ARENS REGULARITY OF TENSOR PRODUCTS AND WEAK AMENABILITY OF BANACH ALGEBRAS

KAZEM HAGHNEJAD AZAR

ABSTRACT. In this note, we study the Arens regularity of projective tensor product $A\hat{\otimes}B$ whenever A and B are Arens regular. We establish some new conditions for showing that the Banach algebras A and B are Arens regular if and only if $A\hat{\otimes}B$ is Arens regular. We also introduce some new concepts as leftweak*-weak convergence property $[Lw^*wc-property]$ and right-weak*-weak convergence property $[Rw^*wc-property]$ and for Banach algebra A, suppose that A^* and A^{**} , respectively, have $Rw^*wc-property$ and $Lw^*wc-property$. Then if A^{**} is weakly amenable, it follows that A is weakly amenable. We also offer some results concerning the relation between these properties with some special derivation $D: A \to A^*$. We obtain some conclusions in the Arens regularity of Banach algebras.

1. Preliminaries and Introduction

Suppose that A and B are Banach algebras. Ulger in [22], has been studied that the Arens regularity of projective tensor product $A \hat{\otimes} B$. He showed that when A and B are Arens regular in general, $A \hat{\otimes} B$ is not Arens regular. He introduced a new concept as biregular mapping and showed that a bounded bilinear mapping $m : A \times B \to \mathbb{C}$ is biregular if and only if $A \hat{\otimes} B$ is Arens regular. In this paper, we establish some conditions for Banach algebras A and B which follows that $A \hat{\otimes} B$ is Arens regular. Conversely, we investigated if $A \hat{\otimes} B$ is Arens regular, then A or B are Arens regular. In section three, for Banach A - module B, we introduce new concepts as $left - weak^* - weak$ convergence property [Lw^*wc -property] and $right - weak^* - weak$ convergence property [Rw^*wc -property and Lw^*wc -property and A^{**} is weakly amenable, then A is weakly amenable. We have also some conclusions regarding Arens regularity of Banach algebras. We introduce some notations and definitions that we used throughout this paper.

Let A be a Banach algebra and let B be a Banach A - bimodule. A derivation from A into B is a bounded linear mapping $D: A \to B$ such that

D(xy) = xD(y) + D(x)y for all $x, y \in A$.

The space of all continuous derivations from A into B is denoted by $Z^1(A, B)$. Easy example of derivations are the inner derivations, which are given for each $b \in B$ by

$$\delta_b(a) = ab - ba$$
 for all $a \in A$.

²⁰⁰⁰ Mathematics Subject Classification. 46L06; 46L07; 46L10; 47L25.

Key words and phrases. Arens regularity, topological centers, Tensor product, Bilinear form, amenability, weak amenability, derivation, module actions, $left - weak^* - to - weak$ convergence.

The space of inner derivations from A into B is denoted by $N^1(A, B)$. The Banach algebra A is amenable, when for every Banach A - bimodule B, the only inner derivation from A into B^* is zero derivation. It is clear that A is amenable if and only if $H^1(A, B^*) = Z^1(A, B^*)/N^1(A, B^*) = \{0\}$. The concept of amenability for a Banach algebra A, introduced by Johnson in 1972, has proved to be of enormous importance in Banach algebra theory, see [13]. A Banach algebra A is said to be a weakly amenable, if every derivation from A into A^* is inner. Equivalently, A is weakly amenable if and only if $H^1(A, A^*) = Z^1(A, A^*)/N^1(A, A^*) = \{0\}$. The concept of weak amenability was first introduced by Bade, Curtis and Dales in [2] for commutative Banach algebras, and was extended to the noncommutative case by Johnson in [14].

Let A be a Banach algebra and A^* , A^{**} , respectively, be the first and second dual of A. For $a \in A$ and $a' \in A^*$, we denote by a'a and aa' respectively, the functionals in A^* defined by $\langle a'a, b \rangle = \langle a', ab \rangle = a'(ab)$ and $\langle aa', b \rangle = \langle a', ba \rangle = a'(ba)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\langle a, a' \rangle - \langle a', a \rangle$ for every $a \in A$ and $a' \in A^*$. We say that a bounded net $(e_{\alpha})_{\alpha \in I}$ in A is a left bounded approximate identity (= LBAI) [resp. right bounded approximate identity (= RBAI)] if, for each $a \in A$, $e_{\alpha}a \longrightarrow a$ [resp. $ae_{\alpha} \longrightarrow a$].

Let X, Y, Z be normed spaces and $m : X \times Y \to Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions m^{***} and m^{t***t} of m from $X^{**} \times Y^{**}$ into Z^{**} as following

1. $m^*: Z^* \times X \to Y^*$, given by $\langle m^*(z', x), y \rangle = \langle z', m(x, y) \rangle$ where $x \in X, y \in Y$, $z' \in Z^*$,

2. $m^{**}: Y^{**} \times Z^* \to X^*$, given by $\langle m^{**}(y'', z'), x \rangle = \langle y'', m^*(z', x) \rangle$ where $x \in X$, $y'' \in Y^{**}, z' \in Z^*$,

3.
$$m^{***}: X^{**} \times Y^{**} \to Z^{**}$$
, given by $\langle m^{***}(x'', y''), z' \rangle = \langle x'', m^{**}(y'', z') \rangle$
where $x'' \in X^{**}, y'' \in Y^{**}, z' \in Z^*$.

