], there are nets
(aα)α and (bβ)β in A such that a′′ = weak∗ − limα aα and b′′ = weak∗ − limβ bβ . So
it is easy to see that for all a′ ∈ A∗,

lim
α

lim
β
〈a′,m(aα, bβ)〉 = 〈a′′b′′, a′〉

and
lim
β

lim
α
〈a′,m(aα, bβ)〉 = 〈a′′ob′′, a′〉,

where a′′b′′ and a′′ob′′ are the first and second Arens products of A∗∗, respectively,
see [5, 20].
The mapping m is left strongly Arens irregular if Z1(m) = X and m is right strongly
Arens irregular if Z2(m) = Y .
Regarding A as a Banach A− bimodule, the operation π : A×A → A extends to π∗∗∗

and πt∗∗∗t defined on A∗∗ × A∗∗. These extensions are known, respectively, as the
first (left) and the second (right) Arens products, and with each of them, the second
dual space A∗∗ becomes a Banach algebra. In this situation, we shall also simplify our
notations. So the first (left) Arens product of a′′, b′′ ∈ A∗∗ shall be simply indicated
by a′′b′′ and defined by the three steps:

〈a′a, b〉 = 〈a′, ab〉,

〈a′′a′, a〉 = 〈a′′, a′a〉,

〈a′′b′′, a′〉 = 〈a′′, b′′a′〉.

for every a, b ∈ A and a′ ∈ A∗. Similarly, the second (right) Arens product of
a′′, b′′ ∈ A∗∗ shall be indicated by a′′ob′′ and defined by :

〈aoa′, b〉 = 〈a′, ba〉,

〈a′oa′′, a〉 = 〈a′′, aoa′〉,

〈a′′ob′′, a′〉 = 〈b′′, a′ob′′〉.

for all a, b ∈ A and a′ ∈ A∗.

2. Arens regularity of projective tensor product algebras

The tensor product, X ⊗ Y , of the vector space X, Y can be constructed as a space
of linear functional on B(X × Y ), in the following way:
Let x ∈ X and y ∈ Y . We denote by x ⊗ y the functional given by evaluation at the
point (x, y). In other words,

〈x⊗ y,A〉 = A(x, y),

for each bilinear from A on X × Y , so the tensor product X ⊗ Y is the subspace of
the dual of bounded bilinear forms on X ⊗ Y , B(X × Y )∗.
We recall that each tensor u ∈ X⊗Y acts as a linear functional on the space of bilinear
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forms and so we may define a mapping Ã : X ⊗ Y → K by u ∈ X ⊗ Y → 〈A, u〉 ∈ K.
In summary, we have

B(X × Y ) = (X ⊗ Y )∗.

Let X,Y,E and F be vector spaces and let S : X → E and T : Y → F be linear
mappings. Then we may define a bilinear mapping by (x, y) ∈ X×Y → (Sx)⊗(Ty) ∈
E ⊗ F . Linearization gives a linear mapping (S ⊗ T ) : X ⊗ Y → E ⊗ F such that
(S ⊗ T )(x⊗ y) = (Sx)⊗ (Ty) for every x ∈ X and y ∈ Y .
By X⊗̂Y and X⊗̌Y we shall denote, respectively, the projective and injective tensor
products of X and Y . That is, X⊗̂Y is the completion of X ⊗ Y for the norm

‖ u ‖= inf

n∑
i=1

‖ xi ‖‖ yi ‖,

where the infimum is taken over all the representations of u as a finite sum of the
form u =

∑n
i=1 xi ⊗ yi, and X⊗̌Y is the completion of X ⊗ Y for the norm

‖ u ‖= sup{|

n∑
i=1

〈x′, xi〉〈y
′, yi〉 |: ‖ x′ ‖≤ 1, ‖ y′ ‖≤ 1}.

