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The Freudenthal product and orbits in the Jordan
algebra over the exceptional Lie group of type

Fy(—20)
Akihiro Nishio

Abstract

Let J' be the real form of complex simple Jordan algebra with
the automorphism group Fjy_s¢). In terms of the Freudenthal prod-
uct on J' and the characteristic polynomial for X € J!, a concrete
classification of Fj(_aq-orbits on J* is given.

1 Preliminaries.

Let R be the field of real numbers and C := R@+/—1R be the field of complex
numbers. For F = R or C, let V' be a F-linear space, GLg(V) the group
of F-linear automorphims of V' and Endg (V') the linear space of F-linear
endomorphisms on V. For a mapping f:V = V,put Vy :={v e V| f(v) =
v}. For a subgroup G of GLg(V), an automorphism ¢ on G and v € V, put
G ={ge€G|pg=g}, G, ={g€ G| gv=n0}, Og(v) :={gv|gecG}

For a linear space V over R, its complexification VC = V @r C =
V @+/—1V. For an f € Endg(V), its complexification by f€ € Endc(V°) is
written by the same letter f. The complex conjugation on V€ with respect
to V is denoted by 7 : 7(u + v/—1v) = u — /—1v, u,v € V.

Let O be the R-algebra of octonions[2] (1, [T1] with a base 1, eq, es, €3, €4,
es, g, er and the multiplications among them are given as follows; 1 is the

unit of R; e? = —1, e;jej = —eje; for i # j; ejey = en, emen = €, ene; = e
for (I,m,n) € {(1,2,3),(3,5,6),(6,7,1),(1,4,5),(3,4,7),(6,4,2),(2,5,7)}.
By convention, eg := 1. The conjugation is defined as 21'7:0 Tie; = X9 —

T me;, x; € R. Put Re(x) := $(z +7), Im(z) := 3(z — ) and ImO =
{Zzzl xie; | x; € R}. And a positive definite inner product and the norm
are defined as (z,y) := 1(Ty+7z) = 3(27+y7) = S w7 i=/(z,2)
for x = 22‘7:0 Ti€i, Yy = 22‘7:0 yie; € O with z;,y; € R.
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Proposition 1.1. (cf. [2]) Let z,y,a,b € O.
(1) (az,ay) = (a,a)(y,y) = (za,ya).

(zy) + (zy)a, (za)y + (xy)a = z(ay) + z(ya),

(zy)a.
8) Re(zy) = Re(yz), Re(z(yz)) = Re(y(z)) = Re(z(zy)).

Let OC be the complexification of Q. Similarly Q€ have the product
zy € OC, the conjugation ZZ:O Ti€; = XTg — 22-7:1 xie;, x; € C, the inner
product (z,y) := %(Ey +7z) = %(m§+ yT) € C.

For a linear subspace K of Q€ over R or C, let M(n,K) be the set of
all n x n- matrices with entries in K. For A € M(n,0°), let ‘A be the
transposed matrix of A, A the matrix with the conjugate entries of A, and
A* .=t A. Let us complex exceptional Jordan algebra as

JC = {X e M(3,0°) | X* = X}

which has the Jordan product X oY, the inner product (X,Y) and the
identity element E as follows:

1
XoY = (XY +YX), (X,Y):=t(X oY), E:= diag(1,1,1).

Then an element X € J€ has the form

&1 w3 T o
X |73 & 1), &€Cre0”.

T2 T1 &3

After H. Freudenthal [3], another product X X Y is defined as
XV = %(zx oY — tr(X)Y — tr(Y)X + (tr(X)tx(Y) — (X, Y))E)

which is called the Freudenthal product and the trilinear form (X,Y, Z), the
determinant det(X) are defined as

(X,Y.Z) = (X,Y x Z), det(X) = %(X, X, X).



Proposition 1.2. Let X,Y,Z € J€. By direct calculations, the following
formulas hold.

(1) XoY =YoX, XxY=YxX.

(2) ExE=E, X x E = (tr(X)E — X). In particular, (X x X) x E =
(tr(X x X)E — X x X).

3) tr(X xY) = %(tr(X)tr(Y) — (X,Y)).

4) (X,Y,Z2)=(Y,Z2,X) =(Z,X,Y).

(5) Xo(X x X) =det(X)E, (X xX)x (X xX)=det(X)X.

(6) (X x X)x X = F(—tr(X)X x X —tr(X x X)X + (tr(X x X)tr(X) —
det(X))E).

A linear Lie group F is defined as
FP :={aecGLo(J®) | a(XoY)=aXoaY}.

The following result is proved in [I0, Lemma 2.1.2, Proposition 2.1.3]
after O. Shukuzawa and I. Yokota [7, p.3 Remark.]

Proposition 1.3. The following formulas hold.

FC = {acFf |tr(aX)=tr(X)}
= {a e GLc(J®) | det(aX) = X, aFE = E}
= {a € GLc(I®) | det(aX) = X, (aX,aY)=(X,Y)}
= {2 €GLa(TI®) | (aX,aY,aZ) = (X,Y,Z), (aX,aY) = (X,Y)}
{a € GLa(TC) | (X xY) =aX x aY}.

Let us define

&1 3 T2
._7::{ T3 & 1 |£Z’ER,$¢€@}
T2 T1 &3

and the complex conjugation 7 with respect to J in JC. Puto e GLC(jC) :

&1 w3 T &1 —x3 T2
olzzs & o] =|-7T3 & T
T2 T1 &3 -T2 T1 &3

Then o € FC because of det(cX) = X and ¢F = E. And o satisfies 0% = 1.
Then 7o induce involutive automorphism 7o of FiC : 7o(a) = roaot, a €



Ff, and so let us define the R-linear space Jlas gt = (jc)m. Then an
element X € J! has a form:

&1 V—1lzz =173
X =|v-lz3 &2 T , &G eERx; €.
V=1 T &3

If X; € JC, i=1,2 satisfies 70(X;) = X;, then 70(X1 0 Xo) = 70(X) 0
To(X2) = X7 0 X5. Thus J?' is closed under the Jordan product X oY with
the identity £ = diag(1,1,1) of Jordan product. And for all X,Y,Z € J!,
the trace tr(X) € R, the inner pruduct (X,Y) € R, the Freudental product
X xY € JY (X,Y,2) := (X,Y x Z) € R, the determinant det(X) =
$(X,X x X) € R. Then J' satisfies all formulas of Proposition 1.2. Let us
define a linear Lie group Fjy(_o) as

Fy—g0) :==f{a € GLr(J") | a(X oY) =aX oaY} = (EL)™| Tt

InJ 1, we use the following notations:

100 000 00 0
Ei:=(00 0|, Fa:=|0 1 0], E:=|00 0],
000 000 00 1
000 0 0 —Iz
Fiz):=10 0 z|, ()= 0o o0 0 |,
07 0 V=lz 0 0

0 vV—1lx 0
Fl(z):=|v=1z 0 0
0 0 0

For all X € J, we can express X = S°_ (&E; + F} (), & € R,z; € Q.
Put €(1) := 1, ¢(2) := —1, €¢(3) := —1. Then the table of the Freudenthal
product among them are given as follows:

E; x E; =0, E; X Eiy1 = $E; 40,
w1 { Bix Fl@) = —3F (@), Eix Fj(x) =0 (i #]),

Fl(z) x Fl(y) = —ﬁ(i)(m{)Eu

Flo(x) x Flyy(y) = —e(i) 3 F (79)

where indices are counted modulo 3. For all X = Zg’:l(&Ei + Fl(zy)),



Y = Z§:1(niEi + Fl(y;)) € J%, by direct calculation, we have

Y)= Z? 1(§znz + €(i)2(wi, yi)),
) = 515253 + 2Re((z122)x3) — S5y €(i)&i(wi, m5),
X = Ez:l((£2+lfz+2 — (i) (z, 7)) B;
+F (—e(i)Ti1Tivs — &imi)),

(X,
(1.2) 31( x

where indices are counted modulo 3. For all X = Zle(&Ei +Fx:)) € T,
we denote (X)g, := &, (X)p1 := ;.

Theorem 1.4. The following formulas hold.

Fy—g0) = {a € Fy_g) | tr(aX) =tr(X)}
= {aeGLg(JY) | det(aX) =X, aE =E}
{o € GLg(JY) | det(aX) = X, (aX,aY) = (X,Y)}
{a € GLr(TY)|(aX,aY,aZ) = (X,Y, Z),(aX,aY) = (X,Y)}
= {a €GLr(JY | a(X xY) =aX x aY}.

Proof. Tt follows from Fy_o0 = (Ff)™|J" and Proposition 1.3. (cf.[8]
p.18].) O

Put ¢ x(A) := AE— X. Let us define the characteristic polynomial ® x (\)
of X € J! as
O x(N) :=det(px(A)) = det(AE — X).

And a characteristic root of X € J' is a solution of ®x(\) =0 in C.

Proposition 1.5. The following assertions hold.

(1) @x(\) = A3 — tr(X)A2 + tr(X x X)X — det(X). In particular the
polynomial ®y(X) is a R-coefficient polynomial of A with degree 3.

(2) If Px(A) = (A= A)A = X)(A = A3), N\ € C, then tr(X) = A\ +
Ao + /\3,tr(X X X) = A A2 + Ao + /\3/\1,det(X) = A A2)3.

(3) The polynomial ®x (N) is invariant by the action of Fy_ag). In partic-
ular, the set of all characteristic roots and thier multiplicities are invariant
by the action of Fy_a).

Proof. (1) It follows from direct calculation using Proposition 1.2.

(2) Tt follows from (1).