The mapping m^{***} is the unique extension of m such that $x'' \to m^{***}(x'', y'')$ from X^{**} into Z^{**} is $weak^* - to - weak^*$ continuous for every $y'' \in Y^{**}$, but the mapping $y'' \to m^{***}(x'', y'')$ is not in general $weak^* - to - weak^*$ continuous from Y^{**} into Z^{**} unless $x'' \in X$. Hence the first topological center of m may be defined as following

$$Z_1(m) = \{x'' \in X^{**} : y'' \to m^{***}(x'', y'') \text{ is weak}^* - to - weak^* - continuous\}$$

Let now $m^t: Y \times X \to Z$ be the transpose of m defined by $m^t(y, x) = m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^t is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t***}: Y^{**} \times X^{**} \to Z^{**}$. The mapping $m^{t***t}:$ $X^{**} \times Y^{**} \to Z^{**}$ in general is not equal to m^{***} , see [1], if $m^{***} = m^{t***t}$, then m is called Arens regular. The mapping $y'' \to m^{t***t}(x'', y'')$ is weak* – to – weak* continuous for every $y'' \in Y^{**}$, but the mapping $x'' \to m^{t***t}(x'', y'')$ from X^{**} into Z^{**} is not in general weak* – to – weak* continuous for every $y'' \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{ y'' \in Y^{**} : x'' \to m^{t***t}(x'', y'') \text{ is weak}^* - to - weak^* - continuous \}.$$

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ or $Z_2(m) = Y^{**}$. Arens regularity of m is equivalent to the following

$$\lim_{i} \lim_{j} \langle z', m(x_i, y_j) \rangle = \lim_{j} \lim_{i} \langle z', m(x_i, y_j) \rangle,$$

whenever both limits exist for all bounded sequences $(x_i)_i \subseteq X$, $(y_i)_i \subseteq Y$ and $z' \in \mathbb{Z}^*$, see [5, 20].

The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let a'' and b'' be elements of A^{**} , the second dual of A. By *Goldstin's* Theorem [4, P.424-425], there are nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in A such that $a'' = weak^* - \lim_{\alpha} a_{\alpha}$ and $b'' = weak^* - \lim_{\beta} b_{\beta}$. So it is easy to see that for all $a' \in A^*$,

$$\lim_{\alpha} \lim_{\beta} \langle a', m(a_{\alpha}, b_{\beta}) \rangle = \langle a''b'', a' \rangle$$

and

$$\lim_{\beta} \lim_{\alpha} \langle a', m(a_{\alpha}, b_{\beta}) \rangle = \langle a''ob'', a' \rangle$$

where a''b'' and a''ob'' are the first and second Arens products of A^{**} , respectively, see [5, 20].

The mapping m is left strongly Arens irregular if $Z_1(m) = X$ and m is right strongly Arens irregular if $Z_2(m) = Y$.

Regarding A as a Banach A-bimodule, the operation $\pi: A \times A \to A$ extends to π^{***} and π^{t***t} defined on $A^{**} \times A^{**}$. These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space A^{**} becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a'', b'' \in A^{**}$ shall be simply indicated by a''b'' and defined by the three steps:

$$\langle a'a, b \rangle = \langle a', ab \rangle, \langle a''a', a \rangle = \langle a'', a'a \rangle, a''b'', a' \rangle = \langle a'', b''a' \rangle.$$

for every $a, b \in A$ and $a' \in A^*$. Similarly, the second (right) Arens product of $a'', b'' \in A^{**}$ shall be indicated by a''ob'' and defined by :

for all $a, b \in A$ and $a' \in A^*$.

2. Arens regularity of projective tensor product algebras

The tensor product, $X \otimes Y$, of the vector space X, Y can be constructed as a space of linear functional on $B(X \times Y)$, in the following way:

Let $x \in X$ and $y \in Y$. We denote by $x \otimes y$ the functional given by evaluation at the point (x, y). In other words,

$$\langle x \otimes y, A \rangle = A(x, y),$$

for each bilinear from A on $X \times Y$, so the tensor product $X \otimes Y$ is the subspace of the dual of bounded bilinear forms on $X \otimes Y$, $B(X \times Y)^*$.

We recall that each tensor $u \in X \otimes Y$ acts as a linear functional on the space of bilinear

forms and so we may define a mapping $\tilde{A} : X \otimes Y \to K$ by $u \in X \otimes Y \to \langle A, u \rangle \in K$. In summary, we have

$$B(X \times Y) = (X \otimes Y)^*.$$

Let X, Y, E and F be vector spaces and let $S : X \to E$ and $T : Y \to F$ be linear mappings. Then we may define a bilinear mapping by $(x, y) \in X \times Y \to (Sx) \otimes (Ty) \in E \otimes F$. Linearization gives a linear mapping $(S \otimes T) : X \otimes Y \to E \otimes F$ such that $(S \otimes T)(x \otimes y) = (Sx) \otimes (Ty)$ for every $x \in X$ and $y \in Y$.