The dual space of X⊗̂Y is B(X × Y ), and that of X⊗̌Y is a subspace of B(X × Y ).
Although the injective tensor product of two Banach algebra A and B is not always
a Banach algebra, their projective tensor product is always a Banach algebra. The
natural multiplication of A⊗̂B is the linear extension of the following multiplication
on decomposable tensors (a ⊗ b)(ã ⊗ b̃) = aã ⊗ bb̃. For more information about the
tensor product of Banach algebra, see for example [4, 5].
A functional a′ in A∗ is said to be wap (weakly almost periodic) on A if the mapping
a → a′a from A into A∗ is weakly compact. Pym in [20] showed that this definition
to the equivalent following condition
For any two net (ai)i and (bj)j in {a ∈ A : ‖ a ‖≤ 1}, we have

limilimj〈a
′, aibj〉 = limjlimi〈a

′, aibj〉,

whenever both iterated limits exist. The collection of all wap functionals on A is
denoted by wap(A). Also we have a′ ∈ wap(A) if and only if 〈a′′b′′, a′〉 = 〈a′′ob′′, a′〉
for every a′′, b′′ ∈ A∗∗. Thus, it is clear that A is Arens regular if and only if
wap(A) = A∗. In the following, for Banach algebras A and B, for showing Arens
regularity of projective tensor products A⊗̂B, we establish wap(A⊗̂B) = (A⊗̂B)∗.
In all of this section, we regard A∗⊗̂B∗ as a subset of (A⊗̂B)∗.

Theorem 2-1. Suppose that A and B are Banach algebra and for every sequence
(xi)i , (yj)j ⊆ A1, (zi)i , (wj)j ⊆ B1 and f ∈ B(A×B), we have

lim
j

lim
i
f(xizi, yjwj) = lim

i
lim
j

f(xizi, yjwj).

Then A⊗̂B is Arens regular.
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Proof. Assume that f ∈ B(A×B). Since B(A×B) = (A⊗̂B)∗, it is enough to show
that f ∈ wap(A⊗̂B). Let (xi)i , (yj)j ⊆ A1 and (zi)i , (wj)j ⊆ B1, then we have the
following equality

lim
j

lim
i
〈f, (xi ⊗ yj)(zi ⊗ wj)〉 = lim

j
lim
i
〈f, xizi ⊗ yjwj〉

= lim
j

lim
i
f(xizi, yjwj) = lim

i
lim
j

f(xizi, yjwj)

= lim
i

lim
j
〈f, (xi ⊗ yj)(zi ⊗ wj)〉.

Consequently by [20], f ∈ wap(A⊗̂B). �

Definition 2-2. Assume that B is a Banach A − bimodule. We say that B is non-
trivial on A, if for every (ai)

n
i=1 ⊆ A1 and (bj)

n
j=1 ⊆ B1, respectively, basis elements

of A and B, we have
∑n

i=1 αiaibi 6= 0 where αi is scaler and every ai and bi are
distinct for all 1 ≤ i ≤ n.
For example, take B = R× {0} and A = R2 by the following multiplication

(a1, a2)(b1, 0) = (a1b1, 0) where a1, a2, b1 ∈ R.

Theorem 2-3. Suppose that A and B are Banach algebras and B is unital. Let B
be a Banach A− bimodule. Then we have the following assertions:

(1) If A⊗̂B is Arens regular, then A is Arens regular.
(2) Let B be non-trivial on A and let B be an unital Banach A−module. Then

A and B are Arens regular if and only if A⊗̂B is Arens regular.

Proof. (1) Assume that A⊗̂B is Arens regular and let u ∈ B be an unit element
of B. We show that wap(A) = A∗. Assume that (ai)i ⊆ A , (cj)j ⊆ A
whenever both iterated limits exist and a′ ∈ A∗. Then we define φ = a′ ⊗ b′

where b′ ∈ B∗ and b′(u) = 1. Since A∗ ⊗ B∗ ⊆ (A ⊗ B)∗ and A⊗̂B is Arens
regular, we have a′ ⊗ b′ ∈ wap(A ⊗B). Hence it follows that

lim
i
lim
j
〈a′, aicj〉 = lim

i
lim
j
〈a′ ⊗ b′, aicj ⊗ u〉

= lim
i
lim
j
〈a′ ⊗ b′, (ai ⊗ u)(cj ⊗ u)〉 = lim

j
lim
i
〈a′ ⊗ b′, (ai ⊗ u)(cj ⊗ u)〉

= lim
j

lim
i
〈a′, aicj〉.