(3) det(AE — aX) = det(a(A\E — X)) = det(\E — X) for all a € Fy_q)
by Theorem 1.4. ]



Let A, B, C be sets. A= B]]C means A= BUC and BNC ={ in
this paper. We define hyperbolic planes and null cones.

H = {XeTJ' | X xX=0,tr(X)=1},

HT = (XeJ' | X xX=0,tr(X) =1,(X)g, >1},
H = {XeJ' | XxX=01t(X)=1,(X)g <0},
N = {(XeJ' | X#0,X x X =0,tr(X) =0},
Nt = (XeJ | X xX =0,tr(X)=0,(X)g >0},
N~ = {(XeJ' | X xX=0,tr(X)=0,(X)g <0},
N = NJJ{0} ={X € J"| X x X = 0,tz(X) = 0}

We denote Ny := Ey — Ey+ F} (1) and Ny := —F; + Ey+ FJ(1). Using (1.1),
FE, € 7‘[+, Ey,Es5€ H™, Ny € N and Ny eN.

Proposition 1.6. The following assertions hold.
() H=HT]]H".
2) N = NFIN .
(3) The group Fy_s0) acts on H, N, N.

Proof. (1) HtNH~ = () is obvious. Take X = Z§:1(£iEi+Fil($i)) € H. By
(1.2), 0= (XxX)g, =&& + (z2,22) and 0 = (X x X)E3 =& &+ (23, 3).
Therefore &1 (&2 + &3) = —(x2,x2) — (x3,23) < 0. Hence (X)g, = & <0
or o +63 < 0. If & +& <0, then (X)g, =& =1-(&+8) > 1by
tr(X) =& + & + &3. Thus (1) follows.

(2) NT NN~ =0 is obvious. Suppose that X € N satisfies (X)g, = 0.
By tr(X) = 0, we can express X = {Fy —£E3—I—Z§:1 Fl(x;), €€R,z; €0.
Then by (1.2), 0 = (X x X)g, = —€2 — (z1,71) <0and 0 = (X x X)g, =
(x5, 23) >0 (i = 2,3). Therefore { =0, x; =0 (1 =1,2,3) so that X =0. It
contradicts with X # 0. Hence (2) follows.

(3) The group Fy_sg) acts on H, N, N by Theorem 1.4. O

For all X € J', put
Vx :={aX x X +bX +cE | a,b,c € R}

which is called the minimal subspace of X in J', because Vy is closed under
the Freudenthal product by Proposition 1.2 (2)(5)(6). For A\; € R, let us



define the following elements in Vy:

eI
Wi = —px(n) + SO g gy
= X—(MiExp, + tlV(X)f_M(E — Ex),)).

If tr(px (M) X px (A1) #0, Ex x, and Wx ), are well-defined.

Proposition 1.7. Assume that A1 is a characteristic root of X in R. Then
the following assertions hold.

(1) (px (A1) X ox (A1) x (ex (A1) X ex (A1) =0

(2) tr(ox (M) x ox (M) = Py (A1) = (FFPx) (M)

(3) If A1 is a characteristic root of X in R of multiplicity 1, then
tr(ox (A1) x @x(A1)) # 0. Furthermore, Ex x, € H=HT[[H .

Proof (1) Since A1 is a characteristic root, det(px (A1)) = 0. By Proposition
1.2(5), (px (A1) X px (A1) x (px (A1) x px (A1) = det(px (M1))px (A1) = 0.
(2) By Proposition 1.2(2), Proposition 1.5(1) and direct calculation,
tr(px (M) X ox (A1) = 302 — 2tr(X)A\; + tr(X x X) = @ (\1).
(3) Since A; is a characteristic root of multiplicity 1, 0 # @’ (A1)
tr(px (A1) X px(A1)). Using (1), tl"(tr(gpx(,\l)lxspx(h))wx(/\l) X px(M)) =
and Proposition 1.6(1), we obtain Ex y, € H=HT[[H".

ol

Proposition 1.8. Assume that X € J' has a characteristic root A\ of
X in R of multiplicity 1 and o € Fy(—20)- Then Eox, and Waox \, are
well-defined. Furthermore,

abxy, = Eax )y, aWxa, = Wax a-

Proof. By Proposition 1.5(3), «X € J' has a characteristic root A\; € R of
multiplicity 1. By Proposition 1.7(3), tr(vax (A1) X wax(A1)) # 0, so that
Eox\, and Wyx y, are well-defined. Then the last equations follow from
Theorem 1.4. O

Let us define the sublinear space (J1)o := {X € J!| tr(X) = 0} in J!
and the R-linear map p: J' — (J')o ; p(X) := X — %tr(X)E. By Theorem
L4, a(p(X)) = p(aX) for all a € Fy_s).



Proposition 1.9. Assume X € JY has a characteristic root \; in R of
multiplicity 3. The following assertions hold.

(1) ®px)(p) = p*. In particular, tr(p(X)) = 0, tr(p(X) x p(X)) = 0,
det(p(X)) = 0.

(2) If p(X) x p(X) # 0, then p(X) x p(X) € N.

Proof. (1) By Proposition 1.5(2), we get (A — +tr(

X))? ()\) = det((\—
r(X))E — p(X)) = ®px)(A — 2tr(X)). Hence cf)p
) =

3 and so by

Il =

Proposition 1.5(1), 0 = tr(p(X)) = tr(p(X) x p(X
(2) By (1), det(p(X)) = 0 and tr(p(X) x p(X sing Proposition

1.2(5), (p(X) x p(X)) x (p(X) x p(X)) = det(p(X))p(X) = 0. Hence p(X) x
p(X) € N follows. O

=9
x) (1) = p
det(p(X)).
0. Us
)=20

Main Theorem. Fy_og)-orbits on Tt are classified as follows.

(I) Assume that X € J' admits the characteristic roots Ay > Ag > As.
Then there exists the unique i € {1,2,3} such that H* NVy = {Ex,} and
H™NVx = {Ex x> Exa.} wherei, i+ 1, i+ 2 are counted modulo 3.
In this case, X can be transformed to one of the following canonical forms
by Fy(—20)-

Cases The canonical forms of X
L. Exy, € HT  diag(A1, A, A3)
2. EX,)\Q eHT diag()\g, A3, )\1)

3. EX7)\3 eHT diag()\g,/\l,)\g)

(IT) Assume that X € J' admits the characteristic roots \y € R, p &
vV—1q (¢ > 0). Then X can be transformed to the following canonical form

by Fy—20)-

the characteristic roots of X  The canonical form of X

P vV—1g 0
4. M1 eR, pE+v/—1q (¢ > 0) v—1q P 0
0 0 A1

(III) Assume that X € J' admits the characteristic roots A1 of multi-
plicity 1 and Ay of multiplicity 2. Then Wx \, € N. In this case, X can be
transformed to one of the following canonical forms by Fy_ag).



Cases The canonical form of X

5. WX,)\l =0, EX,)\1 c€HT diag()\l,)\g,)\g)
6. WX7>\1 =0, EX,)q e H™ diag(/\Q,/\Q,)\l)

Ml Vo1 0

7. WX7)\1€N+ \/—_1 A—1 0
0 0 A1

-1 /-1 0

8. WX7>\1€./\/’_ V-1 X+1 0
0 0 A1

(IV) Assume that X € J' admits the characteristic oot of multiplicity
3. Then X can be transformed to one of the following canonical forms by

Fy(—20)-

Cases The canonical form of X
9. p(X)=0 str(X)E
$tr(X) +1 V=1 0
10. p(X) e Nt V-1 tr(X) -1 0 )
(X)

t

o
Wl
=]

0
11. p(X) eN™ V-1 tr(X) +1 0
0 tr(X)

o
Wl

12. p(X) ¢ N

0
V-1 1 +tr(X)

(V) By Fy—20), the above canonical forms cannot be transformed from
each other.

2 Generalized spheres and Hyperbolic planes.

Let {§ := {X € Endc(JC) | exp(tX) € FF,t € C} be the Lie algebra of
FF. The following notations are used in this paper:

0O 0 O 0 0 —a 0 a O
A(@):=={0 0 a], A2(a):=10 0 0 |, A3(a):=[-a 0 O
0 —a O a 0 O 0 0

where a € OC. Then A;(a) € Endc(J°) is defined as A4;(a)X := A;(a)X —
XAi(a), X € JC Andd§ = {D c{§ | DE, =0, i =1,2,3}, i€ :=



{AZ(CL) ’ a € @C} Let f4(_20) = {X S EndR(jl) ‘ exp(tX) S F4(_20),t S
R} be the Lie algebra of Fy_o).

Proposition 2.1. The following assertions hold.

(1) §§ = oS @ﬁ?@ﬁg@ﬁg.

(2) f4( 20) (f4 Jro = (ag)m@(ﬁ?) @(~2C) oD (U ??) . Here (DE)
{Q € (f4 )ro | DE; =0, i =1,2,3}, (ul Jro = {Al(a)| a € 0O}, (u ZC)TU =
{A;(vV-1a)| a € O} (i = 2,3).

Proof. (1) cf.[2]. (2) It follows from direct calculations. O

For t € R, let us define elements of Fy_yg) as f1(t) := e (tAl( )) and
Bs(t) = exp(tAs(v/—1)). Put et i) = 3700 L (tA; ()" re (j,r) €
{(1,1),(3,4/—1)}. By direct calculation,

1 0 0
M = [0 cost sint ,
0 —sint cost

cosht v/—1sinht 0
etAs(V=1) — —+/—1sinht cosht 0].
0 0 1

Let X € J' and (j,r) € {(1,1),(3,v/=1)}. By direct calculation, we get
4 (A1) X ) et A (1) :NAj(r)(( et4i(r) X)e=tA4i (M) and (04 () X)e=0A4i (") =
X. Now %Bj(t)X = A;(r)B;(t)X and $;(0)X = X. By the uniqueness of
ordinary differential equations, we obtain

Bi(t) = (0 X)),

In particular, put Y := 81 (t)(3X2°_, (& E; + F}(x;))). Then

(Y)El = &,

Y)g, = % + &% cos 2t + Re(x1) sin 2t,
51 Y)g, = % — 525&" cos 2t — Re(x1) sin 2t,
(2.1) (Y)Fll = Im(z1) + Re(x) cos 2t — 255 53 sin 2t,

1 = XI9COSt — T3sIn

(Y)F2 t 3 i t7

Y)m1 = x3cost+ Tysint.