By $X \otimes Y$ and $X \otimes Y$ we shall denote, respectively, the projective and injective tensor products of X and Y. That is, $X \otimes Y$ is the completion of $X \otimes Y$ for the norm

$$|| u || = inf \sum_{i=1}^{n} || x_i || || y_i ||$$

where the infimum is taken over all the representations of u as a finite sum of the form $u = \sum_{i=1}^{n} x_i \otimes y_i$, and $X \check{\otimes} Y$ is the completion of $X \otimes Y$ for the norm

$$|| u || = \sup\{|\sum_{i=1}^{n} \langle x', x_i \rangle \langle y', y_i \rangle |: || x' || \le 1, || y' || \le 1\}.$$

The dual space of $X \otimes Y$ is $B(X \times Y)$, and that of $X \otimes Y$ is a subspace of $B(X \times Y)$. Although the injective tensor product of two Banach algebra A and B is not always a Banach algebra, their projective tensor product is always a Banach algebra. The natural multiplication of $A \otimes B$ is the linear extension of the following multiplication on decomposable tensors $(a \otimes b)(\tilde{a} \otimes \tilde{b}) = a\tilde{a} \otimes b\tilde{b}$. For more information about the tensor product of Banach algebra, see for example [4, 5].

A functional a' in A^* is said to be wap (weakly almost periodic) on A if the mapping $a \to a'a$ from A into A^* is weakly compact. Pym in [20] showed that this definition to the equivalent following condition

For any two net $(a_i)_i$ and $(b_j)_j$ in $\{a \in A : ||a|| \le 1\}$, we have

$$lim_i lim_i \langle a', a_i b_i \rangle = lim_i lim_i \langle a', a_i b_i \rangle,$$

whenever both iterated limits exist. The collection of all wap functionals on A is denoted by wap(A). Also we have $a' \in wap(A)$ if and only if $\langle a''b'', a' \rangle = \langle a''ob'', a' \rangle$ for every $a'', b'' \in A^{**}$. Thus, it is clear that A is Arens regular if and only if $wap(A) = A^*$. In the following, for Banach algebras A and B, for showing Arens regularity of projective tensor products $A \hat{\otimes} B$, we establish $wap(A \hat{\otimes} B) = (A \hat{\otimes} B)^*$. In all of this section, we regard $A^* \hat{\otimes} B^*$ as a subset of $(A \hat{\otimes} B)^*$.

Theorem 2-1. Suppose that A and B are Banach algebra and for every sequence $(x_i)_i, (y_j)_j \subseteq A_1, (z_i)_i, (w_j)_j \subseteq B_1$ and $f \in \mathbf{B}(A \times B)$, we have

$$\lim_{j} \lim_{i} f(x_i z_i, y_j w_j) = \lim_{i} \lim_{j} f(x_i z_i, y_j w_j).$$

Then $A \hat{\otimes} B$ is Arens regular.

Proof. Assume that $f \in \mathbf{B}(A \times B)$. Since $\mathbf{B}(A \times B) = (A \otimes B)^*$, it is enough to show that $f \in wap(A \otimes B)$. Let $(x_i)_i, (y_j)_j \subseteq A_1$ and $(z_i)_i, (w_j)_j \subseteq B_1$, then we have the following equality

$$\begin{split} \lim_{j} \lim_{i} \langle f, (x_i \otimes y_j)(z_i \otimes w_j) \rangle &= \lim_{j} \lim_{i} \langle f, x_i z_i \otimes y_j w_j \rangle \\ &= \lim_{j} \lim_{i} f(x_i z_i, y_j w_j) = \lim_{i} \lim_{j} f(x_i z_i, y_j w_j) \\ &= \lim_{i} \lim_{j} \langle f, (x_i \otimes y_j)(z_i \otimes w_j) \rangle. \end{split}$$

Consequently by [20], $f \in wap(A \hat{\otimes} B)$.

Definition 2-2. Assume that *B* is a Banach A - bimodule. We say that *B* is non-trivial on *A*, if for every $(a_i)_{i=1}^n \subseteq A_1$ and $(b_j)_{j=1}^n \subseteq B_1$, respectively, basis elements of *A* and *B*, we have $\sum_{i=1}^n \alpha_i a_i b_i \neq 0$ where α_i is scalar and every a_i and b_i are distinct for all $1 \leq i \leq n$.

For example, take $B = \mathbb{R} \times \{0\}$ and $A = \mathbb{R}^2$ by the following multiplication

 $(a_1, a_2)(b_1, 0) = (a_1b_1, 0)$ where $a_1, a_2, b_1 \in \mathbb{R}$.

Theorem 2-3. Suppose that A and B are Banach algebras and B is unital. Let B be a Banach A - bimodule. Then we have the following assertions:

- (1) If $A \otimes B$ is Arens regular, then A is Arens regular.
- (2) Let B be non-trivial on A and let B be an unital Banach A module. Then A and B are Arens regular if and only if $A \otimes B$ is Arens regular.
- *Proof.* (1) Assume that $A \otimes B$ is Arens regular and let $u \in B$ be an unit element of B. We show that $wap(A) = A^*$. Assume that $(a_i)_i \subseteq A$, $(c_j)_j \subseteq A$ whenever both iterated limits exist and $a' \in A^*$. Then we define $\phi = a' \otimes b'$ where $b' \in B^*$ and b'(u) = 1. Since $A^* \otimes B^* \subseteq (A \otimes B)^*$ and $A \otimes B$ is Arens regular, we have $a' \otimes b' \in wap(A \otimes B)$. Hence it follows that

$$\lim_{i} \lim_{j} \langle a', a_i c_j \rangle = \lim_{i} \lim_{j} \langle a' \otimes b', a_i c_j \otimes u \rangle$$
$$= \lim_{i} \lim_{j} \langle a' \otimes b', (a_i \otimes u)(c_j \otimes u) \rangle = \lim_{j} \lim_{i} \langle a' \otimes b', (a_i \otimes u)(c_j \otimes u) \rangle$$
$$= \lim_{i} \lim_{i} \langle a', a_i c_j \rangle.$$

We conclude that $a' \in wap(A)$, and so A is Arens regular.

