ARENS REGULARITY OF TENSOR PRODUCTS AND WEAK AMENABILITY OF BANACH ALGEBRAS

KAZEM HAGHNEJAD AZAR

Abstract

In this note, we study the Arens regularity of projective tensor product $A \hat{\otimes} B$ whenever A and B are Arens regular. We establish some new conditions for showing that the Banach algebras A and B are Arens regular if and only if $A \hat{\otimes} B$ is Arens regular. We also introduce some new concepts as leftweak *-weak convergence property $\left[L w^{*} w c\right.$-property] and right-weak*-weak convergence property $\left[R w^{*} w c\right.$-property] and for Banach algebra A, suppose that A^{*} and $A^{* *}$, respectively, have $R w^{*} w c$-property and $L w^{*} w c$-property. Then if $A^{* *}$ is weakly amenable, it follows that A is weakly amenable. We also offer some results concerning the relation between these properties with some special derivation $D: A \rightarrow A^{*}$. We obtain some conclusions in the Arens regularity of Banach algebras.

1. Preliminaries and Introduction

Suppose that A and B are Banach algebras. Ülger in [22], has been studied that the Arens regularity of projective tensor product $A \hat{\otimes} B$. He showed that when A and B are Arens regular in general, $A \hat{\otimes} B$ is not Arens regular. He introduced a new concept as biregular mapping and showed that a bounded bilinear mapping $m: A \times B \rightarrow \mathbb{C}$ is biregular if and only if $A \hat{\otimes} B$ is Arens regular. In this paper, we establish some conditions for Banach algebras A and B which follows that $A \hat{\otimes} B$ is Arens regular. Conversely, we investigated if $A \hat{\otimes} B$ is Arens regular, then A or B are Arens regular. In section three, for Banach A - module B, we introduce new concepts as left weak* - weak convergence property [$L w^{*} w c-$ property] and right - weak* $-w e a k$ convergence property [$R w^{*} w c$-property] with respect to A and we show that if A^{*} and $A^{* *}$, respectively, have $R w^{*} w c$-property and $L w^{*} w c$-property and $A^{* *}$ is weakly amenable, then A is weakly amenable. We have also some conclusions regarding Arens regularity of Banach algebras. We introduce some notations and definitions that we used throughout this paper.
Let A be a Banach algebra and let B be a Banach A - bimodule. A derivation from A into B is a bounded linear mapping $D: A \rightarrow B$ such that

$$
D(x y)=x D(y)+D(x) y \text { for all } x, y \in A
$$

The space of all continuous derivations from A into B is denoted by $Z^{1}(A, B)$. Easy example of derivations are the inner derivations, which are given for each $b \in B$ by

$$
\delta_{b}(a)=a b-b a \text { for all } a \in A
$$

[^0]The space of inner derivations from A into B is denoted by $N^{1}(A, B)$. The Banach algebra A is amenable, when for every Banach A-bimodule B, the only inner derivation from A into B^{*} is zero derivation. It is clear that A is amenable if and only if $H^{1}\left(A, B^{*}\right)=Z^{1}\left(A, B^{*}\right) / N^{1}\left(A, B^{*}\right)=\{0\}$. The concept of amenability for a Banach algebra A, introduced by Johnson in 1972, has proved to be of enormous importance in Banach algebra theory, see [13]. A Banach algebra A is said to be a weakly amenable, if every derivation from A into A^{*} is inner. Equivalently, A is weakly amenable if and only if $H^{1}\left(A, A^{*}\right)=Z^{1}\left(A, A^{*}\right) / N^{1}\left(A, A^{*}\right)=\{0\}$. The concept of weak amenability was first introduced by Bade, Curtis and Dales in [2] for commutative Banach algebras, and was extended to the noncommutative case by Johnson in [14].
Let A be a Banach algebra and $A^{*}, A^{* *}$, respectively, be the first and second dual of A. For $a \in A$ and $a^{\prime} \in A^{*}$, we denote by $a^{\prime} a$ and $a a^{\prime}$ respectively, the functionals in A^{*} defined by $\left\langle a^{\prime} a, b\right\rangle=\left\langle a^{\prime}, a b\right\rangle=a^{\prime}(a b)$ and $\left\langle a a^{\prime}, b\right\rangle=\left\langle a^{\prime}, b a\right\rangle=a^{\prime}(b a)$ for all $b \in A$. The Banach algebra A is embedded in its second dual via the identification $\left\langle a, a^{\prime}\right\rangle$ $\left\langle a^{\prime}, a\right\rangle$ for every $a \in A$ and $a^{\prime} \in A^{*}$. We say that a bounded net $\left(e_{\alpha}\right)_{\alpha \in I}$ in A is a left bounded approximate identity $(=L B A I)$ [resp. right bounded approximate identity $(=R B A I)]$ if, for each $a \in A, e_{\alpha} a \longrightarrow a\left[\right.$ resp. $\left.a e_{\alpha} \longrightarrow a\right]$.
Let X, Y, Z be normed spaces and $m: X \times Y \rightarrow Z$ be a bounded bilinear mapping. Arens in [1] offers two natural extensions $m^{* * *}$ and $m^{t * * * t}$ of m from $X^{* *} \times Y^{* *}$ into $Z^{* *}$ as following

1. $m^{*}: Z^{*} \times X \rightarrow Y^{*}$, given by $\left\langle m^{*}\left(z^{\prime}, x\right), y\right\rangle=\left\langle z^{\prime}, m(x, y)\right\rangle$ where $x \in X, y \in Y$, $z^{\prime} \in Z^{*}$,
2. $m^{* *}: Y^{* *} \times Z^{*} \rightarrow X^{*}$, given by $\left\langle m^{* *}\left(y^{\prime \prime}, z^{\prime}\right), x\right\rangle=\left\langle y^{\prime \prime}, m^{*}\left(z^{\prime}, x\right)\right\rangle$ where $x \in X$, $y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$,
3. $m^{* * *}: X^{* *} \times Y^{* *} \rightarrow Z^{* *}$, given by $\left\langle m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right), z^{\prime}\right\rangle=\left\langle x^{\prime \prime}, m^{* *}\left(y^{\prime \prime}, z^{\prime}\right)\right\rangle$ where $x^{\prime \prime} \in X^{* *}, y^{\prime \prime} \in Y^{* *}, z^{\prime} \in Z^{*}$.
The mapping $m^{* * *}$ is the unique extension of m such that $x^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is weak* $-t o-w e a k^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is not in general weak* - to - weak ${ }^{*}$ continuous from $Y^{* *}$ into $Z^{* *}$ unless $x^{\prime \prime} \in X$. Hence the first topological center of m may be defined as following

$$
Z_{1}(m)=\left\{x^{\prime \prime} \in X^{* *}: y^{\prime \prime} \rightarrow m^{* * *}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak } k^{*}-\text { to }- \text { weak } k^{*} \text { continuous }\right\} .
$$

