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Abstract

We consider a new kind of straight and shifted plane partitions/Young tableaux whose diagrams
are no longer of partition shape, but rather Young diagrams with boxes erased from their upper right
ends. We find formulas for the number of standard tableaux in certain cases, namely shifted staircases
without a box in their upper right corner and rectangles with a staircase removed from the upper right
end. The proofs involve interpretations and formulas for sums of restricted Schur functions and their
specializations.

1 Introduction

A central topic in the study of tableaux and plane partition are their enumerative properties. The number
of standard tableaux of straight shape is given by the famous hook-length formula of Frame, Robinson and
Thrall, similar formula exists for shifted shapes. Not all shapes have such nice enumerative properties though,
for example their main generalizations as skew shapes are not counted by any product type formulas.

In this paper we find product formulas for special cases of a new type of tableaux and plane partitions,
namely ones whose diagrams are not straight or shifted Young diagrams of integer partitions. The diagrams
in question are obtained by removing boxes from the north-east corners of a straight or shifted Young diagram
and we say that the shape has been truncated by the shape of the boxes removed. We discover formulas
for the number of tableaux of specific truncated shapes: a rectangle truncated by a staircase shape and a
shifted staircase truncated by one box. The proofs rely on several steps of interpretations. Truncated shapes
are interpreted as (tuples of) SSYTs, which translates the problem into specializations of sums of restricted
Schur functions. The number of standard tableaux is found as a polytope volume; thus as a certain limit
of these specializations whose computations involve complex integration, the Robinson-Schensted-Knuth
correspondence, etc.

The consideration of these objects started after R. Adin and Y. Roichman asked for a formula for the
number of linear extensions of the poset of triangle-free triangulations, which are equivalent with standard
tableaux of shifted staircase shape with upper right corner box removed, [AR]. We find and prove the
formula in question, we also prove formulas for the cases of rectangles truncated by a staircase. In [AKR]
Adin, King and Roichman have independently found a formula for the case of shifted staircase truncated by
one box, they have also considered other case (truncation of staircase and rectangle by a square) by methods
fundamentally different from the methods developed here.

2 Definitions

We will refer the reader to [Sta99] and [Mac95] for the basic facts and definitions regarding Young tableaux
and symmetric functions, which we will use in this paper. We remind the reader of the hook-length formulas
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for the number of standard Young tableaux (SYT) of straight shape λ:

fλ =
|λ|!

∏

u∈λ hu
, hook hu:

u

and the number of standard Young tableaux of shifted shape λ

gλ =
|λ|!

∏

u hu
hook hu:

u

We are now going to define our main objects of study.
Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be integer partitions, s.t. λi ≥ µi. A straight diagram of

truncated shape λ \µ is a left justified array of boxes, such that row i has λi−µi boxes. If λ has no equal
parts we can define a shifted diagram of truncated shape λ \ µ as an array of boxes, where row i starts
one box to the right of the previous row i− 1 and has λi − µi number of boxes. For example

D1 = , D2 =

D1 is of straight truncated shape (6, 6, 6, 6, 5) \ (3, 2) and D2 is of shifted truncated shape (8, 7, 6, 2) \ (5, 2).
We define standard and semi-standard Young tableaux and plane partitions of truncated shape the usual

way except this time they are fillings of truncated diagrams. A standard truncated Young tableaux of
shape λ\µ is a filling of the corresponding truncated diagram with the integers from 1 to |λ|− |µ|, such that
the entries across rows and down columns are increasing and each number appears exactly once. A plane

partition of truncated shape λ \ µ is a filling of the corresponding truncated diagram with integers such
that they weakly increase along rows and down columns. For example

T1 =
1 2 4

3 5 7 8
6 9

, T2 =
1 1 3

2 4 4 5
5 6

, T3 =
1 1 3

1 4 4 6
4 5

are respectively a standard Young tableaux (SYT), a semi-standard Young tableaux (SSYT) and a plane
partition (PP) of shifted truncated shape (5, 4, 2) \ (2). We also define reverse PP, SSYT, SYT by revers-
ing all inequalities in the respective definitions (replacing weakly/strictly increasing with weakly/strictly
decreasing). For this paper it will be more convenient to think in terms of the reverse versions of these
objects.