(2) Let u be an unit element of B and suppose that B is Arens regular. Then $wap(B) = B^*$. Suppose that $(a_i)_i \subseteq A_1$ and $(b_j)_j \subseteq B_1$ whenever both iterated limits exist. Then $(a_i u)_i \subseteq B_1$, and so for every $b' \in B^*$, we have the following equality

$$\lim_{i} \lim_{j} \langle b', (a_{i}u)b_{j} \rangle = \lim_{j} \lim_{i} \langle b', (a_{i}u)b_{j} \rangle.$$

Now let $\phi \in (A \hat{\otimes} B)^*$. We define the mapping $T : A \hat{\otimes} B \to B$ such that $T(\sum_{i=1}^n \alpha_i a_i \otimes b_i) = \sum_{i=1}^n \alpha_i a_i b_i$ where $a_i \in A$, $b_i \in B$ and α_i is a scaler. We show that $\phi o T^{-1} \in B^*$. Since B is not-trivial on A, T^{-1} exist. Now let $e \in A$ be an unit element for B as Banach A - module and let $(b_\alpha)_\alpha \subseteq B$ such that $b_\alpha \to b$. Then $e \otimes b_\alpha \to e \otimes b$ in $A \hat{\otimes} B$, it follows that

$$\begin{split} \langle \phi o T^{-1}, b_{\alpha} \rangle &= \langle \phi, T^{-1}(b_{\alpha}) \rangle = \langle \phi, T^{-1}(eb_{\alpha}) \rangle = \langle \phi, e \otimes b_{\alpha} \rangle \\ &\to \langle \phi, e \otimes b \rangle = \langle \phi, T^{-1}(ub) \rangle = \langle \phi o T^{-1}, b \rangle. \end{split}$$

Consequently $\phi o T^{-1} \in B^*$. Now we have the following equality

$$\lim_{i} \lim_{j} \langle \phi, a_{i} \otimes b_{j} \rangle = \lim_{i} \lim_{j} \langle b' \circ T, a_{i} \otimes b_{j} \rangle$$
$$= \lim_{i} \lim_{j} \langle b', T(a_{i} \otimes b_{j}) \rangle = \lim_{i} \lim_{j} \langle b', a_{i}b_{j} \rangle$$
$$= \lim_{i} \lim_{j} \langle b', a_{i}(ub_{j}) \rangle = \lim_{j} \lim_{i} \langle b', (a_{i}u)b_{j} \rangle$$
$$= \lim_{j} \lim_{i} \langle b', T(a_{i} \otimes b_{j}) \rangle = \lim_{j} \lim_{i} \langle \phi, a_{i} \otimes b_{j} \rangle.$$

It follows that $\phi \in wap(A \otimes B)$, and so $A \otimes B$ is Arens regular. The converse by using part (1) hold.

Corollary 2-4. Suppose that A and B are unital Banach algebras and B is an unital Banach as A - module. Assume that B is non-trivial on A. Then if A and B are Arens regular, then every bilinear form $m : A \times B \to \mathbb{C}$ is weakly compact.

Proof. By using Theorem 2-3 and [22, Theorem 3.4], proof hold.

Example 2-5. $(\ell^1 \oplus \mathbb{C}) \hat{\otimes} \ell^{\infty}$ is Arens regular.

Proof. We know that ℓ^{∞} is $(\ell^1 \oplus \mathbb{C}) - bimodule$ and ℓ^{∞} is unital. ℓ^{∞} is also non-trivial on $(\ell^1 \oplus \mathbb{C})$. By using [2, Corollary 8] and [5, Example 2.6.22(iii)], respectively, we know that ℓ^{∞} and $(\ell^1 \oplus \mathbb{C})$ are Arens regular, and so by Theorem 2-3, $(\ell^1 \oplus \mathbb{C}) \hat{\otimes} \ell^{\infty}$ is Arens regular.

Let A and B be Banach algebras. A bilinear form $m : A \times B \to \mathbb{C}$ is said to be biregular, if for any two pairs of sequence $(a_i)_i$, $(\tilde{a}_j)_j$ in A_1 and $(b_i)_i$, $(\tilde{b}_j)_j$ in B_1 , we have

$$\lim_{i} \lim_{j} m(a_{i}\tilde{a}_{j}, b_{i}\tilde{b}_{j}) = \lim_{j} \lim_{i} m(a_{i}\tilde{a}_{j}, b_{i}\tilde{b}_{j})$$

provided that these limits exist.

There are some example of biregular non regular bilinear form that for more information see [22].

Corollary 2-6. Suppose that A and B are Banach algebras. Then we have the following assertions.

- (1) By conditions of Theorem 2-1, every bilinear form $m: A \times B \to \mathbb{C}$ is biregular.
- (2) By conditions of Theorem 2-3 (2), every bilinear form $m : A \times B \to \mathbb{C}$ is biregular.

