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ABSTRACT

We examine the evolution of the spatial counts-in-cells distribution of galaxies and

show that the form of the galaxy distribution function does not change significantly as

galaxies merge and evolve. In particular, bound merging pairs follow a similar distri-

bution to that of individual galaxies. From the adiabatic expansion of the universe we

show how clustering, expansion and galaxy mergers affect the clustering parameter b.

We also predict the evolution of b with respect to redshift.

Subject headings: galaxies: statistics — cosmology: theory — large-scale structure of

universe

1. Introduction

The galaxy spatial distribution function f(N,V ) is a simple but powerful statistic which char-

acterizes the locations of galaxies in space. It includes statistical information on voids and other

underdense regions, on clusters of all shapes and sizes, on filaments, on the probability of finding

an arbitrary number of neighbors around randomly located positions, on counts of galaxies in cells

of arbitrary shapes and sizes randomly located, and on galaxy correlation functions of all orders.

These are just some of its representations (Saslaw 2000; Saslaw & Yang 2010). Moreover it is also
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closely related to the distribution function of the peculiar velocities of galaxies around the Hubble

flow (Saslaw et al. 1990; Leong & Saslaw 2004).

A physically motivated form of the distribution function for galaxies in quasi-equilibrium was

derived and generalized using a statistical mechanical approach. (Ahmad et al. 2002, 2006b) It has

also been generalized to systems containing particles of two different masses (Ahmad et al. 2006a).

In its simplest form, the probability of finding N galaxies in a cell of volume V is given by the

gravitational quasi-equilibrium distribution(GQED):

fV (N) =
N(1− b)

N !

(

N(1− b) +Nb
)N−1

exp
(

−N(1− b)−Nb
)

(1)

where N is the average number of galaxies in a cell and the clustering parameter b = −W/2K is

the ratio of the gravitational correlation energy W to twice the kinetic energy K of peculiar veloc-

ities relative to the Hubble flow. Although other distributions have been proposed (e.g. negative

binomial; for an early review see Fry 1986), they are generally not physically motivated. Extensive

computer simulations (summarized in Saslaw 2000) designed to test the GQED agree closely with

the analytical results. Observations at both low (Sivakoff & Saslaw 2005) and high (Rahmani et al.

2009) redshifts suggest that the form of the distribution function fV (N) is essentially unchanged

over a wide range of redshifts. However, mergers among galaxies could have modified the form of

fV (N) significantly compared to the simple model which involves no mergers at all, and yet they

did not. In this paper we examine the robustness of the GQED to merging galaxies.

2. The positions of merging galaxy pairs

Merging galaxy pairs are often extended structures that would have a different interaction

potential than simple spheres or point masses. With a different interaction potential, they may

also be distributed differently. Extended structures resulting from mergers will not only have a

different interaction potential, they also have a different mass and should be treated differently. To

consider how these extended structures influence the GQED, we first consider how they modify the

interaction potential. Using the modified potential we can then derive the distribution function for

an ensemble of species with a range of masses.

The generalized interaction potential between particles (galaxies) each of which has an isother-

mal halo is given by (Ahmad et al. 2002)

φ(r) = −
Gm2

(r2 + ǫ2)1/2
(2)

where G is the gravitational constant, r is the separation between a pair of particles, m is the mass

of each particle, and ǫ is a parameter related to the finite size of a galaxy in proper coordinates.

We can generalize this interaction potential by factoring out the ǫ terms to get

φ(r) = −
Gm2

r
κ(ǫ/r) (3)
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where κ(ǫ/r) represents a modification to the Newtonian potential. This modification only affects

the potential energy part of the configuration integral given by equation (3) of Ahmad et al. (2002)

QN (T, V ) =

∫

. . .