Let now $m^{t}: Y \times X \rightarrow Z$ be the transpose of m defined by $m^{t}(y, x)=m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^{t} is a continuous bilinear map from $Y \times X$ to Z, and so it may be extended as above to $m^{t * * *}: Y^{* *} \times X^{* *} \rightarrow Z^{* *}$. The mapping $m^{t * * * t}$: $X^{* *} \times Y^{* *} \rightarrow Z^{* *}$ in general is not equal to $m^{* * *}$, see [1], if $m^{* * *}=m^{t * * * t}$, then m is called Arens regular. The mapping $y^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is weak ${ }^{*}-t o-w e a k^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$, but the mapping $x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ from $X^{* *}$ into $Z^{* *}$ is not in general weak - to $-w e a k^{*}$ continuous for every $y^{\prime \prime} \in Y^{* *}$. So we define the second topological center of m as

$$
Z_{2}(m)=\left\{y^{\prime \prime} \in Y^{* *}: x^{\prime \prime} \rightarrow m^{t * * * t}\left(x^{\prime \prime}, y^{\prime \prime}\right) \text { is weak }{ }^{*}-t o-\text { weak }^{*}-\text { continuous }\right\}
$$

It is clear that m is Arens regular if and only if $Z_{1}(m)=X^{* *}$ or $Z_{2}(m)=Y^{* *}$. Arens regularity of m is equivalent to the following

$$
\lim _{i} \lim _{j}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle z^{\prime}, m\left(x_{i}, y_{j}\right)\right\rangle,
$$

whenever both limits exist for all bounded sequences $\left(x_{i}\right)_{i} \subseteq X,\left(y_{i}\right)_{i} \subseteq Y$ and $z^{\prime} \in Z^{*}$, see $[5,20]$.
The regularity of a normed algebra A is defined to be the regularity of its algebra multiplication when considered as a bilinear mapping. Let $a^{\prime \prime}$ and $b^{\prime \prime}$ be elements of $A^{* *}$, the second dual of A. By Goldstin's Theorem [4, P.424-425], there are nets $\left(a_{\alpha}\right)_{\alpha}$ and $\left(b_{\beta}\right)_{\beta}$ in A such that $a^{\prime \prime}=w e a k^{*}-\lim _{\alpha} a_{\alpha}$ and $b^{\prime \prime}=w e a k^{*}-\lim _{\beta} b_{\beta}$. So it is easy to see that for all $a^{\prime} \in A^{*}$,

$$
\lim _{\alpha} \lim _{\beta}\left\langle a^{\prime}, m\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle
$$

and

$$
\lim _{\beta} \lim _{\alpha}\left\langle a^{\prime}, m\left(a_{\alpha}, b_{\beta}\right)\right\rangle=\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle
$$

where $a^{\prime \prime} b^{\prime \prime}$ and $a^{\prime \prime} o b^{\prime \prime}$ are the first and second Arens products of $A^{* *}$, respectively, see [5, 20].
The mapping m is left strongly Arens irregular if $Z_{1}(m)=X$ and m is right strongly Arens irregular if $Z_{2}(m)=Y$.
Regarding A as a Banach A-bimodule, the operation $\pi: A \times A \rightarrow A$ extends to $\pi^{* * *}$ and $\pi^{t * * * t}$ defined on $A^{* *} \times A^{* *}$. These extensions are known, respectively, as the first (left) and the second (right) Arens products, and with each of them, the second dual space $A^{* *}$ becomes a Banach algebra. In this situation, we shall also simplify our notations. So the first (left) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be simply indicated by $a^{\prime \prime} b^{\prime \prime}$ and defined by the three steps:

$$
\begin{aligned}
\left\langle a^{\prime} a, b\right\rangle & =\left\langle a^{\prime}, a b\right\rangle \\
\left\langle a^{\prime \prime} a^{\prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a^{\prime} a\right\rangle \\
\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle a^{\prime \prime}, b^{\prime \prime} a^{\prime}\right\rangle
\end{aligned}
$$

for every $a, b \in A$ and $a^{\prime} \in A^{*}$. Similarly, the second (right) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be indicated by $a^{\prime \prime} o b^{\prime \prime}$ and defined by :

$$
\begin{aligned}
\left\langle a o a^{\prime}, b\right\rangle & =\left\langle a^{\prime}, b a\right\rangle \\
\left\langle a^{\prime} o a^{\prime \prime}, a\right\rangle & =\left\langle a^{\prime \prime}, a o a^{\prime}\right\rangle \\
\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle & =\left\langle b^{\prime \prime}, a^{\prime} o b^{\prime \prime}\right\rangle
\end{aligned}
$$

for all $a, b \in A$ and $a^{\prime} \in A^{*}$.

2. Arens regularity of projective tensor product algebras

The tensor product, $X \otimes Y$, of the vector space X, Y can be constructed as a space of linear functional on $B(X \times Y)$, in the following way:
Let $x \in X$ and $y \in Y$. We denote by $x \otimes y$ the functional given by evaluation at the point (x, y). In other words,

$$
\langle x \otimes y, A\rangle=A(x, y)
$$

for each bilinear from A on $X \times Y$, so the tensor product $X \otimes Y$ is the subspace of the dual of bounded bilinear forms on $X \otimes Y, B(X \times Y)^{*}$.
We recall that each tensor $u \in X \otimes Y$ acts as a linear functional on the space of bilinear
forms and so we may define a mapping $\tilde{A}: X \otimes Y \rightarrow K$ by $u \in X \otimes Y \rightarrow\langle A, u\rangle \in K$. In summary, we have

$$
B(X \times Y)=(X \otimes Y)^{*}
$$

Let X, Y, E and F be vector spaces and let $S: X \rightarrow E$ and $T: Y \rightarrow F$ be linear mappings. Then we may define a bilinear mapping by $(x, y) \in X \times Y \rightarrow(S x) \otimes(T y) \in$ $E \otimes F$. Linearization gives a linear mapping $(S \otimes T): X \otimes Y \rightarrow E \otimes F$ such that $(S \otimes T)(x \otimes y)=(S x) \otimes(T y)$ for every $x \in X$ and $y \in Y$.
By $X \hat{\otimes} Y$ and $X \check{\otimes} Y$ we shall denote, respectively, the projective and injective tensor products of X and Y. That is, $X \hat{\otimes} Y$ is the completion of $X \otimes Y$ for the norm

$$
\|u\|=\inf \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|
$$

where the infimum is taken over all the representations of u as a finite sum of the form $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, and $X \ddot{\otimes} Y$ is the completion of $X \otimes Y$ for the norm

$$
\|u\|=\sup \left\{\left|\sum_{i=1}^{n}\left\langle x^{\prime}, x_{i}\right\rangle\left\langle y^{\prime}, y_{i}\right\rangle\right|:\left\|x^{\prime}\right\| \leq 1,\left\|y^{\prime}\right\| \leq 1\right\}
$$