Example 2-7. Every bilinear form $m : (\ell^1 \oplus \mathbb{C}) \times \ell^\infty \to \mathbb{C}$ is Arens regular.

Proof. By notice to Example 2-5 and [22, Theorem 3.4], proof is hold.

 $\overline{7}$

In the following we give simple proof for biregularity of bilinear form $m: A \times B \to \mathbb{C}$ such that $m(a, b) = \langle u(a), b \rangle$ where $u: A \to B^*$ is continuous linear operator that is introduced in [22, Theorem 3.4].

Theorem 2-8 [22]. Let A and B be Banach algebras and $u : A \to B^*$ is continuous linear operator. Then the bilinear form $m : A \times B \to \mathbb{C}$ defined by $m(a, b) = \langle u(a), b \rangle$ is biregular.

Proof. Let $(a_i)_i$, $(\tilde{a}_j)_j$ in A_1 and $(b_i)_i$, $(\tilde{b}_j)_j$ in B_1 be such that the following iterated limits exist

$$\lim_{i} \lim_{j} m(a_i \tilde{a}_j, b_i \tilde{b}_j) \text{ and } \lim_{j} \lim_{i} m(a_i \tilde{a}_j, b_i \tilde{b}_j).$$

By [8, p.424], from these sequences we can extract $(a_{\alpha})_{\alpha}$, $(\tilde{a}_{\beta})_{\beta}$ in A and $(b_{\alpha})_{\alpha}$, $(\tilde{b}_{\beta})_{\beta}$ in B such that $a_{\alpha} \xrightarrow{w^*} a''$ and $\tilde{a}_{\beta} \xrightarrow{w^*} \tilde{a}''$ in A^{**} and we have also $b_{\alpha} \xrightarrow{w^*} b''$ and $\tilde{b}_{\beta} \xrightarrow{w^*} \tilde{b}''$ in B^{**} . Since A and B are Arens regular, we have

$$\begin{split} \lim_{\alpha} \lim_{\beta} a_{\alpha} \tilde{a}_{\beta} &= \lim_{\beta} \lim_{\alpha} a_{\alpha} \tilde{a}_{\beta} = a'' \tilde{a}'' \\ and \\ \lim_{\alpha} \lim_{\beta} b_{\alpha} \tilde{b}_{\beta} &= \lim_{\beta} \lim_{\alpha} b_{\alpha} \tilde{b}_{\beta} = b'' \tilde{b}'' \end{split}$$

Then, since u is continuous, we have

$$\lim_{\alpha} \lim_{\beta} m(a_{\alpha}\tilde{a}_{\beta}, b_{\alpha}\tilde{b}_{\beta}) = \lim_{\alpha} \lim_{\beta} \langle u(a_{\alpha}\tilde{a}_{\beta}), b_{\alpha}\tilde{b}_{\beta} \rangle$$
$$= \langle u''(a''\tilde{a}''), b''\tilde{b}'' \rangle.$$

Similarly, we have

$$\lim_{\beta} \lim_{\alpha} m(a_{\alpha}\tilde{a}_{\beta}, b_{\alpha}\tilde{b}_{\beta}) = \langle u''(a''\tilde{a}''), b''\tilde{b}'' \rangle.$$

Consequently we have

$$\lim_{i} \lim_{j} m(a_i \tilde{a}_j, b_i \tilde{b}_j) = \lim_{j} \lim_{i} m(a_i \tilde{a}_j, b_i \tilde{b}_j).$$

It follows that m is biregular.

Example 2-9 [22]. Let A be a Banach algebra and 1 . Then

(1) $\ell^p \hat{\otimes} A$ is Arens regular if and only if A is Arens regular.

(2) Let G be a locally compact group. Then, $L^p(G)\hat{\otimes}A$ is Arens regular if and only if A is Arens regular.

Proof. By using [22, Theorem 3.4] and Theorem 2-8, proof hold.

3. Weak amenability of Banach algebras

For Banach algebra A, Dales, Rodrigues-Palacios and Velasco in [7] have been studied the weak amenability of A, when its second dual is weakly amenable. Mohamadzadih and Vishki in [19] have given simple solution to this problem with some other results, and Eshaghi Gordji and Filali in [10] have been studied this problem with some new results. In this section, We study this problem in the new way with some new results. Thus, for Banach A - module B, we introduce some new concepts as $left - weak^* - weak$ convergence property [Lw^*wc -property] and $right - weak^* - weak$ convergence property [Rw^*wc -property] with respect to A and we show that if A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property and A^{**} is weakly amenable, then A is weakly amenable. We also show the relations between these properties and weak amenability of A. Now in the following, for left and right Banach A - module B, we define, respectively, Lw^*wc -property and Rw^*wc -property concepts with some examples.

Definition 3-1. Assume that *B* is a left Banach A - module. Let $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subset A$ such that $a_{\alpha} \xrightarrow{w^*} a''$ in A^{**} . We say that $b' \in B^*$ has $left - weak^* - weak$ convergence property Lw^*wc -property with respect to A, if $b'a_{\alpha} \xrightarrow{w} b'a''$ in B^* .

When every $b' \in B^*$ has Lw^*wc -property with respect to A, we say that B^* has Lw^*wc -property.