In this paper we will consider truncation by staircase shape δk = (k, k−1, k−2, . . . , 1) of shifted staircases
and straight rectangles. We will denote by T [i, j] the entry in the box with coordinate (i, j) in the diagram
of T , where i denotes the row number counting from the top and j denotes the j−th box in this row counting
from the beginning of the row.

For any shape D, let

FD(q) =
∑

T :sh(T )=D

q
∑

T [i,j]

be the generating function for the sum of the entries of all plane partitions of shape D.
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3 A bijection with skew SSYT

We will consider a map between truncated plane partitions and skew Semi-Standard Young Tableaux which
will enable us to enumerate them using Schur functions.

As a basic setup for this map we first consider truncated shifted plane partition of staircase shape δn \ δk.
Let T be such plane partition. Let λj = (T [1, j], T [2, j], . . . , T [n− j, j]) - the sequence of numbers in the jth

diagonal of T . For example if T =

8 6 5
6 4 3

4 2
1

, then λ1 = (8, 6, 4, 1), λ2 = (6, 4, 2) and λ3 = (5, 3).

Let P be a reverse skew tableaux of shape λ1/λn−k, such that the entries filling the subshape λj/λj+1

are equal to j, i.e. it corresponds to the sequence λn−k ⊂ λn−k−1 ⊂ · · · ⊂ λ1. The fact that this is all
well defined follows from the inequalities that the T [i, j]’s satisfy by virtue of T being a plane partitions.
Namely, λj+1 ⊂ λj , because λj

i = T [i, j] ≥ T [i, j + 1] = λj+1
i . Clearly the rows of P are weakly decreasing.

The columns are strictly decreasing, because for each j the entries j in the ith row of P are in positions
T [i, j + 1] + 1 to position T [i, j] < T [i− 1, j + 1] + 1, so they appear strictly to the left of the js in the row
above (i − 1).

Define φ(T ) = P , φ is the map in question. Given a reverse skew tableaux P of shape λ \ µ and
entries smaller than n we can obtain the inverse shifted truncated plane partition T = φ−1(P ) as T [i, j] =
max(s|P [i, s] ≥ j), if no such entry of P exists let s = 0.

For example we have that

T =

8 7 6 5
7 7 5 4

6 5 4
4 3

2

φ
−→ P =

3 2 1
3 2 2

3 3 3 3 2 1
2 2 2 1
1 1

(1)

Notice that ∑

T [i, j] =
∑

P [i, j] + |λn−k|(n− k), (2)

where sh(P ) = λ1/λn−k.
The map φ can be extended to any truncated shape, then the image will be tuples of SSYTs with certain

restrictions. For the purposes of this paper we will extend it to truncated plane partitions of shape (nm)\ δk
as follows.

Let T be a plane partition of shape n\δk and assume that n ≤ m (otherwise we can reflect anti-diagonally).
Let λ = (T [1, 1], T [2, 2], . . . , T [n, n]), µ = (T [1, n−k], T [2, n−k+1], . . . , T [k+1, n]) and let T1 be the portion
of T above and including the main diagonal, hence of shifted truncated shape δn \ δk, and T2 the transpose
of the lower portion including the main diagonal, a shifted PP of shape (m,m− 1, . . . ,m− n+ 1).

Extend φ to T as φ(T ) = (φ(T1), φ(T2)). Here φ(T2) is a SSYT of at most n rows (shape λ) and filled
with [1, . . . ,m] the same way as in the truncated case.