V) = a3

Put Y := B3(t) (X (& E;s + F}(x;))). Then
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( (V)e, = % + % cosh 2t — Re(x3) sinh 2t,
Y)e, = &%& - % cosh 2t 4+ Re(z3) sinh 2t,
(2‘2) (Y)Ea = &3, o
(Y)p = aicosht+Tgsinht,
(Y)pp = a2coshi+ Tysinht,
[ V) = Im(x3) + Re(xs) cosh 2t — % sinh 2t.

Let us define the subgroup Dy in SO(8)*3 and the group homomorphism
p: Dg— SO(8) as

Dy = {(a1,02,03) € SO8)*? | (anz)(azy) = a3(Ty), =,y € O},
plar, az,a3) = aq.
Lemma 2.2. (Y.Mastushima)[5, Lemma 2, Lemma 3]. cf.[9, Lemma 5.3,
Lemma 5.4].
Assume that there exists (a1, az,a3) € O(8)*3 such that

(ax)(it1y) = aig2(TY), =,y €O

where i, i + 1, i + 2 are counted modulo 3. Then the following assertions
hold.

(1) (aip12)(it2y) = ai(TY), 2,y € O.
(2) a; € SO(8) for all i € {1,2,3}.

Let us define the subgroup of Fy_sg) as
Dy :={a € Fy_g) | il = E;, i=1,2,3},

and the mapping ¢ : Dy — GLg(J") as

3 3

plar,ag,03) (D (GE + Fl (1) = Y (GEi + Fl (ciwy).

i=1 i=1

Proposition 2.3. The following assertions hold.
(1) p is a group homomorphism Dy onto SO(8).
(2) ¢ is a group isomorphism D4 onto Dy.

Proof. Tt can be similarly proved as [5, Theorem 1]. cf.[9, Proposition
5.7,5.9]. 0
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Hereafter, we identify Dy with D4 via ¢ in this paper.
Let &, (TY2m,1, (T')2k; —1 be subspaces of J' defined as

& = {¢E|€eR),
(TY2m,1 = {XeJ'|2E x X =X},
(TY2p, -1 = {XeJ"| 2B x X =-X}.

Then by (1.1), (T')2p,1 = {{(Eis1 + Ei2) | € R} = {((E — E;)| £ € R},
(IY2p,—1 = {€(Bix1 — Eiy2) + FL(z) | £ € R, x € O} where i,i+ 1,i + 2
are counted modulo 3. Next, we define generalized spheres and null cones.
For r > 0,

ST(E;r) = {W e (T 2m 1 | (WW) =17},
S™(Bir) = AW € (T 2m—1 | W, W) = =17},
N(E) = {W e (T 2p,1 | W #0, (W,W) =0}

Since the inner product over (J')op, —1 is positive definite, S™(Ey;r) =
N(Ey) = 0. Moreover, for i = 2,3, we put

SH(Eir) = {(WeSHE;r) | (W)g >0},

ST(E;r) = {WeSH(E;r)| (W)g, <0},
Ni(E;) = AW eN(E) | (W)g, >0},
N_(E;) {(WeN(E) | (W)g <0}

Lemma 2.4. Let X be a set and a group G acts on X. Assume that there are
subsets X; C X and elements v; € X which satisfy the following conditions
(1)-(iv), where I is an index set and i,j € I:

(i) X = Ujer X, (ii) v; € X, (iii) Og(’L)i) #* Og(’Uj) xRN

(IV) X; C O(;(Ui).
Then X; = Og(v;) for alli € I.

Proof. Since G acts on X, Og(v;) C X. Now take = € Og(v;). Since x €
Oc(vi) C X = Ujer Xy, there exists j € I such that 2 € X;. By (iv), = €
X; C Og(v;). Then i = j by (iii). Therefore z € X;, so that Og(v;) C X;.
Next by (iv), X; C Og(v;). Thus X; = Og(v;). O

For Y € J', the inner product By on J! is defined as By (X1, Xs) =
(X17X27Y)7 XZ € \71'

12



Proposition 2.5. For Yy, Y, € J%, if By, (i = 1,2) have different signatures
then Opy ) (Y1) # OF,_y, (Y2). In particular:

(1) OF4(720) (Er) # OF4(720) (E2) = OF4(720) (E3) :

(2) OF4(720) (El — EQ) 75 0F4(720)(—E1 + Eg)

Proof. Suppose that there exists a € Fy_sg) such that a¥; = Ys. Using The-
orem 1.4, By1 (Xl,Xg) = (Xl,XQ,Yl) = (aXl, an, aYl) = BYZ(OéXl,OéXQ).
Therefore inner products By, and By, have the same signatures. This con-
tradicts with the assumption. Thus O, _,, (Y1) # Op,_,, (Y2). Then we

have the table of signatures: for X = 322 (& E; + Fl(z;)) € J*,

YeJgl By (X, X) types of signature
Ey a3 — (21, 71) (+=1-=09)
E;3 §1&2 + (23, 23) (+=9,—-=1)

Ei —Ey  && — &8 — (x1,21) — (w2, 22) (+=2,—=18)
—E1+ By =&+ 8686 + (x1,21) + (22,22) (+=18,— = 2)
Therefore Op, ) (E1) # OF,_s0)(E3), OFy_s) (E1—E2) # OFy 0 (—E1+

Ey). Next, by (2.1), f1(5)Es = Ea, so that Op, _,, (E2) = Op,_,, (E3).
Hence the assertion follows. O

Proposition 2.6. The following assertions hold.
(1) If there exists Xo € (J')o such that Xgx Xo = N; for some i € {1,2},
then X() X (XO X X()) =0.
(2) {Xo € (T")o | Xox Xo=N1}=0.
(3) {XO c (jl)o ‘ X() X X() = Ng}
— {—rNo+ Fl(2) + F}(@)| r € R,w € O, x| = 1}.

(4) OF4(720) (N1) # 0F4(,20) (N2).

Proof. (1) Since Xo € (J1)o, tr(Xo x Xo) = tr(NN;) = 0 and det(X()Xo =
(Xo x Xo) x (Xo x Xo) = N; x N; = 0 by Proposition 1.2(5), we have
tr(Xo) = tr(Xo x Xo) = det(Xp) = 0. Thus X x (Xo x Xo) = 0 follows from
Proposition 1.2(6).

(2) Set P = {Xg € (J')o | Xo x Xo = N1}. Suppose that there exists
Xo =30 | (riE;+ F}(x;)) € P. Then by (1) and (1.1), 0 = X x (Xox Xg) =
Xox Ny = —BE+3E+ (-5 +2+(1,23)) B3+ s Fl (—21 —T3) — 3 F5 (v2+
T7) — $F4(r3). Therefore r5 = 0. However, 1 = (N1)p, = (Xo x Xo)p, =
re - 0 — (x1,21) = —(z1,21) < 0 by (1.2). It is a contradiction. Hence
{Xo € (J"0 | Xo x Xo=N1}=0.
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(3) Set P, = {XO S (jl)() ’ Xox Xy = Ng} and P, = {—TNQ +F11(x) +
Fy(T) | r € R,z € O,|z| = 1}. Take Xo = .o, (r:E; + F(x;)) € P,. Then
by (1) and (1.1), 0= X() X (X() X X()) = X() X N2 = %El — %EQ + (—%2 +
4 (1,23))Es + 3 Fl (1 —%2) — $F5 (—22+%1) — $F4 (r3). Therefore r3 = 0
and x9 = T1. Next, by (12), No = Xg x Xg = —($1,$1)E1 + ($1,ZE1)E2 +
(rire + (w3, 23)) B3 + FH(—(T3 4+ r1)z1) + F3 (T3 — r2)71) + F3 (2171). Since
(N2)g, = —1 and (Ng)Ff = (NQ)F21 =0, we get |z1| =1, z3 = rog = —11.
Therefore Xg = —r1 Ny + F{(z1) + F3 (%1) where |z1| = 1. Hence X, € P»
and so Py C P5. Conversely, take Xg = —rNa + F(z) + F)(T) € P, where
r € R, x € O and |z| = 1. By direct calculation, Xy € Py, so that P, C P;.
Hence P1 = Pg.

(4) Suppose that there exists a € Fy(—o0) such that aN; = Ny. Then
0 =a({Xoe (T | Xox Xo=Ni})={Yoe(To|YoxYy=No}#0
by Theorem 1.4, (2) and (3). It is a contradiction, as required. O

Lemma 2.7. Let X = 30 (&E; + FMNx;)) € T and j € {1,2,3}. Then
there exists p(aq,as,a3) € Dy such that o(ai, a9, a3)X = Z;?’:l &E; +
Fjl(\xj\) +Fj1+1(aj+1a;j+1) +Fj1+2(aj+2xj+2) where §,7+1,7+2 are counted
modulo 3.