We conclude that a′ ∈ wap(A), and so A is Arens regular.
(2) Let u be an unit element of B and suppose that B is Arens regular. Then

wap(B) = B∗. Suppose that (ai)i ⊆ A1 and (bj)j ⊆ B1 whenever both
iterated limits exist. Then (aiu)i ⊆ B1, and so for every b′ ∈ B∗, we have the
following equality

lim
i

lim
j
〈b′, (aiu)bj〉 = lim

j
lim
i
〈b′, (aiu)bj〉.
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Now let φ ∈ (A⊗̂B)∗. We define the mapping T : A⊗̂B → B such that
T (

∑n

i=1 αiai ⊗ bi) =
∑n

i=1 αiaibi where ai ∈ A, bi ∈ B and αi is a scaler. We
show that φoT−1 ∈ B∗. Since B is not-trivial on A, T−1 exist. Now let e ∈ A
be an unit element for B as Banach A−module and let (bα)α ⊆ B such that
bα → b. Then e⊗ bα → e ⊗ b in A⊗̂B, it follows that

〈φoT−1, bα〉 = 〈φ, T−1(bα)〉 = 〈φ, T−1(ebα)〉 = 〈φ, e ⊗ bα〉

→ 〈φ, e ⊗ b〉 = 〈φ, T−1(ub)〉 = 〈φoT−1, b〉.

Consequently φoT−1 ∈ B∗. Now we have the following equality

lim
i

lim
j
〈φ, ai ⊗ bj〉 = lim

i
lim
j
〈b′oT, ai ⊗ bj〉

= lim
i
lim
j
〈b′, T (ai ⊗ bj)〉 = lim

i
lim
j
〈b′, aibj〉

= lim
i
lim
j
〈b′, ai(ubj)〉 = lim

j
lim
i
〈b′, (aiu)bj〉

= lim
j

lim
i
〈b′, T (ai ⊗ bj)〉 = lim

j
lim
i
〈φ, ai ⊗ bj〉.

It follows that φ ∈ wap(A⊗̂B), and so A⊗̂B is Arens regular.
The converse by using part (1) hold.

�

Corollary 2-4 . Suppose that A and B are unital Banach algebras and B is an
unital Banach as A−module. Assume that B is non-trivial on A. Then if A and B
are Arens regular, then every bilinear form m : A×B → C is weakly compact.

Proof. By using Theorem 2-3 and [22, Theorem 3.4], proof hold. �

Example 2-5. (ℓ1 ⊕ C)⊗̂ℓ∞ is Arens regular.

Proof. We know that ℓ∞ is (ℓ1⊕C)−bimodule and ℓ∞ is unital. ℓ∞ is also non-trivial
on (ℓ1 ⊕ C). By using [2, Corollary 8] and [5, Example 2.6.22(iii)], respectively, we
know that ℓ∞ and (ℓ1 ⊕ C) are Arens regular, and so by Theorem 2-3, (ℓ1 ⊕ C)⊗̂ℓ∞

is Arens regular. �

Let A and B be Banach algebras. A bilinear form m : A × B → C is said to be
biregular, if for any two pairs of sequence (ai)i , (ãj)j in A1 and (bi)i, (b̃j)j in B1, we
have

lim
i
lim
j

m(aiãj , bib̃j) = lim
j

lim
i
m(aiãj , bib̃j)

provided that these limits exist.
There are some example of biregular non regular bilinear form that for more infor-
mation see [22].

Corollary 2-6. Suppose that A and B are Banach algebras. Then we have the
following assertions.
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(1) By conditions of Theorem 2-1, every bilinear formm : A×B → C is biregular.
(2) By conditions of Theorem 2-3 (2), every bilinear form m : A × B → C is

biregular.

Example 2-7. Every bilinear form m : (ℓ1 ⊕ C)× ℓ∞ → C is Arens regular.

Proof. By notice to Example 2-5 and [22, Theorem 3.4], proof is hold. �

In the following we give simple proof for biregularity of bilinear form m : A×B → C

such that m(a, b) = 〈u(a), b〉 where u : A → B∗ is continuous linear operator that is
introduced in [22 , Theorem 3.4].

Theorem 2-8 [22]. Let A and B be Banach algebras and u : A → B∗ is continuous
linear operator. Then the bilinear form m : A×B → C defined by m(a, b) = 〈u(a), b〉
is biregular.

Proof. Let (ai)i, (ãj)j in A1 and (bi)i, (b̃j)j in B1 be such that the following iterated
limits exist

lim
i
lim
j

m(aiãj , bib̃j) and lim
j

lim
i
m(aiãj , bib̃j).