As an example with n = 5,m = 6, k = 2 we have

T =

7 6 4
5 6 4 4
4 4 3 3 2
4 3 2 2 2
3 2 2 1 1
2 1 1 1 1

, T1 =

7 6 4
6 4 4

3 3 2
2 2

1

, T2 =

7 5 4 4 3 2
6 4 3 2 1

3 2 2 1
2 1 1

1 1

,

φ(T ) =








2 2 1
1 1

2
2 2
1

,

6 6 5 4 2 1 1
5 4 3 2 1 1
4 3 1
3 1
2







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We thus have the following

Proposition 1. The map φ is a bijection between shifted truncated plane partitions T of shape δn \ δk filled
with nonnegative integers and (reverse) skew semi-standard Young tableaux with entries in [1, . . . , n− k− 1]
of shape λ/µ with l(λ) ≤ n and l(µ ≤ k + 1. Moreover,

∑

i,j T [i, j] =
∑

i,j P [i, j] + |µ|(n − k). Similarly
φ is also a bijection between truncated plane partitions T of shape nm \ δk and pairs of SSYTs (P,Q), s.t.
sh(P ) = λ/µ, sh(Q) = λ with l(λ) ≤ n, l(µ) ≤ k+1 and P is filled with [1, . . . , n− k− 1], Q with [1, . . . ,m].
Moreover,

∑
T [i, j] =

∑
P [i, j] +

∑
Q[i, j]− |λ|+ |µ|(n− k).

4 Schur function identities

We will now consider the relevant symmetric function interpretation arising from the map φ. Substitute the
entries 1, . . . in the skew SSYTs in the image with respective variables x1, . . . and z1, . . .. The idea is to
evaluate the resulting expressions at x = (q, q2, . . .) and z = (1, q, q2, . . .) to obtain generating functions for
the sum of entries in the truncated plane partitions which will later allow us to derive enumerative results.

For the case of shifted truncated shape δn \ δk we have the corresponding sum

Sn,k(x; t) =
∑

λ,µ|l(λ)≤n,l(µ)≤k

sλ/µ(x1, . . . , xn−k−1)t
|µ|, (3)

and for the straight truncated shape nm \ δk

Dn,k(x; z; t) =
∑

λ,µ|l(λ)≤n,l(µ)≤k+1

sλ(z)sλ/µ(x)t
µ. (4)

We need to find formulas when xi = 0 for i > n − k − 1 and zi = 0 for i > m. Keeping the restriction
l(µ) ≤ k + 1 we have that sλ/µ(x) = 0 if l(λ) > n and this allows us to drop the length restriction on λ in
both sums.

From now on the different sums will be treated separately.
Consider another set of variables y = (y1, . . . , yk+1) which together with (x1, . . . , xn−k−1) form a set of

n variables.
Using Cauchy’s identity we have that

∑

λ|l(λ)≤n

sλ(x1, . . . , xn−k−1, ty1, . . . , tyk+1)

=
∑

λ

sλ(x1, . . . , xn−k−1, ty1, . . . , tyk+1)

=
∏ 1

1− xi

∏

i<j≤n−k−1

1

1− xixj

∏

i<j≤k+1

1

1− t2yiyj

∏

i,j

1

1− xityj

∏ 1

1− tyi
,

where the length restriction drops because sλ(u1, . . . , un) = 0 when l(λ) > n. On the other hand we have
that

∑

λ|l(λ)≤n

sλ(x1, . . . , xn−k−1, ty1, . . . , yk+1t)

=
∑

λ,µ

sλ/µ(x1, . . . , xn−k−1)sµ(ty1, . . . , tyk+1)

=
∑

λ,µ|l(µ)≤k+1

sλ/µ(x1, . . . , xn−k−1)sµ(y1, . . . , yk+1)t
|µ|

since again sµ(yt) = 0 if l(µ) > k + 1.
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We thus get

∏ 1

1− xi

∏

i<j≤n−k−1

1

1− xixj

∏

i<j≤k+1

1

1− t2yiyj

∏

i,j

1

1− xityj

∏ 1

1− tyi
(5)

=
∑

λ,µ|l(µ)≤k+1

sλ/µ(x1, . . . , xn−k−1)sµ(y1, . . . , yk+1)t
|mu|

We now need to extract the coefficients of sµ(y) from both sides of (5) to obtain a formula for Sn,k(x; t). To
do so we will use the determinantal formula for the Schur functions, namely that

sν(u1, . . . , up) =
aν+δp(u)

aδp(u)
=

det[u
νj+p−j
i ]pi,j=1

det[up−j
i ]pi,j=1

.