Proof. There exists o;; € SO(8) such that a;2; = |z;|. By Proposition 2.3(1),
there exists (o, ajy1,542) € D, such that ploy, ajp1,aj42) = aj. Us-
ing Lemma 2.2(1), we have (aj,az,a3) € Dy. Then by Proposition 2.3(2),
p(ag, a9, a) € Dy satisfies the assertion. O

Proposition 2.8. The following assertions hold.
(1) S+(E1;T) = O(F4(—2O))E1 (%(EQ — Eg))
(2) S*(Bs;r) = SL(Es;r) [1 ST (Esir).
(3) SE(Esi7) = Oty o), (5B — B2))
#* O(F4(,20))E3 (%(—El + Eg)) = S—_i_(Eg; 7‘).
(4) S™(E3:7) = O(ry_y0), (F3(
(5) N(E3) = Ny (E3) [IN-(E3).
(6) N4 (E3) = Oy _p))my, (N1) # O(Fy o), (N2) = N_(E3).
Proof. For all W € (J')2p,—1 and a € (Fy_s))E5,, 2E; X aW = «(2E; x
W) = —W and (aW,aW) = (W, W) by Theorem 1.4. In particular,
(Fi(—20)) B, acts on St (Ey;7). And (Fy_s0)) B, acts on ST (Es;7), S™(E3;7)

).
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and N(Eg) By (2.1) and (2.2), {,Bl(t)‘ t e R} C (F4(_20))E1 and {,Bg(t)‘ t €
R} C (Fy—20)) Es-

(1) Take W € S*(Ey;r). By Lemma 2.7, there exists oy € Dy C
(Fy(—20)) B, such that agW = &(E; — E3) + F{(rg) where r9 > 0. Next by
(2.1), (B1(t)aoW ) g, = £ cos 2t + rosin 2t = % cos(2t + tg) for some ¢y € R.
Then B1(—3to)aoW = %(E2 — E3). Hence (1) follows.

(2) S{(E3;r) N ST (Es;r) = 0 is obvious. Suppose that there exists
W € S*(Es;r) such that (W)g, = 0. Then we can write W = Fj(z) €
ST(Es3;r), so that (W, W) = —2(z,z) < 0 by (1.2). It contradicts with
(W, W) =r%>0. Thus (W)g, # 0 and (2) follows.

(3) We use Lemma 2.4. We know that (Fy_s0))E; acts on ST (E3;7),
and so we consider that X = S*(Es;7), G = (Fy_20))E;» X1 = SI(E3;?"),
Xo = ST (FE3;7), v1 = %(El — FE5) and vy = %(—El + E5) in Lemma 2.4.
The first, the condition (i) follows from (2). The second, the condition (ii)
follows from direct calculations. The third, we notice O(p, By (e%(El -
Ey)) C 0F4(720)(6%(E1 — E»)) where € = 1. Using Proposition 2.5(2), we
have 0F4(720)(%(E1 Ey)) # O, 20)(\/—( E\ + E5)). Thus the condition
(iii) follows. We will show the condition (iv).

(Case 1) Take W € S} (Es3;7). By Lemma 2.7, there exists ag € Dy C
(Fy(—20))B5 such that agW = £(Ey — Ey) + F3(ro) where £ > 0 and r¢ > 0.
Using € > 0 and 2(¢2 —r2) = r?, B3(3 log(§+ro))a0W \/E(El — E5). Hence
W € O(F4(,20))E3(\/—(E1 )), and so S (E‘g7 ) C O(F4(720))
Ey)).

(Case 2) Take W € S*(Es;r). By Lemma 2.7, there exists ag € Dy C
(Fy(—20))B5 such that agW = £(Ey — Ey) + F3(ro) where £ < 0 and 79 > 0.
Using ¢ < 0 and 2(¢2—r3) = r?, B3(% log(5+m))a0W = %(—El-l-Eg). Hence
W e O(F4(,20))E3 (%(—El +E2)). and so ST (E3; T‘) C O(F4(,20))E3 (%(—El-F
Ey)).

Hence the condition (iv) follows. Thus (3) follows from Lemma 2.4.

(4) Take W € S (Es;r). By Lemma 2.7, there exists ag € Dy C
(Fy(—20))E5 such that oW = §(E1 E») + Fi(ro) where ro > 0 and
(W, W) < 0. Using 2(¢2 —r2) = —r?, B5(% log(:ngg))aOW = Fgl(%) Hence
S (Es3;r) = O(FM,QO))ES(F;(%))-

(5) N (E3)NN_(E3) = () is obvious. Suppose that there exists (0 #)W €
N (E3) such that (W)g, = 0. Then we can express W = Fj(z) € N(E3).
Therefore by (1.2), 0 = (W, W) = —2(z,z) so that x = 0. It contradicts
with W # 0. Thus (W)g, # 0 and (5) follows.

Eg(%(El -
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(6) We use Lemma 2.4. We know that (Fy_20))E; acts on N(E3),
and so we consider that X = N(E3), G = (Fy—2))E;, X1 = Ni(E3),
Xy = N_(E3), v1 = Ny and v9 = Ny in Lemma 2.4. The first, the condi-
tion (i) follows from (5). The second, the condition (ii) follows from direct
calculations. The third, we notice O(p, ), (Ni) € Oy, (Ni) where
i = 1,2. Using Proposition 2.6(4), the condition (iii) follows. We will show
the condition (iv).

(Case 1) Take W € Ny (E3). By Lemma 2.7, there exists ag € Dy C
(Fy(—20))E5 such that agW = {(Ey — Eg) + Fi(rg) where £ > 0 and ro >
0. Using £ > 0 and & —rZ = 0, ,83( log&)ayW = Nj. Therefore W €
O(Fy(_0))my (V1) 80 that N (E3) C O(r, _yg))m, (V1)-

(Case ) Take W € N_(F3). By Lemma 2.7, there exists ag € Dy C
(Fy(—20))B; such that W = ¢(Ey — Ea) 4+ F3(ro) where £ < 0 and o > 0.
Using ¢ < 0 and &2 — ¢ = 0, B3(51og|¢])agW = Na. Therefore W €
O(F4(,20))E3 (N3), so that N_(E3) C O(F4(—2O))E3 (N3).

Hence the condition (iv) follows. Thus (6) follows from Lemma 2.4. [

Let us define J1(2; E3) := {1 By + &Ey+ Fi(z) € J' | & € R,z € O

Lemma 2.9. The following assertions hold.

(1) Assume X € J'. Then there exists oo € Fy(_sg) such that (aX)p, =0
and (aX)p, = (X)g, -

(2) Assume X € J! satisfies X x X = 0. Then there exists a €
(Fy(—20))B, such that aX € J'(2; E3) and (aX)p, = (X)p, .

(3) Assume X € H. Then there exists a € Fy_g0) such that aX =
H(E— E3)+ W for some W € S*(Ej; %)), and (aX)g, = (X)g,-

(4) Assume X € N. Then there exists a € Fy_gq) such that aX € N(E3)
and (aX)p, = (X)g,-

Proof. (1) Take X = Y22 (&FE; + Fl(z;)) € J Put (JY)_, = {X €
TV 2B x X =0, (Er, X) = 0. By (111), (V) = {F} (w2)+ F} (ws) | 2 €
O}. Then X can be expressed by

X = E + (E2_E3)+F11(331))

+ (Fy(x2) + F?)l(m?)))) €& o (j1)2E1,1 D (j1)2E1,—1 ® (JTY 0.

(E—E1)+ (

S+ &3 §2— &3
2 2

For all ag € (Fy(—20))E,, by Theorem 1.4, (g X)p, = (X)p,, ao(&;&” (E—
E1)) = 258(E—E1), ag(JY) -0 C (T)—e and ag(T V)21 C (TY)28, -1
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By Proposition 2.8(1), there exists a € (Fy_30))E, such that a(%(Eg —
E3) + F}(x1)) = r(FEy — E3) where r > 0. Then, since (J')_, is invariant
over the (Fy_o0)) g, -action, a(Fy (z2) + Fy (x3)) = F3 (y2) + F3 (y3) for some
y; € Q. Therefore

aX =B+ ( —1)E3 + Fy (y2) + F3 (y3).

+7)Es + (

§2+ &3 §2+&3
2 2

Hence (1) follows.

(2) By (1), there exists ag € (Fy(—20))E, such that apX = {1 Ey +r2Fa +
r3E3+F} (y2)+F3 (y3) wherer; € R,y; € O and (X) g, = (X)p, = &1. Now
0= ap(X xX) = apX xapX by Theorem 1.4. Since 0 = (apX X o X ), =
rors by (1.2), we get (i) ro =0 or (i) r3 = 0.

In Case (i) 72 = 0, then 0 = (o X X9 X ) g, = (y3,y3) by (1.2). Therefore
y3 = 0. Next step, by (2.1), $1(5) € (Fy—20)) £, 80 that £1(5)aX = &1 By +
3B + F3 (12) € T (2 B3) and (B1(3)aX)p, =& = (X)p,-

In Case (ii) 73 = 0, then 0 = (X x X)g, = (y2,92) by (1.2).
Therefore yo = 0, so that agX = & By + roF2 + Fi(y3) € JH(2; F3) and
(0 X)p, =& = (X)p,

Hence (2) follows form above Case (i) and Case (ii).

(3) By (2), there exists ap € (Fy(—20))E, such that g X = {1 Fy +rEy +

Fl(z) € jl( Es). Put W = 512T(E1 — E») + Fi(z). By Theorem 1.4,
1 = tr(X) = tr(aX) = & + r, so that apX = 61%(El + Ey) + W =
%(E E3)+ W € (TY28,1 @ (TY)2gs,—1. By Theorem 1.4 and (1.2), 0 =
(a(X x X))g, = (aX x aX)g, = &1 + (z,2). Therefore (W, W) = (¢ —
r)? —2(z,2) = $((&1+7)% — 4(&r + (2,2))) = 5. Hence (3) follows.