The definition of $right - weak^* - weak$ convergence property $[= Rw^*wc-property]$ with respect to A is similar and if $b' \in B^*$ has $left - weak^* - weak$ convergence property and $right - weak^* - weak$ convergence property, then we say that $b' \in B^*$ has $weak^* - weak$ convergence property $[= w^*wc-property]$.

By using Lemma 3.1 from [17], it is clear that if A^* has Lw^*wc -property, then A is Arens regular.

Assume that B is a left Banach A - module. We say that $b' \in B^*$ has $left - weak^* - weak$ convergence property to zero Lw^*wc -property to zero with respect to A, if for every $(a_{\alpha})_{\alpha} \subset A$, $b'a_{\alpha} \xrightarrow{w^*} 0$ in B^* implies that $b'a_{\alpha} \xrightarrow{w} 0$ in B^* .

Example 3-2.

- (1) Every reflexive Banach A module has w^*wc -property.
- (2) Let Ω be a compact group and suppose that $A = C(\Omega)$ and $B = M(\Omega)$. Let $(a_{\alpha})_{\alpha} \subseteq A$ and $\mu \in B$. Suppose that $\mu a_{\alpha} \xrightarrow{w^*} 0$, then for each $a \in A$, we have

$$\langle \mu a_{\alpha}, a \rangle = \langle \mu, a_{\alpha} * a \rangle = \int_{\Omega} (a_{\alpha} * a) d\mu \to 0.$$

We set $a = 1_{\Omega}$. Then $\mu(a_{\alpha}) \to 0$. Now let $b' \in B^*$. Then

$$\langle b', \mu a_{\alpha} \rangle = \langle a_{\alpha}b', \mu \rangle = \int_{\Omega} a_{\alpha}b'd\mu \le \parallel b' \parallel \mid \int_{\Omega} a_{\alpha}d\mu \mid = \parallel b' \parallel \mid \mu(a_{\alpha}) \mid \to 0.$$

It follows that $\mu a_{\alpha} \xrightarrow{w} 0$, and so that μ has Rw^*wc -property to zero with respect to A.

Let now B be a Banach A - bimodule, and let

$$\pi_{\ell}: A \times B \to B \text{ and } \pi_r: B \times A \to B.$$

be the left and right module actions of A on B, respectively. Then B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_{\ell}^{***}: A^{**} \times B^{**} \to B^{**} \text{ and } \pi_{r}^{***}: B^{**} \times A^{**} \to B^{**}.$$

Similarly, B^{**} is a Banach $A^{**} - bimodule$ with module actions

$$\pi_{\ell}^{t***t}: A^{**} \times B^{**} \to B^{**} \text{ and } \pi_{r}^{t***t}: B^{**} \times A^{**} \to B^{**}.$$

For a Banach A - bimodule B, we define the topological centers of the left and right module actions of A on B as follows:

$$\begin{split} Z^{\ell}_{A^{**}}(B^{**}) &= Z(\pi_r) = \{b^{\prime\prime} \in B^{**} : \ the \ map \ a^{\prime\prime} \to \pi_r^{***}(b^{\prime\prime},a^{\prime\prime}) \ : \ A^{**} \to B^{**} \\ & is \ weak^* - weak^* \ continuous\} \\ Z^{\ell}_{B^{**}}(A^{**}) &= Z(\pi_\ell) = \{a^{\prime\prime} \in A^{**} : \ the \ map \ b^{\prime\prime} \to \pi_\ell^{***}(a^{\prime\prime},b^{\prime\prime}) \ : \ B^{**} \to B^{**} \\ & is \ weak^* - weak^* \ continuous\} \\ Z^{r}_{A^{**}}(B^{**}) &= Z(\pi^t_\ell) = \{b^{\prime\prime} \in B^{**} : \ the \ map \ a^{\prime\prime} \to \pi_\ell^{t***}(b^{\prime\prime},a^{\prime\prime}) \ : \ A^{**} \to B^{**} \\ & is \ weak^* - weak^* \ continuous\} \\ Z^{r}_{B^{**}}(A^{**}) &= Z(\pi^t_r) = \{a^{\prime\prime} \in A^{**} : \ the \ map \ b^{\prime\prime} \to \pi_r^{t***}(a^{\prime\prime},b^{\prime\prime}) \ : \ B^{**} \to B^{**} \\ & is \ weak^* - weak^* \ continuous\} \end{split}$$

Theorem 3-3. i) Assume that B is a left Banach A - module. If $B^*A^{**} \subseteq B^*$, then B^* has Lw^*wc -property.

ii) Assume that B is a right Banach A-module. If $A^{**}B^* \subseteq B^*$ and $Z^r_{A^{**}}(B^{**}) = B^{**}$, then B^* has Rw^*wc -property.

Proof. i) Assume that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$. Then for every $b'' \in B^{**}$, since $b'a'' \in B^*$, we have

$$< b'', b'a'' > = < a''b'', b' > = \lim_{\alpha} < a_{\alpha}b'', b' > = \lim_{\alpha} < b'', b'a_{\alpha} >$$

It follows that $b'a_{\alpha} \xrightarrow{w} b'a''$.

ii) Proof is similar to (i).

Theorem 3-4. Let A be a Banach algebra and suppose that A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property. If A^{**} is weakly amenable, then A is weakly amenable.