The dual space of $X \hat{\otimes} Y$ is $B(X \times Y)$, and that of $X \check{\otimes} Y$ is a subspace of $B(X \times Y)$. Although the injective tensor product of two Banach algebra A and B is not always a Banach algebra, their projective tensor product is always a Banach algebra. The natural multiplication of $A \hat{\otimes} B$ is the linear extension of the following multiplication on decomposable tensors $(a \otimes b)(\tilde{a} \otimes \tilde{b})=a \tilde{a} \otimes b \tilde{b}$. For more information about the tensor product of Banach algebra, see for example [4, 5].
A functional a^{\prime} in A^{*} is said to be wap (weakly almost periodic) on A if the mapping $a \rightarrow a^{\prime} a$ from A into A^{*} is weakly compact. Pym in [20] showed that this definition to the equivalent following condition
For any two net $\left(a_{i}\right)_{i}$ and $\left(b_{j}\right)_{j}$ in $\{a \in A:\|a\| \leq 1\}$, we have

$$
\lim _{i} \lim _{j}\left\langle a^{\prime}, a_{i} b_{j}\right\rangle=\lim _{j} \lim _{i}\left\langle a^{\prime}, a_{i} b_{j}\right\rangle
$$

whenever both iterated limits exist. The collection of all wap functionals on A is denoted by $w a p(A)$. Also we have $a^{\prime} \in \operatorname{wap}(A)$ if and only if $\left\langle a^{\prime \prime} b^{\prime \prime}, a^{\prime}\right\rangle=\left\langle a^{\prime \prime} o b^{\prime \prime}, a^{\prime}\right\rangle$ for every $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$. Thus, it is clear that A is Arens regular if and only if $\operatorname{wap}(A)=A^{*}$. In the following, for Banach algebras A and B, for showing Arens regularity of projective tensor products $A \hat{\otimes} B$, we establish $\operatorname{wap}(A \hat{\otimes} B)=(A \hat{\otimes} B)^{*}$. In all of this section, we regard $A^{*} \hat{\otimes} B^{*}$ as a subset of $(A \hat{\otimes} B)^{*}$.

Theorem 2-1. Suppose that A and B are Banach algebra and for every sequence $\left(x_{i}\right)_{i},\left(y_{j}\right)_{j} \subseteq A_{1},\left(z_{i}\right)_{i},\left(w_{j}\right)_{j} \subseteq B_{1}$ and $f \in \mathbf{B}(A \times B)$, we have

$$
\lim _{j} \lim _{i} f\left(x_{i} z_{i}, y_{j} w_{j}\right)=\lim _{i} \lim _{j} f\left(x_{i} z_{i}, y_{j} w_{j}\right)
$$

Then $A \hat{\otimes} B$ is Arens regular.

Proof. Assume that $f \in \mathbf{B}(A \times B)$. Since $\mathbf{B}(A \times B)=(A \hat{\otimes} B)^{*}$, it is enough to show that $f \in \operatorname{wap}(A \hat{\otimes} B)$. Let $\left(x_{i}\right)_{i},\left(y_{j}\right)_{j} \subseteq A_{1}$ and $\left(z_{i}\right)_{i},\left(w_{j}\right)_{j} \subseteq B_{1}$, then we have the following equality

$$
\begin{gathered}
\lim _{j} \lim _{i}\left\langle f,\left(x_{i} \otimes y_{j}\right)\left(z_{i} \otimes w_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle f, x_{i} z_{i} \otimes y_{j} w_{j}\right\rangle \\
=\lim _{j} \lim _{i} f\left(x_{i} z_{i}, y_{j} w_{j}\right)=\lim _{i} \lim _{j} f\left(x_{i} z_{i}, y_{j} w_{j}\right) \\
=\lim _{i} \lim _{j}\left\langle f,\left(x_{i} \otimes y_{j}\right)\left(z_{i} \otimes w_{j}\right)\right\rangle .
\end{gathered}
$$

Consequently by [20], $f \in \operatorname{wap}(A \hat{\otimes} B)$.

Definition 2-2. Assume that B is a Banach A - bimodule. We say that B is nontrivial on A, if for every $\left(a_{i}\right)_{i=1}^{n} \subseteq A_{1}$ and $\left(b_{j}\right)_{j=1}^{n} \subseteq B_{1}$, respectively, basis elements of A and B, we have $\sum_{i=1}^{n} \alpha_{i} a_{i} b_{i} \neq 0$ where α_{i} is scaler and every a_{i} and b_{i} are distinct for all $1 \leq i \leq n$.
For example, take $B=\mathbb{R} \times\{0\}$ and $A=\mathbb{R}^{2}$ by the following multiplication

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, 0\right)=\left(a_{1} b_{1}, 0\right) \text { where } a_{1}, a_{2}, b_{1} \in \mathbb{R}
$$

Theorem 2-3. Suppose that A and B are Banach algebras and B is unital. Let B be a Banach A-bimodule. Then we have the following assertions:
(1) If $A \hat{\otimes} B$ is Arens regular, then A is Arens regular.
(2) Let B be non-trivial on A and let B be an unital Banach A-module. Then A and B are Arens regular if and only if $A \hat{\otimes} B$ is Arens regular.

Proof. (1) Assume that $A \hat{\otimes} B$ is Arens regular and let $u \in B$ be an unit element of B. We show that $\operatorname{wap}(A)=A^{*}$. Assume that $\left(a_{i}\right)_{i} \subseteq A,\left(c_{j}\right)_{j} \subseteq A$ whenever both iterated limits exist and $a^{\prime} \in A^{*}$. Then we define $\phi=a^{\prime} \otimes b^{\prime}$ where $b^{\prime} \in B^{*}$ and $b^{\prime}(u)=1$. Since $A^{*} \otimes B^{*} \subseteq(A \otimes B)^{*}$ and $A \hat{\otimes} B$ is Arens regular, we have $a^{\prime} \otimes b^{\prime} \in \operatorname{wap}(A \otimes B)$. Hence it follows that

$$
\begin{gathered}
\lim _{i} \lim _{j}\left\langle a^{\prime}, a_{i} c_{j}\right\rangle=\lim _{i} \lim _{j}\left\langle a^{\prime} \otimes b^{\prime}, a_{i} c_{j} \otimes u\right\rangle \\
=\lim _{i} \lim _{j}\left\langle a^{\prime} \otimes b^{\prime},\left(a_{i} \otimes u\right)\left(c_{j} \otimes u\right)\right\rangle=\lim _{j} \lim _{i}\left\langle a^{\prime} \otimes b^{\prime},\left(a_{i} \otimes u\right)\left(c_{j} \otimes u\right)\right\rangle \\
=\lim _{j} \lim _{i}\left\langle a^{\prime}, a_{i} c_{j}\right\rangle
\end{gathered}
$$