We also have that aδp(z1, . . . , zp) =
∏

i<j(zi − zj). Substituting sµ(y) with aδk+1+µ(y)/aδk+1
(y) in the

right-hand side of (5) and multiplying both sides by aδk+1
(y) we obtain

sλ/µ(x1, . . . , xn−k−1)aµ+δk+1
(y1, . . . , yk+1)t

|mu| (6)

=
∏ 1

1− xi

∏

i<j≤n−k−1

1

1− xixj

∏

i<j≤k+1

yi − yj
1− t2yiyj

∏

i,j

1

1− xityj

∏ 1

1− tyi

Observe that aα(u1, . . . , up) =
∑

w∈Sp
sgn(w)uα1

w1
· · ·u

αp

wp with αi > αi+1 has exactly p! different monomials

in y, each with a different order of the degrees of ui (determined by w). Moreover, if α 6= β are partitions of
distinct parts, then aα(u) and aβ(u) have no monomial in common. Let

A(u) =
∑

α|αi>αi+1

∑

w∈Sp

sgn(w)uα1

w1
· · ·uαp

wp
.

For every β of strictly decreasing parts, every monomial in aβ(u) appears exactly once and with the same
sign in A(u), so aβ(u)A(u

−1) has coefficient at u0 equal to p!. Therefore we have

[y0]




∑

λ,µ

sλ/µ(x1, . . . , xn−k−1)aµ+δk+1
(y1, . . . , yk+1)t

|µ|A(y−1)



 (7)

= (k + 1)!
∑

λ,µ|l(µ)≤k+1

sλ/µ(x1, . . . , xn−k−1)t
|µ| = (k + 1)!Sn,k(x; t). (8)

Using the fact that aα(u) = sν(u)aδ(u) for ν = α − δp and Cauchy’s formula for the sum of the Schur
functions we have

A(u) =
∑

ν

sν(u)aδp(u) =
∏ 1

1− ui

∏

i<j

(ui − uj)

1− uiuj
.

In order for A(y−1) and
∑

sµ(y)t
|µ| to converge we need 1 < |yi| < |t−1| for every i. For Sn,k(x; t) to

also converge, let |t| < 1 and |xj | < 1 for all j.
We also have that for any doubly infinite series f(y), [y0]f(y) = 1

2πi

∫

C f(y)y−1dy, on a circle C in the
C plane centred at 0 and within the region of convergence of f . Hence we have the formula for Sn,k(x; t)
through a complex integral.

Proposition 2. We have that

Sn,k(x; t) =(−1)(
k+1

2 )
∏ 1

1− xi

∏

i<j≤n−k−1

1

1− xixj

∫

T

∏

i<j≤k+1

(yi − yj)
2

1− t2yiyj

∏

i,j

1

1− xityj

∏ 1

1− tyi

∏ 1

yi − 1

∏

i<j

1

yiyj − 1
dy1 · · · dyk+1,
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where T = C1 × C2 × · · ·Cp and Ci = {z ∈ C||z| = 1 + ǫi} for ǫi < |t−1| − 1.

For the straight shape case and Dn,k we consider the sum, whose formula we know as Cauchy’s identity

∑

λ

sλ(z)sλ(x, ty) =
∏

i,j

1

1− xizj

∏

i,j

1

1− yitzj
. (9)

Let xi = 0 if i > n− k − 1, z = (z1, . . . , zm) and y = (y1, . . . , yk+1). Then sλ(x, ty) = 0 if l(λ) > n, so this
sum ranges over λ with l(λ) ≤ n. Also, we have that

sλ(x, yt) =
∑

µ

sλ/µ(x)sµ(yt),

and since sµ(yt) = 0 if l(µ) > k + 1, the sum ranges only over µ, s.t. l(µ) ≤ k + 1. Thus we have that

∏

i,j

1

1− xizj

∏

i,j

1

1− yitzj
=

∑

λ,µ|l(λ)≤n,l(µ)≤k+1

sλ(z)sλ/µ(x)t
|µ|sµ(y)

If we expand the left-hand side of the above equation as a linear combination of sµ(y), summing all the
coefficients on both sides will give us the desired formula for Dn,m,k(x, z; t).