Proof. Assume that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$. Then for each $a' \in A^*$, we have $a_{\alpha}a' \xrightarrow{w^*} a''a'$ in A^* . Since A^* has Rw^*wc -property, $a_{\alpha}a' \xrightarrow{w} a''a'$ in A^* . Then for every $x'' \in A^{**}$, we have

$$\langle x^{\prime\prime}a_{\alpha},a^{\prime}\rangle = \langle x^{\prime\prime},a_{\alpha}a^{\prime}\rangle \rightarrow \langle x^{\prime\prime},a^{\prime\prime}a^{\prime}\rangle = \langle x^{\prime\prime}a^{\prime\prime},a^{\prime}\rangle.$$

It follows that $x''a_{\alpha} \xrightarrow{w^*} x''a''$. Since A^{**} has Lw^*wc -property with respect to A, $x''a_{\alpha} \xrightarrow{w} x''a''$. If $D: A \to A^*$ is a bounded derivation, we extend it to a bounded linear mapping D'' from A^{**} into A^{***} . Suppose that $a'', b'' \in A^{**}$ and $(a_{\alpha})_{\alpha}, (b_{\beta})_{\beta} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$ and $b_{\beta} \xrightarrow{w^*} b''$. Since $x''a_{\alpha} \xrightarrow{w} x''a''$ for every $x'' \in A^{**}$, we have

$$\lim_{\alpha} \langle D''(b''), x''a_{\alpha} \rangle = \langle D''(b''), x''a'' \rangle.$$

In the following we take limit on the $weak^*$ topologies. Thus we have

$$\lim_{\alpha} \lim_{\beta} D(a_{\alpha})b_{\beta} = D''(a'')b''.$$

Consequently, we have

$$D''(a''b'') = \lim_{\alpha} \lim_{\beta} D(a_{\alpha}b_{\beta}) = \lim_{\alpha} \lim_{\beta} D(a_{\alpha})b_{\beta} + \lim_{\alpha} \lim_{\beta} a_{\alpha}D(b_{\beta})$$
$$= D''(a'')b'' + a''D''(b'').$$

Since A^{**} is weakly amenable, there is $a''' \in A^{***}$ such that $D'' = \delta_{a'''}$. We conclude that $D = D''|_A = \delta_{a'''}|_A$. Hence for each $x' \in A^*$, we have $D = x'a'''|_A - a'''|_A x'$. Take $a' = a'''|_A$. It follows that $H^1(A, A^*) = 0$.

Theorem 3-5. Let A be a Banach algebra and suppose that $D : A \to A^*$ is a surjective derivation. If D'' is a derivation, then we have the following assertions.

- (1) A^* and A^{**} , respectively, have w^*wc -property and Lw^*wc -property with respect to A.
- (2) For every $a'' \in A^{**}$, the mapping $x'' \to a''x''$ from A^{**} into A^{**} is $weak^* weak$ continuous.
- (3) A is Arens regular.
- (4) If A has LBAI, then A is reflexive.
- Proof. (1) Since D is surjective, D'' is surjective, and so by using [19, Theorem 2.2], we have $A^{***}A^{**} \subseteq D''(A^{**})A^{**} \subseteq A^*$. Suppose that $a'' \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} a''$. Then for each $x' \in A^*$, we have $x'a_{\alpha} \xrightarrow{w^*} x'a''$. Since $A^{***}A^{**} \subseteq A^*$, $x'a'' \in A^*$. Then for every $x'' \in A^{**}$, we have

$$\langle x'', x'a_{\alpha} \rangle = \langle x''x', a_{\alpha} \rangle \to \langle a'', x''x' \rangle = \langle x'a'', x'' \rangle = \langle x'', x'a'' \rangle.$$

It follows that $x'a_{\alpha} \xrightarrow{w} x'a''$ in A^* . Thus x' has Lw^*wc -property with respect to A. The proof that x' has Rw^*wc -property with respect to A is similar, and so A^* has w^*wc -property.

Suppose that $x''' \in A^{***}$. Since $A^{***}A^{**} \subseteq A^*$, $x''a_{\alpha} \xrightarrow{w^*} x''a''$ for each $x'' \in A^{**}$. Then

$$\langle x^{\prime\prime\prime}, x^{\prime\prime}a_{\alpha}\rangle = \langle x^{\prime\prime\prime}x^{\prime\prime}, a_{\alpha}\rangle \to \langle x^{\prime\prime\prime}x^{\prime\prime}, a^{\prime\prime}\rangle = \langle x^{\prime\prime\prime}, x^{\prime\prime}a^{\prime\prime}\rangle.$$

It follows that $x''a_{\alpha} \xrightarrow{w} x''a''$. Thus x'' has Lw^*wc -property with respect to A.

(2) Suppose that $(a''_{\alpha})_{\alpha} \subseteq A^{**}$ and $a''_{\alpha} \xrightarrow{w^*} a''$. Let $x'' \in A^{**}$. Then for every $x''' \in A^{***}$, since $A^{***}A^{**} \subseteq A^*$, we have

$$\langle x^{\prime\prime\prime}, x^{\prime\prime}a^{\prime\prime}_{\alpha} \rangle = \langle x^{\prime\prime\prime}x^{\prime\prime}, a^{\prime\prime}_{\alpha} \rangle \rightarrow \langle x^{\prime\prime\prime}x^{\prime\prime}, a^{\prime\prime} \rangle = \langle x^{\prime\prime\prime}, x^{\prime\prime}a^{\prime\prime} \rangle.$$
(3) It follows from (2).