We conclude that $a^{\prime} \in \operatorname{wap}(A)$, and so A is Arens regular.
(2) Let u be an unit element of B and suppose that B is Arens regular. Then $\operatorname{wap}(B)=B^{*}$. Suppose that $\left(a_{i}\right)_{i} \subseteq A_{1}$ and $\left(b_{j}\right)_{j} \subseteq B_{1}$ whenever both iterated limits exist. Then $\left(a_{i} u\right)_{i} \subseteq B_{1}$, and so for every $b^{\prime} \in B^{*}$, we have the following equality

$$
\lim _{i} \lim _{j}\left\langle b^{\prime},\left(a_{i} u\right) b_{j}\right\rangle=\lim _{j} \lim _{i}\left\langle b^{\prime},\left(a_{i} u\right) b_{j}\right\rangle
$$

Now let $\phi \in(A \hat{\otimes} B)^{*}$. We define the mapping $T: A \hat{\otimes} B \rightarrow B$ such that $T\left(\sum_{i=1}^{n} \alpha_{i} a_{i} \otimes b_{i}\right)=\sum_{i=1}^{n} \alpha_{i} a_{i} b_{i}$ where $a_{i} \in A, b_{i} \in B$ and α_{i} is a scaler. We show that $\phi o T^{-1} \in B^{*}$. Since B is not-trivial on A, T^{-1} exist. Now let $e \in A$ be an unit element for B as Banach A-module and let $\left(b_{\alpha}\right)_{\alpha} \subseteq B$ such that $b_{\alpha} \rightarrow b$. Then $e \otimes b_{\alpha} \rightarrow e \otimes b$ in $A \hat{\otimes} B$, it follows that

$$
\begin{gathered}
\left\langle\phi o T^{-1}, b_{\alpha}\right\rangle=\left\langle\phi, T^{-1}\left(b_{\alpha}\right)\right\rangle=\left\langle\phi, T^{-1}\left(e b_{\alpha}\right)\right\rangle=\left\langle\phi, e \otimes b_{\alpha}\right\rangle \\
\rightarrow\langle\phi, e \otimes b\rangle=\left\langle\phi, T^{-1}(u b)\right\rangle=\left\langle\phi o T^{-1}, b\right\rangle
\end{gathered}
$$

Consequently $\phi o T^{-1} \in B^{*}$. Now we have the following equality

$$
\begin{aligned}
& \lim _{i} \lim _{j}\left\langle\phi, a_{i} \otimes b_{j}\right\rangle=\lim _{i} \lim _{j}\left\langle b^{\prime} o T, a_{i} \otimes b_{j}\right\rangle \\
= & \lim _{i} \lim _{j}\left\langle b^{\prime}, T\left(a_{i} \otimes b_{j}\right)\right\rangle=\lim _{i} \lim _{j}\left\langle b^{\prime}, a_{i} b_{j}\right\rangle \\
= & \lim _{i} \lim _{j}\left\langle b^{\prime}, a_{i}\left(u b_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle b^{\prime},\left(a_{i} u\right) b_{j}\right\rangle \\
= & \lim _{j} \lim _{i}\left\langle b^{\prime}, T\left(a_{i} \otimes b_{j}\right)\right\rangle=\lim _{j} \lim _{i}\left\langle\phi, a_{i} \otimes b_{j}\right\rangle .
\end{aligned}
$$

It follows that $\phi \in \operatorname{wap}(A \hat{\otimes} B)$, and so $A \hat{\otimes} B$ is Arens regular.
The converse by using part (1) hold.

Corollary 2-4 . Suppose that A and B are unital Banach algebras and B is an unital Banach as A - module. Assume that B is non-trivial on A. Then if A and B are Arens regular, then every bilinear form $m: A \times B \rightarrow \mathbb{C}$ is weakly compact.

Proof. By using Theorem 2-3 and [22, Theorem 3.4], proof hold.

Example 2-5. $\left(\ell^{1} \oplus \mathbb{C}\right) \hat{\otimes} \ell^{\infty}$ is Arens regular.
Proof. We know that ℓ^{∞} is $\left(\ell^{1} \oplus \mathbb{C}\right)$-bimodule and ℓ^{∞} is unital. ℓ^{∞} is also non-trivial on $\left(\ell^{1} \oplus \mathbb{C}\right)$. By using [2, Corollary 8] and [5, Example 2.6.22(iii)], respectively, we know that ℓ^{∞} and $\left(\ell^{1} \oplus \mathbb{C}\right)$ are Arens regular, and so by Theorem $2-3,\left(\ell^{1} \oplus \mathbb{C}\right) \hat{\otimes} \ell^{\infty}$ is Arens regular.

Let A and B be Banach algebras. A bilinear form $m: A \times B \rightarrow \mathbb{C}$ is said to be biregular, if for any two pairs of sequence $\left(a_{i}\right)_{i},\left(\tilde{a}_{j}\right)_{j}$ in A_{1} and $\left(b_{i}\right)_{i},\left(\tilde{b}_{j}\right)_{j}$ in B_{1}, we have

$$
\lim _{i} \lim _{j} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right)=\lim _{j} \lim _{i} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right)
$$

provided that these limits exist.
There are some example of biregular non regular bilinear form that for more information see [22].

Corollary 2-6. Suppose that A and B are Banach algebras. Then we have the following assertions.
(1) By conditions of Theorem 2-1, every bilinear form $m: A \times B \rightarrow \mathbb{C}$ is biregular.
(2) By conditions of Theorem 2-3 (2), every bilinear form $m: A \times B \rightarrow \mathbb{C}$ is biregular.

Example 2-7. Every bilinear form $m:\left(\ell^{1} \oplus \mathbb{C}\right) \times \ell^{\infty} \rightarrow \mathbb{C}$ is Arens regular.
Proof. By notice to Example 2-5 and [22, Theorem 3.4], proof is hold.

In the following we give simple proof for biregularity of bilinear form $m: A \times B \rightarrow \mathbb{C}$ such that $m(a, b)=\langle u(a), b\rangle$ where $u: A \rightarrow B^{*}$ is continuous linear operator that is introduced in [22, Theorem 3.4].