By [8, p.424], from these sequences we can extract (aα)α, (ãβ)β in A and (bα)α, (b̃β)β

in B such that aα
w∗

→ a′′ and ãβ
w∗

→ ã′′ in A∗∗ and we have also bα
w∗

→ b′′ and b̃β
w∗

→ b̃′′

in B∗∗. Since A and B are Arens regular, we have

lim
α

lim
β

aαãβ = lim
β

lim
α

aαãβ = a′′ã′′

and

lim
α

lim
β

bαb̃β = lim
β

lim
α

bαb̃β = b′′b̃′′

Then, since u is continuous, we have

lim
α

lim
β

m(aαãβ , bαb̃β) = lim
α

lim
β
〈u(aαãβ), bαb̃β〉

= 〈u′′(a′′ã′′), b′′b̃′′〉.

Similarly, we have

lim
β

lim
α

m(aαãβ , bαb̃β) = 〈u′′(a′′ã′′), b′′b̃′′〉.

Consequently we have

lim
i
lim
j

m(aiãj, bib̃j) = lim
j

lim
i

m(aiãj , bib̃j).

It follows that m is biregular. �

Example 2-9 [22]. Let A be a Banach algebra and 1 < p < ∞. Then

(1) ℓp⊗̂A is Arens regular if and only if A is Arens regular.
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(2) Let G be a locally compact group. Then, Lp(G)⊗̂A is Arens regular if and
only if A is Arens regular.

Proof. By using [22, Theorem 3.4] and Theorem 2-8, proof hold. �

3. Weak amenability of Banach algebras

For Banach algebra A, Dales, Rodrigues-Palacios and Velasco in [7] have been stud-
ied the weak amenability of A, when its second dual is weakly amenable. Mo-
hamadzadih and Vishki in [19] have given simple solution to this problem with some
other results, and Eshaghi Gordji and Filali in [10] have been studied this prob-
lem with some new results. In this section, We study this problem in the new
way with some new results. Thus, for Banach A − module B, we introduce some
new concepts as left − weak∗ − weak convergence property [ Lw∗wc−property]
and right − weak∗ − weak convergence property [ Rw∗wc−property] with respect
to A and we show that if A∗ and A∗∗, respectively, have Rw∗wc−property and
Lw∗wc−property and A∗∗ is weakly amenable, then A is weakly amenable. We
also show the relations between these properties and weak amenability of A. Now
in the following, for left and right Banach A − module B, we define, respectively,
Lw∗wc−property and Rw∗wc−property concepts with some examples.

Definition 3-1. Assume that B is a left Banach A − module. Let a′′ ∈ A∗∗ and

(aα)α ⊂ A such that aα
w∗

→ a′′ in A∗∗. We say that b′ ∈ B∗ has left− weak∗ − weak

convergence property Lw∗wc-property with respect to A, if b′aα
w
→ b′a′′ in B∗.

When every b′ ∈ B∗ has Lw∗wc-property with respect to A, we say that B∗ has
Lw∗wc−property.
The definition of right − weak∗ − weak convergence property [= Rw∗wc−property]
with respect to A is similar and if b′ ∈ B∗ has left − weak∗ − weak convergence
property and right− weak∗ − weak convergence property, then we say that b′ ∈ B∗

has weak∗ − weak convergence property [= w∗wc−property].
By using Lemma 3.1 from [17], it is clear that if A∗ has Lw∗wc-property, then A is
Arens regular.
Assume that B is a left Banach A−module. We say that b′ ∈ B∗ has left−weak∗−
weak convergence property to zero Lw∗wc-property to zero with respect to A, if for

every (aα)α ⊂ A, b′aα
w∗

→ 0 in B∗ implies that b′aα
w
→ 0 in B∗.

Example 3-2 .
(1) Every reflexive Banach A−module has w∗wc−property.
(2) Let Ω be a compact group and suppose that A = C(Ω) and B = M(Ω). Let

(aα)α ⊆ A and µ ∈ B. Suppose that µaα
w∗

→ 0, then for each a ∈ A, we have

〈µaα, a〉 = 〈µ, aα ∗ a〉 =

∫
Ω

(aα ∗ a)dµ → 0.
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We set a = 1Ω . Then µ(aα) → 0. Now let b′ ∈ B∗. Then

〈b′, µaα〉 = 〈aαb
′, µ〉 =

∫
Ω

aαb
′dµ ≤‖ b′ ‖ |

∫
Ω

aαdµ |=‖ b′ ‖ | µ(aα) |→ 0.

It follows that µaα
w
→ 0, and so that µ has Rw∗wc−property to zero with

respect to A.

Let now B be a Banach A− bimodule, and let

πℓ : A×B → B and πr : B ×A → B.

be the left and right module actions of A on B, respectively. Then B∗∗ is a Banach
A∗∗ − bimodule with module actions

π∗∗∗

ℓ : A∗∗ ×B∗∗ → B∗∗ and π∗∗∗

r : B∗∗ ×A∗∗ → B∗∗.