We have that
∏

i,j

1

1− yizjt
=

∑

ν

sν(zt)sν(y),

and the other factor contains only x and z, a constant over the ring of symmetric polynomials in y. Comparing
coefficients we get

Proposition 3. We have that

Dn,m,k(x, z; t) =
∏

i,j

1

1− xizj




∑

ν|l(ν)≤k+1

sν(zt)



 .

For the purpose of enumeration of SYTs we will use this formula as it is. Even though there are
formulas, e.g. of Gessel and of King, for the sum of Schur functions of restricted length, they would not give
the enumerative answer any easier.

5 A polytope volume as a limit

Plane partitions of specific shape (truncated or not) of size N can be viewed as integer points in a cone in
R

N . Let D be the diagram of a plane partition T , the coordinates of R|D| are indexed by the boxes present in
T . Then CD = {(· · · , xi,j , · · · ) ∈ RN

≥0 : [i, j] ∈ D, xi,j ≤ xi,j+1 if [i, j+1] ∈ D, xi,j ≤ xi+1,j if [i+1, j] ∈ D}
is the corresponding cone.

Let P (C) be the section of a cone C in RN
≥0 with the hyperplane H = {x|

∑

[i,j]∈D xi,j = 1}. Consider
the standard tableaux of shape T , these correspond to all linear ordering of the points in CD and thus
also PD = P (CD). Considering T as a bijection D → [1, . . . , N ], PD is thus subdivided into chambers
{x : 0 ≤ xT−1(1) ≤ xT−1(2) ≤ · · ·xT−1(N)} ∩H of equal volumes, namely 1

N !V ol(∆N ), where ∆N = H ∩ RN

is the N−simplex. Hence the volume of PD is

V olN−1(PD) =
#T : SY T, sh(T ) = D

N !
V ol(∆N ). (10)

The following lemma helps determine the volume and thus the number of SYTs of shape D.
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Lemma 1. Let P be a d − 1dimensional rational polytope in Rd
≥0, s.t. its points satisfy a1 + · · ·+ ad = 1

for (a1, . . . , ad) ∈ P , and FP (q) =
∑

n

∑

(a1,...,ad)∈nP∩Zd qa1+a2+···+ad . We have that the d− 1−dimensional

volume of P is V old−1(P ) = (limq→1(1− q)dFP (q))V ol(∆d), where ∆d is the d− 1dimensional simplex.

Proof. Let fP (n) = #{(a1, . . . , ad) ∈ nP}. Then

FP (q) =
∑

n

fP (n)q
n

. Moreover, V old−1(P ) = limn→∞
fP (n)
nd−1 V ol(∆d) since subdividing an embedding of P in Rd−1 into d − 1-

hypercubes with side 1
n we get fP (n) cubes of total volume fP (n)/n

d−1 which scaled by V ol(∆d) approximate
P as n → ∞.

Moreover since limn→∞
nd−1

(n+1)···(n+d−1) = 1 we also have
V old−1(P )
V ol(∆d)

= limn→∞
fP (n)

(n+1)···(n+d−1) . Let G(q) =
∑

n
fP (n)

(n+1)···(n+d−1)q
n+d−1. Then

G̃(q) = (1− q)G(q) = (
fP (n)

(n+ 1) · · · (n+ d− 1)
−

fP (n− 1)

(n) · · · (n+ d− 2)
)

︸ ︷︷ ︸

bn

qn+d−1

and G̃(1) =
∑

bn = limn→∞ b1 + · · ·+ bn = limn→∞
fP (n)

(n+1)···(n+d−1) =
V old(P )
V ol(∆d)

. On the other hand

V old(P )

V ol(∆d)
= G̃(1) = lim

q→1
(1 − q)G(q) = lim

q→1

G′(q)

( 1
1−q )

′

= · · · = lim
q→1

G(d−1)(q)

( 1
1−q )

(d−1)
= lim

q→1
Fp(q)(1 − q)d

by L’Hopital’s rule.