∫

exp
[

−φ(r1, r2, . . . , rn)T
−1
]

d3Nr (4)

where T is the kinetic temperature of the ensemble in units where Boltzmann’s constant is unity,

and φ is the interparticle potential energy of the ensemble. By following the procedure in section 2

of Ahmad et al. (2002), the potential energy part of the Hamiltonian for a 2-galaxy system becomes

Q2(T, V ) = V 2

[

1 +
3Gm2

2T (n)−1/3
ζ

(

ǫ

R1

)]

(5)

where R1 is the scale where the two-galaxy correlation function is negligible, n is the number of

particles per unit volume, and

ζ

(

ǫ

R1

)

=

∫ R1

0

2r

R2
1

κ
( ǫ

r

)

dr (6)

describes how a modification to the potential changes the partition function.

The modification given by equation (6) is analogous to α(ǫ/R1) given by equation (16) of

Ahmad et al. (2002), but can describe a generalized modification of the potential rather than the

particular modification that arises from an isothermal halo. The effects of a modified potential

enter into the distribution function only through the parameter b, which now becomes

bǫ =
(3/2)G3m6nT−3ζ(ǫ/R1)

1 + (3/2)G3m6nT−3ζ(ǫ/R1)
. (7)

For an attractive potential, κ(ǫ/r) is is always positive and hence ζ(ǫ/R1) > 0 for all values of R1

so from equation (7), 0 ≤ bǫ ≤ 1.

From the thermodynamic variables of the system given by equations (26)-(30) of Ahmad et al.

(2002), we see that the forms of the distribution function fV (N) and the thermodynamic functions

of the system are essentially unchanged by a modified potential although their values are different.

This shows that the form of the galaxy distribution function is robust to modified potentials. This

also allows us to treat merging galaxy pairs as a separate species and extend the GQED to describe

the distribution of merging galaxy pairs.

A merging galaxy pair which is bound will have its dynamical center at its center-of-mass, and

will relax to form a single galaxy at its center-of-mass. Hence the position of the centers-of-mass

of these merging pairs will be related to the positions of the merged galaxies. While they merge,

these merging pairs form an extended system with an external potential given by the vector sum

of the external potentials of both galaxies in the merging pair:

φ2(r) = −
Gm1M

‖r+ x1‖
−

Gm2M

‖r+ x2‖
= −

Gm2

‖r‖

(

‖r‖

‖r+ x1‖
+

‖r‖

‖r+ x2‖

)

(8)
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where r is the distance from the center of mass of the merging pair to a more distant galaxy

of mass M , and x1 and x2 are the distances from each component to the center-of-mass of the

system. To approximate the case when mergers between similar-sized galaxies have the dominant

effect on the distribution function, we assume that all galaxies have the same mass m so that

m = m1 = m2 = M . From equation (8), the first order approximation to the external potential

contains a factor of 2m. In the case where ‖r‖ ≫ ‖x‖, the first order term dominates and we

obtain the modification factor κ2 ≈ 2 to the potential that arises from treating these merging pairs

as single extended particles.

The universe however does not contain only merging pairs. To model the presence of individual

galaxies that are not currently merging, we consider a two-species distribution (Ahmad et al. 2006a)

where one species consists of merging pairs, and the other species consists of galaxies that are not

merging. For simplicity we consider a system containing two species of different extended particles

where species 1 represents individual galaxies with an average mass of m, each with a halo, and

species 2 represents bound pairs of merging galaxies with a total mass of 2m. Using the modification

to the GQED described above, the potential between a pair of particles of species 1 (each of which

is a galaxy) is

φ1(r) =
Gm2

1

r
κ1(ǫ1/r) (9)

where κ1(ǫ1/r) is a softening factor that arises from an extended halo with a physical extent

described by ǫ1 (e.g. isothermal halo (Ahmad et al. 2002)). Likewise, the external potential between

a particle of species 1 (a galaxy) and a particle of species 2 (a bound merging pair) is given by

φ2(r) =
Gm1m2

r
κ2(ǫ2/r) (10)

where m2 = 2m1 because there are two galaxies of mass m1 in each merging pair, and the mod-

ification to the potential is given by κ2(ǫ2/r). Since a modified potential only changes b in the

single-species distribution function, a modified potential only changes the two-species clustering

parameter bm in the two-species distribution function

bm =
N1

N

βnT−3

1 + βnT−3
+

N2

N

β12nT
−3

1 + β12nT−3
=

b

1 +N2/N1

(

1 +
(N2/N1)(β12/β)