Similarly, B∗∗ is a Banach A∗∗ − bimodule with module actions

πt∗∗∗t
ℓ : A∗∗ ×B∗∗ → B∗∗ and πt∗∗∗t

r : B∗∗ ×A∗∗ → B∗∗.

For a Banach A− bimodule B, we define the topological centers of the left and right
module actions of A on B as follows:

Zℓ
A∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗

r (b′′, a′′) : A∗∗ → B∗∗

is weak∗ − weak∗ continuous}

Zℓ
B∗∗(A∗∗) = Z(πℓ) = {a′′ ∈ A∗∗ : the map b′′ → π∗∗∗

ℓ (a′′, b′′) : B∗∗ → B∗∗

is weak∗ − weak∗ continuous}

Zr
A∗∗(B∗∗) = Z(πt

ℓ) = {b′′ ∈ B∗∗ : the map a′′ → πt∗∗∗
ℓ (b′′, a′′) : A∗∗ → B∗∗

is weak∗ − weak∗ continuous}

Zr
B∗∗(A∗∗) = Z(πt

r) = {a′′ ∈ A∗∗ : the map b′′ → πt∗∗∗
r (a′′, b′′) : B∗∗ → B∗∗

is weak∗ − weak∗ continuous}.

Theorem 3-3. i) Assume that B is a left Banach A−module. If B∗A∗∗ ⊆ B∗, then
B∗ has Lw∗wc−property.
ii) Assume thatB is a right BanachA−module. IfA∗∗B∗ ⊆ B∗ and Zr

A∗∗(B∗∗) = B∗∗,
then B∗ has Rw∗wc−property.

Proof. i) Assume that a′′ ∈ A∗∗ and (aα)α ⊆ A such that aα
w∗

→ a′′. Then for every
b′′ ∈ B∗∗, since b′a′′ ∈ B∗, we have

< b′′, b′a′′ >=< a′′b′′, b′ >= lim
α

< aαb
′′, b′ >= lim

α
< b′′, b′aα > .

It follows that b′aα
w
→ b′a′′.

ii) Proof is similar to (i). �
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Theorem 3-4. Let A be a Banach algebra and suppose that A∗ and A∗∗, respectively,
have Rw∗wc−property and Lw∗wc−property. If A∗∗ is weakly amenable, then A is
weakly amenable.

Proof. Assume that a′′ ∈ A∗∗ and (aα)α ⊆ A such that aα
w∗

→ a′′. Then for each

a′ ∈ A∗, we have aαa
′ w∗

→ a′′a′ in A∗. Since A∗ has Rw∗wc−property, aαa
′ w
→ a′′a′ in

A∗. Then for every x′′ ∈ A∗∗, we have

〈x′′aα, a
′〉 = 〈x′′, aαa

′〉 → 〈x′′, a′′a′〉 = 〈x′′a′′, a′〉.

It follows that x′′aα
w∗

→ x′′a′′. Since A∗∗ has Lw∗wc−property with respect to A,

x′′aα
w
→ x′′a′′. IfD : A → A∗ is a bounded derivation, we extend it to a bounded linear

mapping D′′ from A∗∗ into A∗∗∗. Suppose that a′′, b′′ ∈ A∗∗ and (aα)α, (bβ)β ⊆ A

such that aα
w∗

→ a′′ and bβ
w∗

→ b′′. Since x′′aα
w
→ x′′a′′ for every x′′ ∈ A∗∗, we have

lim
α
〈D′′(b′′), x′′aα〉 = 〈D′′(b′′), x′′a′′〉.

In the following we take limit on the weak∗ topologies. Thus we have

lim
α

lim
β

D(aα)bβ = D′′(a′′)b′′.

Consequently, we have

D′′(a′′b′′) = lim
α

lim
β

D(aαbβ) = lim
α

lim
β

D(aα)bβ + lim
α

lim
β

aαD(bβ)

= D′′(a′′)b′′ + a′′D′′(b′′).

Since A∗∗ is weakly amenable, there is a′′′ ∈ A∗∗∗ such that D′′ = δa′′′ . We conclude
that D = D′′ |A= δa′′′ |A. Hence for each x′ ∈ A∗, we have D = x′a′′′ |A −a′′′ |A x′.
Take a′ = a′′′ |A. It follows that H

1(A,A∗) = 0. �

Theorem 3-5. Let A be a Banach algebra and suppose that D : A → A∗ is a
surjective derivation. If D′′ is a derivation, then we have the following assertions.