(4) By (2), there exists ag € (Fy(—20))r, such that agX = 1 Fy +rEs +
F}(z). By Theorem 1.4, & + 7 = tr(apX) = tr(X) = 0 so that r = —¢£;.

Therefore apX € (J')2p,,—1. By Theorem 1.4 and Proposition 1.2(3), 0 =
tr(X x X) = tr(apX x apX) = 3(tr(aoX)? — (X, apX)). By tr(agX) =0,
(X, apX) = 0. Hence (4) follows. O

Proposition 2.10. Fy_s acts on HT, H™, N*, N~. Furthermore, the
following assertions hold.

( )H+ OF4( 20) (El) i OF4( 20)( ) OF4( 20) (ES) H.
(2 )N+ OF4( 20)(N1)7EOF4( 20)(N)_N_-
Proof. (1) We use Lemma 2.4. We know that Fy_sg) acts on H by Propo-

sition 1.6(3), and so we consider that X = H, G = Fy_qp, X1 = HT,
X9 =H ", v1 = E1 and vy = Fy in Lemma 2.4. The first, the condition (i)
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follows from Proposition 1.6(1). The second, the condition (ii) follows from
direct calculations. The third, the condition (iii) follow from Proposition
2.5(1). We will show the condition (iv).

(Case 1) Take X € HT. Then (X)pg, > 1. By Lemma 2.9(3), there exists
o € (Fy(—20))E, such that apX = (E— E3) + W where W € S*(Ej; %)
and (0X)p, = (X)g, > 1. Then (W)g, = (aoX)p, — 5 > 0, so that
W e S (Es; %) By Proposition 2.8(3), there exists an € (Fy_20))Es such
that oy W = %(El — E5). Therefore by Theorem 1.4, ayapX = %(El + Es) +
%(El — FE3) = Ey. Hence X € OF4(720) (E1) and so HT C OF4(720) (EY).

(Case 2) Take X € H~. Then (X)g, <0. By Lemma 2.9(3), there exists
g € (Fy—20))E, such that apX = $(E — E3) + W where W € S*(Ej; %)
and (a0X)p, = (X)g, < 0. Then (W), = (aX)p, — 3 < 0 so that
W e ST (Fs; %) By Proposition 2.8(3), there exists ay € (Fy—20))E; such
that oy W = %(—El + E»). Therefore by Theorem 1.4, ajap X = %(E1+E2)+
%(—El + E3) = Es. Hence X € OF4(720) (E2) and so H™ C 0F4(720)(E2).

Therefore the condition (iv) follows. Thus (1) follows from Lemma 2.4.

(2) We use Lemma 2.4. We know that Fy_,q) acts on N by Proposition
1.6(3), and so we consider that X = N, G = Fy_9), X1 = N*, X = N7,
vy = N;p and vy = Ny in Lemma 2.4. The first, the condition (i) follows
from Proposition 1.6(2). The second, the condition (ii) follows from direct
calculations. The third, the condition (iii) follows from Proposition 2.6(4) .
We will show the condition (iv).

(Case 1) Take X € N*. Then (X)g, > 0. By Lemma 2.9(4), there
exists ag € (Fy—20))E, such that X = W € N(E3) and (aoX)p, =
(X)g, > 0. Therefore apX € N, (Es3). By Proposition 2.8(6), there exists
a1 € (Fy(—20))p; such that ajapX = Ni. Hence X € OF4(720) (N1) and so
Nt C 0F4(720)(N1)'

(Case 2) Take X € H™. Then (X)g, < 0. By Lemma 2.9(4), there
exists ap € (Fy_20))E, such that aoX = W € N(E3) and (X)p, =
(X)g, < 0. Therefore apX € N_(E3). By Proposition 2.8(6), there exists
a1 € (Fy_20))E; such that ajapX = Na. Therefore X € OF, (s (N3) so
that N~ C OF4<720) (Ng)

Hence the condition (iv) follows. Thus (2) follows from Lemma 2.4. [

Remark (1) Let us define

rno —V/olm —V/o1T
Herm'(3,0) := {| vV—-121 T9 T3 | ri € R, z; € O}
Vol 55 T3 r3
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and
Fy:={a € GLg(Herm'(3,0)) | a(X oY) = aX caY}

where X oY = L(XY +YX), (X,Y) = tr(X oY) and E = diag(1,1,1)
for X,Y € Herm'(3,0). F.R. Harvey [4, page 296-297] mentions that F} is
considered to be a simple Lie group of Fy_sg) and F;/Spin(9) ~ Op; (Ep) =
{A € Herm/(3,0) [Ac A=A tr( ) = 1}, which is {4 € Herm'(3,0)| A x
A =0, tr(A) = 1} with Ax B := (240 B—tr(A)B—tr(B) A+ (tr(A)tr(B)—
(A,B))E) for A,B € Herm'(3,©).
rL T3 T2
Recall 7 .= {|Z3 72 x1| | & € R,x; € O} and note that Fy :=
Tz T1 T3
{a € GLgr(J) | (X oY) = aX oaY} is the compact type of Fy_s59).
Now, there exists a Jordan algebra isomorphism ® : J — Herm/(3,0);
®(A) = diag(—v/—1,1,1) A diag(—+/—1,1,1)7%, so that F} is the compact
type of Fy_52)-
(2) By Proposition 2.10(1) and Proposition 1.6(1), we obtain

{X S jl ’ XxX=0,tr(X) = 1} = OF4(720) (El) HOF4(720) (E3).

3 The characteristic root of multiplicity 1

For X € J*, let us define Ly € Endgr(J!) as LYY := X xY. By Proposition
1.2(1)(4), L% is symmetric; (LYY, Z) = (Y,LxZ), Y,Z € J'. Assume that
X € J! has a characteristic root A\; € R of multiplicity 1. By Proposition
1.7(3), the minimal subspace Vx has the elements Ex y, € H = HT[[H™
and Wy . Let us define the subspaces of Vx as

Exxn = {rExy |reR},
(VX)2EX7)\1,1 = {Y € VX | L2E X Y = 2EX7)\1 XY = Y},
(VX)QEX)\I,—I = {Y € VX ’ L2EX A Y - 2EX7)\1 X Y = —Y}7

and denote Ay y, = —3(3)\3 — 2tr(X) A1 + tr(X)? — 2(X, X)).

Proposition 3.1. Assume that X € J' has a characteristic root A\; in R
of multiplicity 1. Then the following assertions hold.

(1) E—-Ex € (VX)zEX,,\ph Wx o € (VX)2EX,,\17—1'

(2) (1) If Wxa, # 0, then dimVx = 3, Vx = &\, @ (VX)QEX»\IJ &)
(Vx)2Ex ,,,—1 and

tl“(X) -\

X =MEx) + (£ — EX,M) + Wix -
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(ii) If WX,Al =0, then dimVx =2, Vx = 5)\1 D (VX)2EX,A171 and

tl“(X) -\

X:)\lEX7)\1—|— (E—Ex)\l).

In particular,

(Vx)2ex a0 ={r(E—Exx) | r €R}Y, (Vx)opy,, -1 = {rWxx, | r € R}

Furthermore, this decomposition is an orthogonal decomposition and

(EX,)\UEX,)\l) = 17 (E - EX,)\NE - EX,)\l) = 27 (WX7)\17WX,)\1) = AX,)\l'

(3) If Ex ., € H', then there exists a € Fy—20) such that aEx x, = E;

and
tl"(X) -\

2
where aWg,y | € (TY2m, -1 and (aWEX’AI,aWEXYM) =Ax), >0.

(4) If Exx, € H™, then there exists a € Fy_q0) such that aEx y, = E3
and

aX =\ME| + (E - El) + OéWX,)q

tr(X) -\
2

aX =ME3+ (E - Eg) + OZVVEX’A1

where aWg,y | € (TY)2m,—1 and (aWEgy, . aWgy, ) =Ax ), €R.

Proof. (1) By Proposition 1.7(3), Ex x, € H, so that Ex , x Ex , =0 and
tr(EX)\l) = 1. By Proposition 1.2(2), 2EX7)\1 X (E — EX,)\l) =F — EX,)\l'
Therefore £ — Ex », € (VX)QEXMJ. Put Z = px(\1). Using Proposition
1.2(6) and det(Z) = ®x(\1) = 0, 2Ex\, X Z = W(z x Z)x 7 =
—Z+t1(Z)(E—Ex, ). Therefore 2Ex x, xWx 5, = 2Ex 5, x (—Z+ 22 (B -
EX7)\1)) =7 — %(E — EX,)q) = _WX,)\l- Hence WX7)\1 S (VX)2EX,A17—1‘
(2) By Proposition 1.2(3) and tr(Ex,) = 1, 0 = tr(Ex, x Ex,) =
%(tr(EX,)\l)2 — (Ex i, Ex ). Therefore (Ex z,,Exy,) = 1. Using 1 =
(EX,)\laEX,)\l) = tr(EX)\l) = (E, EX)\l), we get (E_EX,)\lyE_EX,)\l) = 2,
so that ¥ — Ex )\, # 0. Note that eigenvectors with different eigenval-
ues are linearly independent. Therefore if Wx y, # 0, then Ex ), £ —
Ex , and Wx ,, is a basis of Vx because of eigenvectors of L;EX,Al and

dim Vx < 3. Since Wy, = X — (M Ex, + Z82(E — Ex ), X =

MExy + BX2M(E By + Wy, Also, if Wy, = 0, then X =
MEx )\ + W(E — Ex ). In this case, by direct calculation, X x X =
A1 (tr(X)—X1) E—E tr(X)—=XA1 2p dE=(E—-E E

2 ( X7)\1) + ( 2 ) X\ an = ( X,)q) + LX) -
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Therefore, since Vyx is generated by F, X and X x X, the minimal space Vx
is generated by Ex ), and ' — Ex ),. Hence we obtain the following table:

Wx o #0 Wxa =0
R-basis EX7>\17 E— EX,)\17 WX,)\l EX,)\17 E— EX7>\1
Vx Ex ® (Vx)2Bx 5,1 @ (Vx)2Ex -1 Ex @ (Vx)2Ex, 1
dimVyx 3 2

And (Vx)oby, 10 ={r(E— Exx) [ 7 €R}Y, (Vx)apy -1 ={rWx [ 1 €
R}. Thus (i) and (ii) follows.