1− b+ (β12/β)b

)

(11)

where β and β12 are given by

β =
3

2
(Gm2

1)
3ζ2

(

ǫ1
R1

)

=
3

2
(Gm2

1)
3

∫ R1

0

2r

R2

1

κ1

(ǫ1
r

)

dr (12)

β12 =
3

2
(Gm1m2)

3ζ2

(

ǫ2
R1

)

=
3

2
(Gm1m2)

3

∫ R1

0

2r

R2
1

κ2

(ǫ2
r

)

dr (13)

and b is the single-species clustering parameter given by (Ahmad et al. 2002)

b =
βnT−3

1 + βnT−3
. (14)
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The two-species distribution function is thus (Ahmad et al. 2006a)

fV (N) =
N(1− b)

N !

[

N(1− b) +Nb
]N1−1

[

N(1− b) + (β12/β)Nb

1− b+ (β12/β)b

]N2

× exp[−N(1− bm)−Nbm]. (15)

The two-species distribution reduces to the single-species distribution function in the limitN2/N1 →

0 and β12/β → 1. When N1 ≫ N2 and N is large, the deviation from the GQED is small because

the
[

N(1− b) +Nb
]N1−1

term dominates. Measurements of the fraction of merging pairs in the

VVDS catalog (de Ravel et al. 2009) suggest that for redshifts of z . 1, N2/N1 ≈ 10%. Assuming

these mergers are between galaxies that are similar in mass, m2 ≈ 2m1 so β12/β ≈ 8. For large

cells which are a representative sample of the universe, N & 100 and the difference between the

two-species distribution and the single-species distribution is small on the level of about 5%. Hence

under these conditions, the only significant effect of galaxy mergers in this context is a change in

the average mass of a galaxy.

3. Redshift evolution of b

To determine the change in the clustering parameter b we consider a merging pair of galaxies

each of mass m which approach each other with velocities of v1 and v2. Since momentum is

conserved, the merged galaxy follows the trajectory of the center of mass of the progenitors, and

has a final velocity after the merger of vf = (v1 + v2)/2. The final velocity of the merged galaxy

depends on the detailed dynamics of the system, but by averaging over all orientations, we find

that mergers will not change the average kinetic energy of an ensemble. Hence the more important

contribution to the evolution of b comes from the change in the positions of galaxies and the

expansion of the universe.

We extend the analysis of Saslaw (1992) to describe an ensemble where galaxies merge by

considering the effect of the adiabatic expansion of the universe. The equations of state for internal

energy U and pressure P are (Saslaw 2000; Ahmad et al. 2002)

U =
3

2
NT (1− 2b) (16)

and

P =
NT

V
(1− b) (17)

where V is the volume and T is the kinetic temperature of peculiar velocities in units where the

Boltzmann constant is 1. Equations (14) and (17) can be combined to get (Saslaw 1992)

b =
b0nT

−3

1 + b0nT−3
= b0PT−4. (18)
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The analysis of section 2 generalizes equation (18) to extended objects with the generalized form

of b given in equation (7). By comparing equations (18) and (7) we see that b0 is given by

b0 =
3

2
G3m6ζ

(

ǫ

R1

)

(19)

where m is the average mass of a galaxy, and ζ is a function of order unity that depends weakly

on ǫ/R1.

Because R1 is defined as the scale where the two-galaxy correlation function becomes negligible,

the universe is approximately uniform averaged over scales & R1. Here we take R1 to be the scale at

which the two-galaxy correlation function begins to decrease faster than a power law. Measurements

from the 2DFGRS (Hawkins et al. 2003) have indicated that R1 is about 12h−1 Mpc at which the

two-galaxy correlation function is of the order 10−2. Here h = H0/100 is the reduced Hubble

constant. We note that such cells are large enough to contain individual field galaxies and clusters

of galaxies, and hence would be an approximately representative sample of the universe. Assuming

that on such scales, galaxies have isotropic average velocities, then for cells with a radius larger

than R1, galaxies are as likely to enter a cell as they are to leave a cell. With this assumption, the

total mass in each comoving cell Mc would be approximately constant, and each cell would have

on average N = Mc/m galaxies and d(mN) = 0. Therefore N ∝ m−1 and b0 can be written as a

function of N instead of m. This transforms equation (18) into the form

b = b0(N )PT−4 =
3

2
G3

(

Mc

N

)6

ζ

(

ǫ

R1

)