Theorem 2-8 [22]. Let A and B be Banach algebras and $u: A \rightarrow B^{*}$ is continuous linear operator. Then the bilinear form $m: A \times B \rightarrow \mathbb{C}$ defined by $m(a, b)=\langle u(a), b\rangle$ is biregular.

Proof. Let $\left(a_{i}\right)_{i},\left(\tilde{a}_{j}\right)_{j}$ in A_{1} and $\left(b_{i}\right)_{i},\left(\tilde{b}_{j}\right)_{j}$ in B_{1} be such that the following iterated limits exist

$$
\lim _{i} \lim _{j} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right) \text { and } \lim _{j} \lim _{i} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right) .
$$

By [8, p.424], from these sequences we can extract $\left(a_{\alpha}\right)_{\alpha},\left(\tilde{a}_{\beta}\right)_{\beta}$ in A and $\left(b_{\alpha}\right)_{\alpha},\left(\tilde{b}_{\beta}\right)_{\beta}$ in B such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$ and $\tilde{a}_{\beta} \xrightarrow{w^{*}} \tilde{a}^{\prime \prime}$ in $A^{* *}$ and we have also $b_{\alpha} \xrightarrow{w^{*}} b^{\prime \prime}$ and $\tilde{b}_{\beta} \xrightarrow{w^{*}} \tilde{b}^{\prime \prime}$ in $B^{* *}$. Since A and B are Arens regular, we have

$$
\begin{aligned}
& \lim _{\alpha} \lim _{\beta} a_{\alpha} \tilde{a}_{\beta}=\lim _{\beta} \lim _{\alpha} a_{\alpha} \tilde{a}_{\beta}=a^{\prime \prime} \tilde{a}^{\prime \prime} \\
& \text { and } \\
& \lim _{\alpha} \lim _{\beta} b_{\alpha} \tilde{b}_{\beta}= \lim _{\beta} \lim _{\alpha} b_{\alpha} \tilde{b}_{\beta}=b^{\prime \prime} \tilde{b}^{\prime \prime}
\end{aligned}
$$

Then, since u is continuous, we have

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} m\left(a_{\alpha} \tilde{a}_{\beta}, b_{\alpha} \tilde{b}_{\beta}\right)=\lim _{\alpha} \lim _{\beta}\left\langle u\left(a_{\alpha} \tilde{a}_{\beta}\right), b_{\alpha} \tilde{b}_{\beta}\right\rangle \\
=\left\langle u^{\prime \prime}\left(a^{\prime \prime} \tilde{a}^{\prime \prime}\right), b^{\prime \prime} \tilde{b}^{\prime \prime}\right\rangle .
\end{gathered}
$$

Similarly, we have

$$
\lim _{\beta} \lim _{\alpha} m\left(a_{\alpha} \tilde{a}_{\beta}, b_{\alpha} \tilde{b}_{\beta}\right)=\left\langle u^{\prime \prime}\left(a^{\prime \prime} \tilde{a}^{\prime \prime}\right), b^{\prime \prime} \tilde{b}^{\prime \prime}\right\rangle
$$

Consequently we have

$$
\lim _{i} \lim _{j} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right)=\lim _{j} \lim _{i} m\left(a_{i} \tilde{a}_{j}, b_{i} \tilde{b}_{j}\right)
$$

It follows that m is biregular.

Example 2-9 [22]. Let A be a Banach algebra and $1<p<\infty$. Then
(1) $\ell^{p} \hat{\otimes} A$ is Arens regular if and only if A is Arens regular.
(2) Let G be a locally compact group. Then, $L^{p}(G) \hat{\otimes} A$ is Arens regular if and only if A is Arens regular.

Proof. By using [22, Theorem 3.4] and Theorem 2-8, proof hold.

3. Weak amenability of Banach algebras

For Banach algebra A, Dales, Rodrigues-Palacios and Velasco in [7] have been studied the weak amenability of A, when its second dual is weakly amenable. Mohamadzadih and Vishki in [19] have given simple solution to this problem with some other results, and Eshaghi Gordji and Filali in [10] have been studied this problem with some new results. In this section, We study this problem in the new way with some new results. Thus, for Banach A - module B, we introduce some new concepts as left - weak* - weak convergence property [$L w^{*} w c$-property] and right - weak* - weak convergence property [$R w^{*} w c-$ property] with respect to A and we show that if A^{*} and $A^{* *}$, respectively, have $R w^{*} w c$-property and $L w^{*} w c$-property and $A^{* *}$ is weakly amenable, then A is weakly amenable. We also show the relations between these properties and weak amenability of A. Now in the following, for left and right Banach A - module B, we define, respectively, $L w^{*} w c$-property and $R w^{*} w c$-property concepts with some examples.

Definition 3-1. Assume that B is a left Banach A-module. Let $a^{\prime \prime} \in A^{* *}$ and $\left(a_{\alpha}\right)_{\alpha} \subset A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$ in $A^{* *}$. We say that $b^{\prime} \in B^{*}$ has left $-w e a k^{*}-w e a k$ convergence property $L w^{*} w c$-property with respect to A, if $b^{\prime} a_{\alpha} \xrightarrow{w} b^{\prime} a^{\prime \prime}$ in B^{*}.
When every $b^{\prime} \in B^{*}$ has $L w^{*} w c$-property with respect to A, we say that B^{*} has $L w^{*} w c-$ property.
The definition of right $-w e a k^{*}-w e a k$ convergence property [$=R w^{*} w c$-property] with respect to A is similar and if $b^{\prime} \in B^{*}$ has left $-w e a k^{*}-w e a k$ convergence property and right $-w e a k^{*}-w e a k$ convergence property, then we say that $b^{\prime} \in B^{*}$ has weak* - weak convergence property $\left[=w^{*} w c\right.$-property].
By using Lemma 3.1 from [17], it is clear that if A^{*} has $L w^{*} w c$-property, then A is Arens regular.
Assume that B is a left Banach A-module. We say that $b^{\prime} \in B^{*}$ has left-weak* weak convergence property to zero $L w^{*} w c$-property to zero with respect to A, if for every $\left(a_{\alpha}\right)_{\alpha} \subset A, b^{\prime} a_{\alpha} \xrightarrow{w^{*}} 0$ in B^{*} implies that $b^{\prime} a_{\alpha} \xrightarrow{w} 0$ in B^{*}.

Example 3-2 .