Since L;EX,Al is a symmetric transformation of Vx, the eigenvectors
Ex, E—Ex ., , Wx_\, are orthogonal. And using Wx », = X — (M Ex, +
W(E — Ex,)) and direct calculation, (Wx x,,Wx,) = —%)\% +
tr(X)A1 — $tr(X)% 4+ (X, X) = Ax,,. Thus (2) follows.

(3) By Proposition 2.10(1), there exists o € Fy_g0y such that aFEx y, =
Ei, so that a(E — Ex),) = F — Ey. Since 2E; x aWx )\, = a(2Ex ), %
Wxa ) = —aWxy, by Theorem 1.4, aWx ), € (jl)gEl,_l. Therefore
aX = AN E1+3(tr(X) = M\)(E — E1) + aWx 5, where aWx x, € (T)25,,-1.
By (2) and Theorem 1.4, (aWXAl,aWXJ\l) = (WX,)\17WX,>\1) = AX,Al'
The inner product is positive definite over (J')ap, —1, so that Ay, =
(aWXAl,aWX’)\l) > 0.

(4) By Proposition 2.10(1), there exists o € Fy_g0y such that aFEx y, =
FEs3, so that a(E — EX,)\l) = FE — FEj3. Since 2F3 x aWX)\l = a(2EX7>\1 X
Wx .z, ) = —aWx y, by Theorem 1.4, aWx \, € (jl)gE_%_l. Therefore o X =
/\1E3—|—%(tr(X) — M) (E—E3)+aWx \, where alWx y, € (jl)zEg,—l- By (2)
and Theorem 1.4, (aWXAl,aWX’)\J = (WX,AU WX,)q) = AX,Al € R. |

Proposition 3.2. Assume that X € J' has a characteristic root A\; € R of

multiplicity 1. Then the following assertions hold.
(1) If Exx, € HT and Ax , > 0, then

. 1 A 1 A
X € Oy, (ding(Ar, 5 (6r(X) = M) + 4/ =575, S(00(X) = M) =/ =574).

(2) If Exx, € HT and Ax \, =0, then
. 1 1
X € Op,_y,, (diag(A1, §(tr(X) - A1), §(tr(X) —A1)))-

(3) If Exx, € H™ and Ax x, > 0, then

1 Axy, 1 Axa
X € Oy, (diag(5(6r(X) = A1) 1/ =57, S(0r(X) = M) = /=57, A)
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or

1 Axy 1 A
X € Oy, (ding(5(6r(X) = M) =/ =52, S(60(X) = M) 1/ =57 An).

(4) If AX,)q < 0, then

1

S0 = X0, + B 22l

. 1
X e OF4(,20) (dlag(§(tr(X) - )\1) 2

(5) If Ex ), € H™ and Wx x, =0, then
. 1 1
X e 0F4(720) (dlag(g(tr(X) - )‘1)7 §(tr(X) - )‘1)7 /\1))'

(6) If AX,)q =0 and VVX’)\1 75 0, then EX,)\1 € H™ and VVX’)\1 eN.
(7) If Axx, =0 and Wx , € N'T, then

.1 1

X € OF,_y, (dlag(i(tr(X) - \), §(tr(X) — A1), A1) + Nqp).
(8) If Ax x, =0 and Wx x, € N, then
.1 1

X e OF4(720) (dlag(g(tr(X) - )\1), §(tI‘(X) - )\1), )\1) + NQ)

Proof. (1) By Proposition 3.1(3), there exists ag € Fj(_s0) such that agX =
M B+ %(tr(X) — )\1)(E — El) + QOWX,)\l where aOWX,)\l S (jl)th_l and
(OZOWX,)\UOZOWX,M) = AX7)\1 > 0. Therefore OZ(]WX7)\1 S S+(E1; \/Ax)\l).
By Proposition 2.8(1), there exists a1 € (Fy_g0))r, such that ajagX =

ME) + L(tr(X) = M)(E — Ey) + /252 (B, — Bs). Hence (1) follows.

(2) By Proposition 3.1(3), there exists ag € Fy_g0) such that agX =
MED + %(tr(X) - \M)(E - Ey) + apWx », where agWx ), € (jl)QEl’_l
and (agWx x,,c0Wx x,) = Ax, = 0. Since the inner product is positive
definite over (J1)ag, -1, ®Wx., = 0. Hence apX = ME; + %(tr(X) —
A1) (E — Ey). Thus (2) follows.

(3) By Proposition 3.1(4), there exists ag € Fy_gg) such that apX =
MEs+ %(tr(X) — )\1)(E —FE3)+ aoWx n, where agWix y, € (j1)2E37_1 and
(OZOWX,)\UOZOWX,M) = AX7)\1 > 0. Therefore OZ(]WX7)\1 € S+(E3; \/Ax)\l).
By Proposition 2.8(2), we get (i) apWx, € ST(Es;\/Ax ) or (ii) W €

Si_(Eg; ‘/AX,)\l)‘

In Case (i), by Proposition 2.8(3), there exists a; € (Fj_20))E; such
that aya0X = M Es + L(tr(X) — M) (E — Es) + \/ 2529 (Ey — Ey).
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In Case (ii), by Proposition 2.8(3), there exists a; € (Fy—20))E; such

that a1 X = A Bs + L(tr(X) — M)(E — Es) + /2529 (— By + Ey).

Hence (3) follows.

(4) By Proposition 1.7(3), Exx, € HT[[H ™. Suppose Ex, € HT.
By Proposition 3.1(3), there exists a € Fy_gp) such that aX = A\ F; +
%(tr(X) — )\1)(E — El) + OéWX)\l where aWX)\l € (jl)gEh_l and AX,Al =
(aWx z,aWx ;) > 0. It contradicts with Ax y, < 0. Therefore Ex ), €
H~. By Proposition 3.1(4), there exists ag € Fj_g) such that apX =
MEs+ %(tr(X) — )\1)(E —FE3)+ aoWx n, where agWix », € (j1)2E37_1 and
(a0WX7A1,a0WX’A1) = AX,)q < 0. Therefore aOWX)\l S S_(Eg; \/ ’AX,)q ’)
By Proposition 2.8(4), there exists a3 € (Fj_20))m; such that ajaX =

M Es + L(tr(X) — \)(E — Es) + FL(/ 25211 Hence (4) follows.

(5) By Proposition 3.1(4), there exists a € Fj_y) such that aX =
MEs + 1(tr(X) — \)(E — E3). Hence (5) follows.

(6) By Proposition 1.7(3), Ex ., € HT[[H ™. Suppose Ex, € HT.
Then there exists a € Fjy_g0) such that aX = )\1E1+%(tr(X)—)\1)(E—E1)—|—
aWX)\l where aWX)\l S (jl)gEh_l. Since (aWX’)\l,aWX’)\l) = AX,Al =0
and the inner product is positive definite over (1), Er,—1, aWx y, = 0 and so
Wx a, = 0. It contradicts with W y, # 0. Therefore Ex », € H™. By Propo-
sition 3.1(4)(ii), there exists ag € Fy(_o0) such that apX = )\1E3—|—%(tr(X)—
M) (E—E3)+agWx x, where agWx x, € (T1)2ms -1, (a0Wx py, oW ay) =
Ax )y, = 0 and a9gWx y, # 0. Therefore agWx \, € N(E3). By Proposi-
tion 2.8(5)(6) and Proposition 2.10(2), N'(Es) = [T7_; O(ry_s0))s, (Ni) C
12, OFy(_y (Ni) = N. Hence by Proposition 1.6(3), Wx x, € ag !N (F3) C
ag'N = N. Thus (6) follows.

(7)(8) By (6) and Proposition 3.1(4), there exists ap € Fj_g such
that apX = A\ E3 + %(tr(X) — M)(E — E3) + aWx , where agWx y, €
(j1)2E37_1 and (QOWX’)\l,QOWX’)\l) = AX,)q = 0. Therefore CYOWX)\l S
N (E3). Using Proposition 2.10(2), if Wx , € N'F, then agWx ), € N, so
that (aoWx ., )E > 0 and agWx , € Ny(E3). Similarly if Wx ), € N7,
then agWx x, € N7, so that (agWx ,)E, <0 and agWx , € N_(E3). By
Proposition 2.8(6), if Wx x, € N'F, then there exists a1 € (Fy_g0))E; such
that aja0X = MBs + 5(tr(X) — A\)(E — E3) + Ni. And if Wy, € N,
then there exists a1 € (Fy_20))r; such that ajX = A\ E3 + $(tr(X) —
A1) (E — E3) 4+ Ny. Hence (7) and (8) follow. O
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Lemma 3.3. Assume that X € J' has a characteristic root \; € R of
multiplicity 1. If X € J' has the characteristic polynomial such that ®(\) =
A=A =)A= A3), A2, A3 € C, then Ay, = (A2 — A3)2

Proof. By Proposition 1.2(3) and Proposition 1.5(2), Ax ), = —3(3A} —
2tr(X)A\1 +tr(X)2—2(X, X)) = —2(3A2—2tr(X) A\ —tr(X)? +4tr(X x X)) =
—%(3/\% — 2(/\1 + Ao + )\3)/\1 — (/\1 + Ao + )\3)2 + 4(/\1/\2 + AaA3 + )\3/\1)) =
3(Ag = A3)? O
3 (A2 = A3)%

Lemma 3.4. For all a € Fy_s), a(Ht* NVx) = H* N Vox and o(H™ N
Vx) =H NV,x.