(1) A∗ and A∗∗, respectively, have w∗wc−property and Lw∗wc−property with
respect to A.

(2) For every a′′ ∈ A∗∗, the mapping x′′ → a′′x′′ from A∗∗ into A∗∗ is weak∗ −
weak continuous.

(3) A is Arens regular.
(4) If A has LBAI, then A is reflexive.

Proof. (1) Since D is surjective, D′′ is surjective, and so by using [19, Theorem
2.2], we have A∗∗∗A∗∗ ⊆ D′′(A∗∗)A∗∗ ⊆ A∗. Suppose that a′′ ∈ A∗∗ and

(aα)α ⊆ A such that aα
w∗

→ a′′. Then for each x′ ∈ A∗, we have x′aα
w∗

→ x′a′′.
Since A∗∗∗A∗∗ ⊆ A∗, x′a′′ ∈ A∗. Then for every x′′ ∈ A∗∗, we have

〈x′′, x′aα〉 = 〈x′′x′, aα〉 → 〈a′′, x′′x′〉 = 〈x′a′′, x′′〉 = 〈x′′, x′a′′〉.

It follows that x′aα
w
→ x′a′′ in A∗. Thus x′ has Lw∗wc−property with respect

to A. The proof that x′ has Rw∗wc−property with respect to A is similar,
and so A∗ has w∗wc−property.
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Suppose that x′′′ ∈ A∗∗∗. Since A∗∗∗A∗∗ ⊆ A∗, x′′aα
w∗

→ x′′a′′ for each
x′′ ∈ A∗∗. Then

〈x′′′, x′′aα〉 = 〈x′′′x′′, aα〉 → 〈x′′′x′′, a′′〉 = 〈x′′′, x′′a′′〉.

It follows that x′′aα
w
→ x′′a′′. Thus x′′ has Lw∗wc−property with respect to

A.

(2) Suppose that (a′′α)α ⊆ A∗∗ and a′′α
w∗

→ a′′. Let x′′ ∈ A∗∗. Then for every
x′′′ ∈ A∗∗∗, since A∗∗∗A∗∗ ⊆ A∗, we have

〈x′′′, x′′a′′α〉 = 〈x′′′x′′, a′′α〉 → 〈x′′′x′′, a′′〉 = 〈x′′′, x′′a′′〉.
(3) It follows from (2).
(4) Let (eα)α ⊆ A be a BLAI for A. Then without loss generality, let e′′ be a

left unit for A∗∗ such that eα
w∗

→ e′′. Suppose that (a′′α)α ⊆ A∗∗ and a′′α
w∗

→ a′′.
Then for every a′′′ ∈ A∗∗∗, since A∗∗∗A∗∗ ⊆ A∗, we have

〈a′′′, a′′α〉 = 〈a′′′, e′′a′′α〉 = 〈a′′′e′′, a′′α〉 → 〈a′′′e′′, a′′〉 = 〈a′′′, a′′〉.

It follows that a′′α
w
→ a′′. Consequently A is reflexive.

�

Corollary 3-6. Let A be a Banach algebra and suppose that D : A → A∗ is a
surjective derivation. Then the following statements are equivalent.

(1) A∗ and A∗∗, respectively, have Rw∗wc−property and Lw∗wc−property.
(2) For every a′′ ∈ A∗∗, the mapping x′′ → a′′x′′ from A∗∗ into A∗∗ is weak∗ −

weak continuous.

Problems.
1. Let G be a locally compact group. What can say for the following sets?

(1) Zℓ
L1(G)∗∗((L

1(G)⊗̂L1(G))∗∗) =? , Zr
L1(G)∗∗((L

1(G)⊗̂L1(G))∗∗) =?

(2) Zℓ
(L1(G)⊗̂L1(G))∗∗

(L1(G)∗∗) =? , Zr
(L1(G)⊗̂L1(G))∗∗

(L1(G)∗∗) =?

(3) Zℓ
L1(G)∗∗(L

1(G)∗∗⊗̂L1(G)∗∗) =? , Zr
L1(G)∗∗(L

1(G)∗∗⊗̂L1(G)∗∗) =?

2. Suppose that S is a compact semigroup. Dose L1(S)∗ andM(S)∗ have Lw∗wc−property
or Rw∗wc−property?
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