(1) Every reflexive Banach A - module has $w^{*} w c$-property.
(2) Let Ω be a compact group and suppose that $A=C(\Omega)$ and $B=M(\Omega)$. Let $\left(a_{\alpha}\right)_{\alpha} \subseteq A$ and $\mu \in B$. Suppose that $\mu a_{\alpha} \xrightarrow{w^{*}} 0$, then for each $a \in A$, we have

$$
\left\langle\mu a_{\alpha}, a\right\rangle=\left\langle\mu, a_{\alpha} * a\right\rangle=\int_{\Omega}\left(a_{\alpha} * a\right) d \mu \rightarrow 0
$$

We set $a=1_{\Omega}$. Then $\mu\left(a_{\alpha}\right) \rightarrow 0$. Now let $b^{\prime} \in B^{*}$. Then

$$
\left\langle b^{\prime}, \mu a_{\alpha}\right\rangle=\left\langle a_{\alpha} b^{\prime}, \mu\right\rangle=\int_{\Omega} a_{\alpha} b^{\prime} d \mu \leq\left\|b^{\prime}\right\|\left|\int_{\Omega} a_{\alpha} d \mu\right|=\left\|b^{\prime}\right\|\left|\mu\left(a_{\alpha}\right)\right| \rightarrow 0
$$

It follows that $\mu a_{\alpha} \xrightarrow{w} 0$, and so that μ has $R w^{*} w c-$ property to zero with respect to A.

Let now B be a Banach A-bimodule, and let

$$
\pi_{\ell}: A \times B \rightarrow B \text { and } \pi_{r}: B \times A \rightarrow B
$$

be the left and right module actions of A on B, respectively. Then $B^{* *}$ is a Banach $A^{* *}$ - bimodule with module actions

$$
\pi_{\ell}^{* * *}: A^{* *} \times B^{* *} \rightarrow B^{* *} \text { and } \pi_{r}^{* * *}: B^{* *} \times A^{* *} \rightarrow B^{* *}
$$

Similarly, $B^{* *}$ is a Banach $A^{* *}$ - bimodule with module actions

$$
\pi_{\ell}^{t * * * t}: A^{* *} \times B^{* *} \rightarrow B^{* *} \text { and } \pi_{r}^{t * * * t}: B^{* *} \times A^{* *} \rightarrow B^{* *}
$$

For a Banach A-bimodule B, we define the topological centers of the left and right module actions of A on B as follows:

$$
\begin{aligned}
Z_{A^{* *}}^{\ell}\left(B^{* *}\right)=Z\left(\pi_{r}\right)= & \left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{r}^{* * *}\left(b^{\prime \prime}, a^{\prime \prime}\right): A^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak } \left.- \text { weak } k^{*} \text { continuous }\right\} \\
Z_{B^{* *}}^{\ell}\left(A^{* *}\right)=Z\left(\pi_{\ell}\right)= & \left\{a^{\prime \prime} \in A^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{\ell}^{* * *}\left(a^{\prime \prime}, b^{\prime \prime}\right): B^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak }- \text { weak continuous }\} \\
Z_{A^{* *}}^{r}\left(B^{* *}\right)=Z\left(\pi_{\ell}^{t}\right)= & \left\{b^{\prime \prime} \in B^{* *}: \text { the map } a^{\prime \prime} \rightarrow \pi_{\ell}^{t * * *}\left(b^{\prime \prime}, a^{\prime \prime}\right): A^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak }- \text { weak continuous }\} \\
Z_{B^{* *}}^{r}\left(A^{* *}\right)=Z\left(\pi_{r}^{t}\right)= & \left\{a^{\prime \prime} \in A^{* *}: \text { the map } b^{\prime \prime} \rightarrow \pi_{r}^{t * *}\left(a^{\prime \prime}, b^{\prime \prime}\right): B^{* *} \rightarrow B^{* *}\right. \\
& \text { is weak } \left.- \text { weak }^{*} \text { continuous }\right\} .
\end{aligned}
$$

Theorem 3-3. i) Assume that B is a left Banach A - module. If $B^{*} A^{* *} \subseteq B^{*}$, then B^{*} has $L w^{*} w c-$ property.
ii) Assume that B is a right Banach $A-$ module. If $A^{* *} B^{*} \subseteq B^{*}$ and $Z_{A^{* *}}^{r}\left(B^{* *}\right)=B^{* *}$, then B^{*} has $R w^{*} w c$-property.

Proof. i) Assume that $a^{\prime \prime} \in A^{* *}$ and $\left(a_{\alpha}\right)_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$. Then for every $b^{\prime \prime} \in B^{* *}$, since $b^{\prime} a^{\prime \prime} \in B^{*}$, we have

$$
<b^{\prime \prime}, b^{\prime} a^{\prime \prime}>=<a^{\prime \prime} b^{\prime \prime}, b^{\prime}>=\lim _{\alpha}<a_{\alpha} b^{\prime \prime}, b^{\prime}>=\lim _{\alpha}<b^{\prime \prime}, b^{\prime} a_{\alpha}>.
$$

It follows that $b^{\prime} a_{\alpha} \xrightarrow{w} b^{\prime} a^{\prime \prime}$.
ii) Proof is similar to (i).

Theorem 3-4. Let A be a Banach algebra and suppose that A^{*} and $A^{* *}$, respectively, have $R w^{*} w c$-property and $L w^{*} w c$-property. If $A^{* *}$ is weakly amenable, then A is weakly amenable.

Proof. Assume that $a^{\prime \prime} \in A^{* *}$ and $\left(a_{\alpha}\right)_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$. Then for each $a^{\prime} \in A^{*}$, we have $a_{\alpha} a^{\prime} \xrightarrow{w^{*}} a^{\prime \prime} a^{\prime}$ in A^{*}. Since A^{*} has $R w^{*} w c-$ property, $a_{\alpha} a^{\prime} \xrightarrow{w} a^{\prime \prime} a^{\prime}$ in A^{*}. Then for every $x^{\prime \prime} \in A^{* *}$, we have

$$
\left\langle x^{\prime \prime} a_{\alpha}, a^{\prime}\right\rangle=\left\langle x^{\prime \prime}, a_{\alpha} a^{\prime}\right\rangle \rightarrow\left\langle x^{\prime \prime}, a^{\prime \prime} a^{\prime}\right\rangle=\left\langle x^{\prime \prime} a^{\prime \prime}, a^{\prime}\right\rangle
$$

It follows that $x^{\prime \prime} a_{\alpha} \xrightarrow{w^{*}} x^{\prime \prime} a^{\prime \prime}$. Since $A^{* *}$ has $L w^{*} w c$-property with respect to A, $x^{\prime \prime} a_{\alpha} \xrightarrow{w} x^{\prime \prime} a^{\prime \prime}$. If $D: A \rightarrow A^{*}$ is a bounded derivation, we extend it to a bounded linear mapping $D^{\prime \prime}$ from $A^{* *}$ into $A^{* * *}$. Suppose that $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ and $\left(a_{\alpha}\right)_{\alpha},\left(b_{\beta}\right)_{\beta} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$ and $b_{\beta} \xrightarrow{w^{*}} b^{\prime \prime}$. Since $x^{\prime \prime} a_{\alpha} \xrightarrow{w} x^{\prime \prime} a^{\prime \prime}$ for every $x^{\prime \prime} \in A^{* *}$, we have

$$
\lim _{\alpha}\left\langle D^{\prime \prime}\left(b^{\prime \prime}\right), x^{\prime \prime} a_{\alpha}\right\rangle=\left\langle D^{\prime \prime}\left(b^{\prime \prime}\right), x^{\prime \prime} a^{\prime \prime}\right\rangle
$$