Proof. By Theorem 1.4, aVx = a({aX x X +bX + cE | a,b,c € R}) =
{a(aX x aX) + b(aX) + cE | a,b,c € R} = Vux. Since a is bijection
and Proposition 2.10(1), a(HT NVx) = (eHT) N (aVx) = HT N V,x and
a(’H_ﬂVX) = (a?—[‘)ﬂ(avx) =H NVyx. |

Proposition 3.5. Assume that real numbers r1, ro, r3 are different from
each other and Y = diag(r1,72,73) € J'. Then :
(1) All of characteristic roots of Y are r1, ro, r3.

(2) E; = Ey,, € Vy for alli € {1,2,3}.

(3) HTNVy = {Ey7rl} and H-NVy = {EY,T27 Ey7rg}.

(4) HT N Vay = {EBavy} and H™ N Vay = {Eavyry, Faves} for all
o< F4(_20).

(5) (Fy(—20))y = Da.

Proof. (1) Tt follows from @y (A\) = (A —71)(A — r2)(A — r3) by (1.2).
(2) By (L,1), ¢y (i) x @y (ri) = (ri = rig1)(ri — rig2) By, and tr(py (r;) X
oy (r;)) = (ri = rig1)(ri — riye) # 0. Hence E; = mwy(n) X
vy (ri) = By, € Vy.
(3) By ( ) FE1,E5, B3 € Vy, so that {CLEl + bEy + cE3 ‘ a,b,c € R} C
Vy. Since Y x Y, Y, E are diagonal matrices and Y x Y, Y, E are the
generators of Vy, V3 C {aEy + bEy + cE3 | a,b,c € R}. Therefore Vy =
{aE1 + bEy + cE3 | a,b,c € R}. Suppose that aFy + bEy + cE3 € Vy N H.
That is (aEy +bFEy+cE3) X (aFEy +bEs+cEs) = beEy+caFy+abEs = 0, and
1 =tr(aE1+bEy+cFE3) = a+b+c. Hence be = ca = ab = 0 and a+b+c = 1.
Therefore (a,b,c) = (1,0,0), (0,1,0), (0,0,1), so that HNVy = {E1, Es, Es}.
Then HT N Vy = {E1} = {Ey,,} follows from (E;)g, > 1iff i = 1. And
H™NVy ={Es, E3} = {Ey,,, Ey,,} follows from (E;)p, <0iff i =2,3.
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(4) By (3), Lemma 3.4 and Proposition 1.8, HT NVoy = a(HTNVy) =
{Eav )} and H™ N Voy = a(H™ N Vy) = {Eava Eay ..} Hence (4)
follows.

(5) If a € Dy(C Fy—90)), then oY = a2 mE) =30 rnE =Y.
Therefore a € (Fy_20))y, so that Dy C (Fy_g0))y. Conversely, suppose
that o € Fy_g) and oY =Y. By (2) and Proposition 1.8, aE; = aBy,,, =
Eoyyr;, = Eyy, = E;. Therefore a € Dy, so that (Fy_g0))y C Ds. Hence
(Fy(—20))y = Da. H

i+17

Proposition 3.6. Assume that real numbers A1, A2, A3 are different from
each other and Y; = diag(\i, Aiy1, Nis2) € J' where i, i+1, i+2 are counted
modulo 3. Then orbits Op, _,, (Y;) (i € {1,2,3}) are different orbits from
each other.

Proof. We will show that OF4(720)(Y2-) =+ OF4(720) (Yi+1). By Proposition
3.5(3), HT N W, = {Eyi,)\i} and H™ N Vy, = {Eyi,)\HN E}x’i7)\i+2}. Simi-
larly, H* N VY¢+1 = {E}/i+17>\i+1} and H™ N VY@'+1 = {E}/i+17>\i+27 EYi+1,>\i}’
Suppose there exists a € Fj_g0) such that aY; = Y. Since HT Ny, =
{Fy, } and Proposition 3.5(4), H* N Vay, = {Eav; \ } = {Fy;,, ). Hence
By, € HTNH™. It contradicts with H*NH™ = (. Hence OF, _,, (Yi) #
OF,(_s0) (Yi+1). Thus the assertion follows from moving i € {1,2,3}. O

Proposition 3.7. Assume that X € J' has the characteristic polynomial
q)()\) = ()\ — )\1)()\ — )\2)()\ — )\3) where >\z € R with )\1 > )\2 > )\3, and
i, 1+ 1, i+ 2 are counted modulo 3. Then following assertions hold.
(1) There exists the unique © € {1,2,3} such that X is transformed to
diag( i, Nit1, Aiv2) by Fy—20)-
(2) The following assertions are equivalent:
(1) X € Ory_y (diag(Ai, Ait1, Ait2))-
(ii) HYNVy = {EX,)\Z-} and H- NVx = {EX,MH, EX7>\1.+2}.
(iii) EX,)\i cHT.
(3) There exists the unique i € {1,2,3} such that HT N Vx = {Ex.,}
and H- NVx = {EX)\HN EX,AHQ}‘

Proof. (1) By (0 #)X2— A3 € R, Lemma 3.3 and Proposition 1.7(3), Ex \, €
HT[IH™ and Ax,, = 3(A2 — A3)> > 0. By Proposition 3.2(1)(3), X is
diagonable over the action of Fy_sg). And by Proposition 1.5(3), charac-
teristic roots are invariant by the action of Fjy_s). By Proposition 3.5(1),
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X can be transformed to one of diag(A;, Ait1, Air2) or diag(A;, Ait2, Ait1)
where i € {1,2,3}. Now by (2.1), B1(5)E2 = E3, Bi1(5)E3 = E» and
B1(5)E1 = Eq, so that if X is transformed to diag(A;, Ait2, Ai+1), then
B1(5)diag(Ai, Aiy2, A1) = diag(Ai, Aix1, Air2). Therefore X can be trans-
formed to diag(\;, A\i+1, \i+2) where i € {1,2,3}. Now by Proposition 3.6,
such i is unique. Hence (1) follows.

(2) (i)=-(ii) follows from Proposition 3.5(4). (ii)=>(iii) is obvious. We will
show that (iii)=-(i). By (1), there exists the unique j € {1,2,3} such that
X € Opy_y, (diag(Aj, Aj+1, Ajy2)) where j, j + 1, j+ 2 are counted modulo
3. Using (i)=>(ii), HT N Vx = {EX,)\j} and H - NVx = {EX)\J.JA, EXJ\J.JFZ}.
Therefore i = j. Hence (iii)=-(i) follows.

(3) It follows from (1) and (2). O

Proposition 3.8. Assume that X € J' has the characteristic polynomial

PN =A—=X)A = (p++vV=19)(\ — (p — V—1q)) where \1,p,q € R and
q>0. Then X € Op, _,, (diag(p,p, \1) + Fl(q)).

Proof. Ay is a root of ®x(A) of multiplicity 1. Put Ay = p+ gv/—1, A3 =
p — qv/—1. By Lemma 3.3, Ax ), = %(/\2 —3)2 = —2¢® < 0. Hence the
assertion follows from Proposition 3.2(4). O

Proposition 3.9. Assume that X € J' have the characteristic polynomial
D) = (A — A\ — A2)? where \; € R and Ay # Xa. Then Wy, € N =
NTTINTTI{0}, Ex .y, € HT [T H™ and following assertions hold.
(1) If Wx ., € NT, then X € OF4(720) (diag(A2, A2, A1) + Ny).
(2) If WX A1 € N_ then X € OF4( 20) (diag()\g, )\2, )\1) + Ng)
(3) If Wx A = 0 and Ex Y H+ then X € 0F4( 20) (dlag(/\l, Ao, /\2))
(4) If Wx A = 0 and Ex A € H™ then X € 0F4(,20) (dlag(/\g, )\2, /\1))
)
e

5) By Fy_o0), the above canOnzcal forms (1)-(4) cannot be transformed
from each other

Proof. Since Ay is a root of ®x () of multiplicity 1, by Proposition 1.7(3),
Ex, € HT][H . By Lemma 3.3, we have Ay, = %()\2 — )% = 0.
Therefore, if Wx y, # 0, then by Proposition 3.2(6), Wx , € N. Hence
by Proposition 1.6(2), Wx., € N = N*T[[N7[]{0}. Now (1) and (2)
follow from Proposition 3.2(7)(8). And (3) and (4) follow from Proposition
3.2(2)(5).
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(5) By Proposition 1.8 and Proposition 2.10(1), E,x ), = aFx, €
aHT =HT. Therefore, if Ex y, € HT, then Eqx\, € H' for all a € Fy_q).
Similarly by Proposition 1.8 and Proposition 2.10(1), if Ex, € H™ is
Eox ., € H™ for all a € Fy_gp). Next by Proposition 1.8 and Proposition
2.10(2), Waxn, = aWxy, € aNT = Nt for all a € Fy_y. Therefore, if
Wx., € NT then Wyx x, € NT. Similarly by Proposition 1.8 and Proposi-
tion 2.10(2), if Wx n, € N7, then Wyx\, € N~ for all @ € Fy_5g). And by
Proposition 1.8, if Wx y, = 0, then W,x , = 0 for all a € Fy_s). Hence
canonical forms (1)-(4) cannot be transformed from each other. O

4 The characteristic root of multiplicity 3
By Proposition 2.1(2), A;(—1) + Ay(v/—1) € fa(—20), S0 that let us define
ﬁLg(t) = exp(t(/il(—l) + 1212(\/—_1))) S F4(_20), teR.