(4) Let $(e_{\alpha})_{\alpha} \subseteq A$ be a *BLAI* for *A*. Then without loss generality, let e'' be a left unit for A^{**} such that $e_{\alpha} \stackrel{w^*}{\to} e''$. Suppose that $(a''_{\alpha})_{\alpha} \subseteq A^{**}$ and $a''_{\alpha} \stackrel{w^*}{\to} a''$. Then for every $a''' \in A^{***}$, since $A^{***}A^{**} \subseteq A^*$, we have

$$\langle a^{\prime\prime\prime},a^{\prime\prime}_{\alpha}\rangle=\langle a^{\prime\prime\prime},e^{\prime\prime}a^{\prime\prime}_{\alpha}\rangle=\langle a^{\prime\prime\prime}e^{\prime\prime},a^{\prime\prime}_{\alpha}\rangle\rightarrow\langle a^{\prime\prime\prime}e^{\prime\prime},a^{\prime\prime}\rangle=\langle a^{\prime\prime\prime},a^{\prime\prime}\rangle.$$

It follows that $a''_{\alpha} \xrightarrow{w} a''$. Consequently A is reflexive.

Corollary 3-6. Let A be a Banach algebra and suppose that $D : A \to A^*$ is a surjective derivation. Then the following statements are equivalent.

- (1) A^* and A^{**} , respectively, have Rw^*wc -property and Lw^*wc -property.
- (2) For every $a'' \in A^{**}$, the mapping $x'' \to a''x''$ from A^{**} into A^{**} is $weak^* weak$ continuous.

Problems.

1. Let G be a locally compact group. What can say for the following sets?

 $(1) \ Z^{\ell}_{L^{1}(G)^{**}}((L^{1}(G) \hat{\otimes} L^{1}(G))^{**}) =? \ , \ Z^{r}_{L^{1}(G)^{**}}((L^{1}(G) \hat{\otimes} L^{1}(G))^{**}) =?$

(2)
$$Z^{\ell}_{(L^1(G)\hat{\otimes}L^1(G))^{**}}(L^1(G)^{**}) = ?, Z^r_{(L^1(G)\hat{\otimes}L^1(G))^{**}}(L^1(G)^{**}) = ?$$

(3)
$$Z_{L^1(G)^{**}}^{\ell}(L^1(G)^{**}\hat{\otimes}L^1(G)^{**}) =?, \ Z_{L^1(G)^{**}}^{r}(L^1(G)^{**}\hat{\otimes}L^1(G)^{**}) =?$$

2. Suppose that S is a compact semigroup. Dose $L^1(S)^*$ and $M(S)^*$ have Lw^*wc -property or Rw^*wc -property?

References

- 1. R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- W. G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. Lodon Math. Soc. 50 (1987) 359-377.
- J. Baker, A. T. Lau, J.S. Pym Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, Journal of Functional Analysis. 158 (1998), 186-208.
- 4. F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin 1973.
- 5. H. G. Dales, Banach algebra and automatic continuity, Oxford 2000.

- H. G. Dales, F. Ghahramani, N. Grønbæk Derivation into iterated duals of Banach algebras Studia Math. 128 1 (1998), 19-53.
- H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 2 64 (2001) 707-721.
- 8. N. Dunford, J. T. Schwartz, Linear operators. I, Wiley, New york 1958.
- 9. K. Haghnejad Azar, A. Riazi Topological centers of the n-th dual of module actions, To apper in Bulletin of Iranian Math. Soc.
- M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math. 182 3 (2007), 205-213.
- F. Gourdeau, Amenability of Lipschits algebra, Math. Proc. Cambridge. Philos. Soc. 112 (1992), 581-588.
- 12. E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.
- 13. B.E. Johoson, Cohomology in Banach algebra, Mem. Amer. Math. Soc. 127, 1972.
- B. E. Johoson, Derivation from L¹(G) into L¹(G) and L[∞](G), Harmonic analysis. Luxembourg 1987, 191-198 Lecture Note in Math., 1359, Springer, Berlin, 1988. MR 90a:46122.
- 15. B. E. Johoson, Weak amenability of group algebra, Bull. London. Math. Soc. 23(1991), 281-284.
- A. T. Lau, V. Losert, On the second Conjugate Algebra of locally compact groups, J. London Math. Soc. 37 (2)(1988), 464-480.
- A. T. Lau, A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
- V. Losert, The derivation problem for group algebra, Annals of Mathematics, 168 (2008), 221-246.
- S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bulletin of the Australian Mathematical Society 77 (2008), 465-476.
- J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math Soc. 15 (1965), 84-104.
- 21. V. Runde, Lectures on the amenability, springer-verlag Berlin Heideberg NewYork.
- 22. A. Ülger, Arens regularity of the algebra $A\hat{\otimes}B$, Trans. Amer. Math. Soc. **305** (2) (1988) 623-639.
- A. Ülger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc. (1991) 34, 443-454.
- A. Ülger, Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 3221-3227.
- P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1) (1994), 15-18.
- Y. Zhing, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.
- Y. Zhing, Weak amenability of a class of Banach algebra, Cand. Math. Bull. 44 (4) (2001) 504-508.