PT−4. (20)

Differentiating equation (20) with respect to N gives

db

b
= −6

dN

N

(

1 +
N

6R1

(

∂ ln ζ(ǫ/R1)

∂N

)

T,P

)

= −6
dN

N
(1 + ζ⋆) (21)

from which we define the term

ζ⋆ =
N

6R1

(

∂ ln ζ(ǫ/R1)

∂N

)

T,P

. (22)

In general, we do not rule out the possibility that ζ(ǫ/R1) may indirectly depend on N , hence the

∂ ln ζ(ǫ/R1)/∂N factor in ζ⋆ may be nonzero.

In the case of adiabatic expansion, equations (16) and (17), give

0 = dU + PdV =
3

2
(1− 2b)

[

TdN +NdT |N,P

]

− 3NTdb+NT (1− b)
dV

V
. (23)

Equation (20) implies

dT |N,P = −
Tdb

4b
(24)
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and hence using dV/V = 3dR/R where R is the scale length of the universe, we have

0 =
3

2
(1− 2b)TdN −

3

2
(1− 2b)NT

db

4b
− 3NTdb+ 3NT (1− b)

dR

R
. (25)

Rearranging the terms and using equation (21), we find in terms of redshift z ∝ 1/R − 1

db

dz
= −

1− b

1 + z

(

1 + 6b

8b
+

1− 2b

12bζ⋆

)

−1

. (26)

To illustrate how mergers contribute to the time evolution of b, we consider a simple model

of a galaxy. In our model, galaxies have isothermal halos with a characteristic radius ǫ, and all

galaxies have the same density so that in a cell of total mass Mc

ǫ = a (m)1/3 = a

(

Mc

N

)1/3

(27)

for some constant of proportionality a such that ǫ depends on the average mass of a galaxy. We

use the GQED and form of ζ for such a case from Ahmad et al. (2002) to obtain the constraint

−1/18 ≤ ζ⋆ ≤ 0. The extremes of this constraint gives

db

dz
= −

1− b

1 + z

(

24b

5 + 14b

)

(28)

for the case where ζ⋆ = 0 and
db

dz
= −

1− b

1 + z

(

136b

29 + 78b

)

(29)

for the case with ζ⋆ = −1/18 with all other cases occurring in between equations (28) and (29).

Since 0 ≤ b ≤ 1, we compare the two cases numerically and find that the difference between the

two cases is small at less than 2%. This result tells us that although galaxy mergers can influence

the time evolution of b, their influence mostly results from changes of the number of galaxies in a

cell.

4. Conclusion and Future Work

We have established that the effects of galaxy mergers leave the form of the galaxy distribution

function essentially unchanged and just alter the parameters of the counts in cells distribution. In

particular, by describing bound merging pairs as objects with a modified gravitational potential,

we obtain a modified form of the two-species counts in cells distribution (Ahmad et al. 2006a) and

show that it only changes the counts in cells distribution slightly from the single-species result given

by equation (1).

As a result of mergers, the clustering parameter b increases with time, and we have shown that

it depends very weakly on the physical extent of a galaxy and the scale R1 at which the two point
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correlation function is negligible. The effect of the physical extent of a galaxy changes db/dz by

less than 2%, which shows that the evolution of b depends mainly on the adiabatic expansion of

the universe and the change in the number of galaxies from mergers.

These results show that even when we take galaxy mergers into account, we can not only

reproduce the GQED but also trace the evolution of the clustering parameters. However, an analysis

of the GOODS catalog (Rahmani et al. 2009) indicates a large variation between the North and

South fields and suggests that the sample is probably too small to draw any meaningful conclusions

about the evolution of b at high redshift. Future surveys however may provide sufficiently large

samples at high redshifts to test our predicted evolution of b.
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