Put M := Aj(—1) + A2(v/—1) and &M := 3> - L(¢tM)". Then by direct

n=0 nl
2 2
L+ VoI —/~Tt
calculation, et = _1/_1% 1— % —t . Set X € J'. By di-
V=1t t 1

rect calculation, (e X)e™™M = (A;(—1) + Ao(v/=1))((e®™ X)e *M) and
(M X)e™OM = X. Now, £B12(1)X = (Ai(=1) + Ao(v=1))B12(t)X and
B1,2(0)X = X. Since the uniqueness of ordinary differential equations, we
have B12(t)X = (e X)e ™™ In particular, take Xo = —rNo + Fl(z) +
F}(Z) where r € R and z € Q. Then by direct calculation,

(4.1)  Bia2(t)Xo = (—r — 2tRe(z))Na + Fl(z) + F3 (T).

If (r,x) = (—1, 0) in (4.1), then ,8172(15)]\72 = N, and so ,8172(15) S (F4(_20))N2.
In this section, we use the exceptional Lie group G (cf.[4] [11]):

Go := Aut(0) = {a € GLr(8) | a(zy) = (ax)(ay), =,y € O)}.

Note that al = 1, a7 = @7 and (ax,ay) = (z,y) for all a € Ga. Using
aT = az, (ar)(ay) = a(zy) = a(Ty). It implies Go C Dy = Dy C Fy(_g0)-
Therefore we consider that G is the subgroup of Fy_s) as

3 3

a() (GEi+ Fl () = > _(&Ei + F (ox;)), o€ Gs.

i=1 i=1
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Since al = 1 for all a € G2, G2 is the subgroup of (Fy_a0))n,. Set
S% .= {a € ImO | |z| = 1}.

Note that the group Go acts on S° transitively (cf.[LT, Theorem 1.9.2]).
That is, if z € S, then there exists a € Gy such that ax = e;.

Lemma 4.1. For all a,b € S%, let 3; € Endr(Q) such that
frz = blax), Pox = (xa)b, Pzx = blaxa)b, = € Q.

Then p(B1, B2, B3) € (Fa—20)) N,

Proof. Let p € S®. By Proposition 1.1(1), (pz, py) = (p,p)(z,y) = (x,y) and

(zp,yp) = (z,y)(p,p) = (z,y), =,y € O. Therefore §; € O(8) (i =1,2,3).
Now by Proposition 1.1(7)(3) and a,b € S® C ImO,

(612)(Bay) = (b(ax))((ya)b) = blaxa)b = b(a(Ty)a)b = B3(TY).

Therefore, by Lemma 2.2(2) and Proposition 2.3(2), we get 8; € SO(8) and
©(B1, B2, 83) € Dy C Fy_g0y. Next, by direct calculation, (81, B2, 83) N2 =
N5. Hence the assertion follows. O

By Lemma 4.1, for a,b € S% we can define ¢, € (Fu(—20)) Ny 88 Qqp =

©(B1, B2, B3) where
prx = blax), Pox = (va)b, B3x := blara)b, z € O.

Proposition 4.2. Assume that Xq € (J')o satisfies Xo x Xog = No. Then
there exists oo € (Fy_o0)) N, such that aXo = FI (1) + F3(1).

Proof. By Proposition 2.6(3), we can write Xg = —rNy + Fi(z) + F}(T)
where r € R, z € O and |z| = 1.

(Step 1) We will show the following assertion: If x € ImQ, then there
exists By € (Fy_20))n, such that fXo = —rNy + F}'(2') 4+ F3 (z') where
' € O, |2| = 1 and Re(z') # 0. Suppose that € ImQ. Then z € SS.
Since Gy acts on SO transitively, there exists 8, € G C (Fy(=20)) N, such
that 51 Xo = —rNa + Fl(e1) + F)(—e1). Now e2,e3 € SY, so that ¢e,.e, €
(Fy(—20))No- And @, 5 81X0 = —1No+F{ (1)+F3 (1). Hence (Step 1) follows.

(Step 2) We may assume Xog = —rNy + Fi(z) + F3(T) where r € R,
x 6 O, |z| =1 and Re(z) # 0 by (Step 1). Then 31 2(t) € (Fy(—20))N,, and

( ) 512( gRex))XO_Fl( )+F21(E)
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(Step 3) We may assume Xo = Fil(z) + F}(Z) where z € O and |z| =1
by (Step 2). Then z = cosf + asinf for some a € ImO and 6 € R. Since
G5 acts on SO transitively, there exists oy € Gy C (Fy(=20)) N, such that
a1Xg = Fl(qz)+ F} (aqz) = F(cos 0 +eqsinf) + F)} (cos 6 — eg sin ). Next
e2,e1 € S%, so that ¢e,., € (F4(_20))N2. And @e, ;a1 Xg = Fil(ezcosf +
egsinf) + F21(—€3 cosf) — egsinf). Since Gy acts on SO transitively, there
exists ag € Gy C (F4(_20))N2 such that azpe, e, 01 X0 = Fll(el) + F21(—el).
And last, ey, e3 € S, so that Peger € (F4(_20))N2. And e, 630030, 01 X0 =
F}(1) + F4(1). Hence the assertion follows. O

Proposition 4.3. Assume that X € J' satisfies ®x(\) = (A — A\1)3. Then
following assertions hold.
(1) If p(X) = 0, then X = 3tr(X)E.
(2) If p(X) € N't, then X € Op,_,, (5tr(X)E + Ny).
(3) If p(X) € N7, then X € Op,_,, (5tr(X)E + Ny).
)

)
(4) If p(X) ¢ N, then X € OF, _ 20)(—tr( VE + FL(1) + F}(1)).
5) By Fy_a0), the above canonical forms (1)-(4) cannot be transformed
from each other

Proof. (1) By 0 =p(X) =X — tr(X)E, (1) follows.

(2) By Proposition 2.10(2), there exists a € Fy_gg) such that ap(X) =
Ni. Hence aX = a(3tr(X)E + p(X)) = 3tr(X)E + Ny by Theorem 1.4.

(3) By Proposition 2.10(2), there exists o € Fy(_g) such that ap(X) =
Nj. Hence aX = a(3tr(X)E + p(X)) = +tr(X)E + N, by Theorem 1.4.

(4) Suppose that p(X) x p(X) = 0. By tr(p(X)) =0, p(X) € N. It con-
tradicts with p(X) ¢ N. Therefore p(X) x p(X) # 0. Put Y = p(X) x p(X).
By Proposition 1.9(2) and Proposition 1.6(2), Y € N T or Y € N ™. Suppose
that Y € N'*. By Proposition 2.10(2), there exists a € Fj_og) such that
aY = Nj. Then N1 = a(p(X) x p(X)) = p(aX) x p(aX) and tr(p(aX)) =
tr(a(p(X))) = tr(p(X)) = 0 by Theorem 1.4. Using Proposition 2.6(1), this
can not be happened. Therefore Y € N, so that by Proposition 2.10(2),
there exists a; € Fy_og) such that @Y = Ny. Then by Theorem 1.4, Ny =
p(a1X) x p(a1 X) and p(ay X) € (J')o. Now by Proposition 4.2, there ex-
ists g € (Fy(—20))n, such that asaq(p(X)) = az(p(a1 X)) = FL1) + FL(1).
Hence apan X = agal( r(X)E + p(X)) = %tr(X)E + F{(1) + F3(1) by
Theorem 1.4.

(5) By Theorem 1.4 and Proposition 2.10(2), p(aX) = ap(X) € aN™T =
N*. Therefore, if p(X) € N7, then p(aX) € N* for all a € Fy_y).
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Similarly if p(X) € N7, then p(aX) € N~ for all @ € Fjy_9). And by
Proposition 1.6(3), if p(X) ¢ N, then p(aX) ¢ N for all o € Fy(—20)- Thus
canonical forms (1)-(4) cannot be transformed from each other. O

Proof of Main Theorem. For X € J*!, by Proposition 1.5(1), ®)(X) is
a R-coeflicient polynomial of A with degree 3, so that we have the following
Cases (I)-(IV) by the set of characteristic roots and their multiplicities.

(I) X € J' admits the characteristic roots \; € R and A; > Ag > As.

(II) X € J' admits the characteristic roots \; € R, p & v/—1¢q (¢ > 0).

(ITI) X € J*' admits the characteristic roots A; € R and \; of multiplicity
1 and Ao of multiplicity 2.

(IV) X € J! admits the characteristic real root of multiplicity 3.

By Proposition 1.5(3), the set of characteristic roots and their multi-
plicities are invariant by the action of Fy_qg), the difference of the set of
characteristic roots and their multiplicities induce the difference of orbits in
J*t over the Fy_op)-actions. Therefore Cases (I)-(IV) are different cases of
orbits from each other.

In Case (I), by Proposition 3.7(2)(3), we obtain the canonicals form of
X. And by Proposition 3.6, the cases are different orbits from each other.

In Case (II), by Proposition 3.8, we obtain the canonical form of X.

In Case (III), by Proposition 3.9(1)-(4), we obtain the canonicals form of
X. And by Proposition 3.9(5), the cases are different orbits from each other.

In Case (IV), by Proposition 4.3(1)-(4), we obtain the canonical form of
X. And by Proposition 4.3(5), the cases are different orbits from each other.

Thus we obtain a concrete classification of Fj_sg)-orbits on J L O
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