In the following we take limit on the weak* topologies. Thus we have

$$
\lim _{\alpha} \lim _{\beta} D\left(a_{\alpha}\right) b_{\beta}=D^{\prime \prime}\left(a^{\prime \prime}\right) b^{\prime \prime}
$$

Consequently, we have

$$
\begin{gathered}
D^{\prime \prime}\left(a^{\prime \prime} b^{\prime \prime}\right)=\lim _{\alpha} \lim _{\beta} D\left(a_{\alpha} b_{\beta}\right)=\lim _{\alpha} \lim _{\beta} D\left(a_{\alpha}\right) b_{\beta}+\lim _{\alpha} \lim _{\beta} a_{\alpha} D\left(b_{\beta}\right) \\
=D^{\prime \prime}\left(a^{\prime \prime}\right) b^{\prime \prime}+a^{\prime \prime} D^{\prime \prime}\left(b^{\prime \prime}\right)
\end{gathered}
$$

Since $A^{* *}$ is weakly amenable, there is $a^{\prime \prime \prime} \in A^{* * *}$ such that $D^{\prime \prime}=\delta_{a^{\prime \prime \prime}}$. We conclude that $D=\left.D^{\prime \prime}\right|_{A}=\left.\delta_{a^{\prime \prime \prime}}\right|_{A}$. Hence for each $x^{\prime} \in A^{*}$, we have $D=\left.x^{\prime} a^{\prime \prime \prime}\right|_{A}-\left.a^{\prime \prime \prime}\right|_{A} x^{\prime}$. Take $a^{\prime}=\left.a^{\prime \prime \prime}\right|_{A}$. It follows that $H^{1}\left(A, A^{*}\right)=0$.

Theorem 3-5. Let A be a Banach algebra and suppose that $D: A \rightarrow A^{*}$ is a surjective derivation. If $D^{\prime \prime}$ is a derivation, then we have the following assertions.
(1) A^{*} and $A^{* *}$, respectively, have $w^{*} w c$-property and $L w^{*} w c$-property with respect to A.
(2) For every $a^{\prime \prime} \in A^{* *}$, the mapping $x^{\prime \prime} \rightarrow a^{\prime \prime} x^{\prime \prime}$ from $A^{* *}$ into $A^{* *}$ is weak* weak continuous.
(3) A is Arens regular.
(4) If A has $L B A I$, then A is reflexive.

Proof. (1) Since D is surjective, $D^{\prime \prime}$ is surjective, and so by using [19, Theorem 2.2], we have $A^{* * *} A^{* *} \subseteq D^{\prime \prime}\left(A^{* *}\right) A^{* *} \subseteq A^{*}$. Suppose that $a^{\prime \prime} \in A^{* *}$ and $\left(a_{\alpha}\right)_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{\prime \prime}$. Then for each $x^{\prime} \in A^{*}$, we have $x^{\prime} a_{\alpha} \xrightarrow{w^{*}} x^{\prime} a^{\prime \prime}$. Since $A^{* * *} A^{* *} \subseteq A^{*}, x^{\prime} a^{\prime \prime} \in A^{*}$. Then for every $x^{\prime \prime} \in A^{* *}$, we have

$$
\left\langle x^{\prime \prime}, x^{\prime} a_{\alpha}\right\rangle=\left\langle x^{\prime \prime} x^{\prime}, a_{\alpha}\right\rangle \rightarrow\left\langle a^{\prime \prime}, x^{\prime \prime} x^{\prime}\right\rangle=\left\langle x^{\prime} a^{\prime \prime}, x^{\prime \prime}\right\rangle=\left\langle x^{\prime \prime}, x^{\prime} a^{\prime \prime}\right\rangle .
$$

It follows that $x^{\prime} a_{\alpha} \xrightarrow{w} x^{\prime} a^{\prime \prime}$ in A^{*}. Thus x^{\prime} has $L w^{*} w c-$ property with respect to A. The proof that x^{\prime} has $R w^{*} w c-$ property with respect to A is similar, and so A^{*} has $w^{*} w c$-property.

Suppose that $x^{\prime \prime \prime} \in A^{* * *}$. Since $A^{* * *} A^{* *} \subseteq A^{*}, x^{\prime \prime} a_{\alpha} \xrightarrow{w^{*}} x^{\prime \prime} a^{\prime \prime}$ for each $x^{\prime \prime} \in A^{* *}$. Then

$$
\left\langle x^{\prime \prime \prime}, x^{\prime \prime} a_{\alpha}\right\rangle=\left\langle x^{\prime \prime \prime} x^{\prime \prime}, a_{\alpha}\right\rangle \rightarrow\left\langle x^{\prime \prime \prime} x^{\prime \prime}, a^{\prime \prime}\right\rangle=\left\langle x^{\prime \prime \prime}, x^{\prime \prime} a^{\prime \prime}\right\rangle .
$$

It follows that $x^{\prime \prime} a_{\alpha} \xrightarrow{w} x^{\prime \prime} a^{\prime \prime}$. Thus $x^{\prime \prime}$ has $L w^{*} w c-$ property with respect to A.
(2) Suppose that $\left(a_{\alpha}^{\prime \prime}\right)_{\alpha} \subseteq A^{* *}$ and $a_{\alpha}^{\prime \prime} \xrightarrow{w^{*}} a^{\prime \prime}$. Let $x^{\prime \prime} \in A^{* *}$. Then for every $x^{\prime \prime \prime} \in A^{* * *}$, since $A^{* * *} A^{* *} \subseteq A^{*}$, we have

$$
\left\langle x^{\prime \prime \prime}, x^{\prime \prime} a_{\alpha}^{\prime \prime}\right\rangle=\left\langle x^{\prime \prime \prime} x^{\prime \prime}, a_{\alpha}^{\prime \prime}\right\rangle \rightarrow\left\langle x^{\prime \prime \prime} x^{\prime \prime}, a^{\prime \prime}\right\rangle=\left\langle x^{\prime \prime \prime}, x^{\prime \prime} a^{\prime \prime}\right\rangle .
$$

(3) It follows from (2).
(4) Let $\left(e_{\alpha}\right)_{\alpha} \subseteq A$ be a BLAI for A. Then without loss generality, let $e^{\prime \prime}$ be a left unit for $A^{* *}$ such that $e_{\alpha} \xrightarrow{w^{*}} e^{\prime \prime}$. Suppose that $\left(a_{\alpha}^{\prime \prime}\right)_{\alpha} \subseteq A^{* *}$ and $a_{\alpha}^{\prime \prime} \xrightarrow{w^{*}} a^{\prime \prime}$. Then for every $a^{\prime \prime \prime} \in A^{* * *}$, since $A^{* * *} A^{* *} \subseteq A^{*}$, we have

$$
\left\langle a^{\prime \prime \prime}, a_{\alpha}^{\prime \prime}\right\rangle=\left\langle a^{\prime \prime \prime}, e^{\prime \prime} a_{\alpha}^{\prime \prime}\right\rangle=\left\langle a^{\prime \prime \prime} e^{\prime \prime}, a_{\alpha}^{\prime \prime}\right\rangle \rightarrow\left\langle a^{\prime \prime \prime} e^{\prime \prime}, a^{\prime \prime}\right\rangle=\left\langle a^{\prime \prime \prime}, a^{\prime \prime}\right\rangle .
$$

It follows that $a_{\alpha}^{\prime \prime} \xrightarrow{w} a^{\prime \prime}$. Consequently A is reflexive.

Corollary 3-6. Let A be a Banach algebra and suppose that $D: A \rightarrow A^{*}$ is a surjective derivation. Then the following statements are equivalent.
(1) A^{*} and $A^{* *}$, respectively, have $R w^{*} w c-$ property and $L w^{*} w c$-property.
(2) For every $a^{\prime \prime} \in A^{* *}$, the mapping $x^{\prime \prime} \rightarrow a^{\prime \prime} x^{\prime \prime}$ from $A^{* *}$ into $A^{* *}$ is weak k^{*} weak continuous.

Problems.

1. Let G be a locally compact group. What can say for the following sets?
(1) $Z_{L^{1}(G)^{* *}}^{\ell}\left(\left(L^{1}(G) \hat{\otimes} L^{1}(G)\right)^{* *}\right)=$?, $Z_{L^{1}(G)^{* * *}}^{r}\left(\left(L^{1}(G) \hat{\otimes} L^{1}(G)\right)^{* *}\right)=$?
(2) $Z_{\left(L^{1}(G) \hat{\otimes} L^{1}(G)\right)^{* *}}^{\ell}\left(L^{1}(G)^{* *}\right)=$?, $Z_{\left(L^{1}(G) \hat{\otimes} L^{1}(G)\right)^{* *}}^{r}\left(L^{1}(G)^{* *}\right)=$?
(3) $Z_{L^{1}(G)^{* *}}^{\ell}\left(L^{1}(G)^{* *} \hat{\otimes} L^{1}(G)^{* *}\right)=$?, $Z_{L^{1}(G)^{* *}}^{r}\left(L^{1}(G)^{* *} \hat{\otimes} L^{1}(G)^{* *}\right)=$?
2. Suppose that S is a compact semigroup. Dose $L^{1}(S)^{*}$ and $M(S)^{*}$ have $L w^{*} w c$-property or $R w^{*} w c$-property?

References

1. R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
2. W. G. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. Lodon Math. Soc. 50 (1987) 359-377.
3. J. Baker, A. T. Lau, J.S. Pym Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, Journal of Functional Analysis. 158 (1998), 186208.
4. F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, Berlin 1973.
5. H. G. Dales, Banach algebra and automatic continuity, Oxford 2000.
6. H. G. Dales, F. Ghahramani, N. Grønbæk Derivation into iterated duals of Banach algebras Studia Math. 1281 (1998), 19-53.
7. H. G. Dales, A. Rodrigues-Palacios, M.V. Velasco, The second transpose of a derivation, J. London. Math. Soc. 264 (2001) 707-721.
8. N. Dunford, J. T. Schwartz, Linear operators.I, Wiley, New york 1958.
9. K. Haghnejad Azar, A. Riazi Topological centers of the $n-t h$ dual of module actions, To apper in Bulletin of Iranian Math. Soc.
10. M. Eshaghi Gordji, M. Filali, Weak amenability of the second dual of a Banach algebra, Studia Math. 1823 (2007), 205-213.
11. F. Gourdeau, Amenability of Lipschits algebra, Math. Proc. Cambridge. Philos. Soc. 112 (1992), 581-588.
12. E. Hewitt, K. A. Ross, Abstract harmonic analysis, Springer, Berlin, Vol I 1963.
13. B.E. Johoson, Cohomology in Banach algebra, Mem. Amer. Math. Soc. 127, 1972.
14. B. E. Johoson, Derivation from $L^{1}(G)$ into $L^{1}(G)$ and $L^{\infty}(G)$, Harmonic analysis. Luxembourg 1987, 191-198 Lecture Note in Math., 1359, Springer, Berlin, 1988. MR 90a:46122.
15. B. E. Johoson, Weak amenability of group algebra, Bull. London. Math. Soc. 23(1991), 281-284.
16. A. T. Lau, V. Losert, On the second Conjugate Algebra of locally compact groups, J. London Math. Soc. 37 (2)(1988), 464-480.
17. A. T. Lau, A. Ülger, Topological center of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191-1212.
18. V. Losert, The derivation problem for group algebra, Annals of Mathematics, 168 (2008), 221246.
19. S. Mohamadzadih, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bulletin of the Australian Mathematical Society 77 (2008), 465-476.
20. J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math Soc. 15 (1965), 84-104.
21. V. Runde, Lectures on the amenability, springer-verlag Berlin Heideberg NewYork.
22. A. Ülger, Arens regularity of the algebra $A \hat{\otimes} B$, Trans. Amer. Math. Soc. 305 (2) (1988) 623-639.
23. A. Ülger, Some stability properties of Arens regular bilinear operators, Proc. Amer. Math. Soc. (1991) 34, 443-454.
24. A. Ülger, Arens regularity of weakly sequentialy compact Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 3221-3227.
25. P. K. Wong, The second conjugate algebras of Banach algebras, J. Math. Sci. 17 (1) (1994), 15-18.
26. Y. Zhing, Weak amenability of module extentions of Banach algebras, Trans. Amer. Math. Soc. 354 (10) (2002), 4131-4151.
27. Y. Zhing, Weak amenability of a class of Banach algebra, Cand. Math. Bull. 44 (4) (2001) 504-508.

[^0]: 2000 Mathematics Subject Classification. 46L06; 46L07; 46L10; 47L25.
 Key words and phrases. Arens regularity, topological centers, Tensor product, Bilinear form, amenability, weak amenability, derivation, module actions, left $-w e a k^{*}-t o-w e a k$ convergence .