Notice that if P = P (CD) for some shape D, then

FP (q) =
∑

n

∑

a∈nP∩ZN

qn

=
∑

a∈CD∩ZN

q|a| =
∑

T :PP,sh(T )=D

q
∑

T [i,j] = FD(q).

Using (10) and this Lemma we get the key fact to enumerating SYTs of truncated shapes using evaluations
of symmetric functions.

Proposition 4. The number of standard tableaux of (truncated) shape D is equal to

N ! lim
q→1

(1 − q)NFD(q).

6 Shifted truncated SYTs

We are now going to use Propositions 2 and 4 to find the number of standard shifted tableaux of truncated
shape δn \ δ1. Numerical results show that a product formula for the general case of truncation by δk does
not exist.

First we will evaluate the integral in Proposition 2 by iteration of the Residue theorem.
For simplicity, let u0 = t ui = txi, so the integral becomes

∫

T

(y1 − y2)
2

1− t2y1y2

1

y2 − 1

1

y1 − 1

1

y1y2 − 1

∏

i≥0,j=1,2

1

1− uiyj
dy1dy2
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Integrating by y1 we have poles at 1,y−1
2 t−2, y−1

2 and u−1
i . Only 1 and y−1

2 are inside C1 and the respective
residues are

Resy1=1 =
∏

i≥0

1

1− ui

∫

C2

(−1)
(1− y2)

2

1− t2y2

1

y2 − 1

1

y2 − 1

∏

i≥0

1

1− uiy2
dy2

= −
∏

i≥0

1

1− ui

∫

C2

1

(1 − t2y2)

∏ 1

1− uiy2
dy2 = 0,

since now the poles for y2 are all outside C2.
For the other residue we have that

Resy1=y−1

2

=

∫

C2

(y−1
2 − y2)

2

1− t2
1

y2 − 1

1

y−1
2 − 1

1

y2

∏

i≥0

1

1− uiy2

∏

i≥0

1

1− uiy
−1
2

dy2

=
1

1− t2

∫

C2

(1 + y2)
2

y22

∏

i≥0

y2
y2 − ui

∏

i≥0

1

1− uiy2
dy2

=
1

1− t2

∫

C2

(1 + y2)
2yn−3

2

∏

i≥0

1

y2 − ui

∏

i≥0

1

1− uiy2
dy2

If n ≥ 3 the poles inside C2 are exactly y2 = ui for all i and so we get a final answer

−
∑

i≥0

1

1− t2
(1 + ui)

2un−3
i

∏

j 6=i

1

ui − uj

∏

j≥0

1

1− uiuj

and

Sn,1(x; t) =
(−1)(

k+1

2 )+1

(k + 1)!

∏ 1

1− xi

∏

1≤i<j≤n−k−1

1

1− xixj

∑

i≥0

1

1− t2
(1 + ui)

2un−3
i

∏

j 6=i

1

ui − uj

∏

j≥0

1

1− uiuj
,

where ui = txi with x0 = 1.
We can simplify the sum above as follows.
Notice that for any p variables v = (v1, . . . , vp) we have

p
∑

i=1

vri
∏
(vi − vj)

=

∑

i(−1)i−1vi
∏

s<l;l,s6=i(vs − vl)
∏

s<l(vs − vl)
=

a(r−p+1)+δp(v)

aδp(v)
= s(r−p+1)(v) = hr−p+1(v),

where hs(v) =
∑

i1≤i2≤···≤is
vi1vi2 · · · vis is the s−th homogeneous symmetric function.

Then we have that

n−k−1∑

i=0

us
i

∏
(ui − uj)

∏ 1

1− uiuj
=

n−k−1∑

i=0

us
i

∏
(ui − uj)

∑

p

up
i hp(u)

=
∑

p≥0

n−k−1∑

i=0

us+p
i∏

(ui − uj)
hp(u)

=
∑

p≥0

hs−n+k+1+p(u)hp(u) = cs−n+k+1(u), (11)

where ci =
∑

n≥0 hnhn+i.
We then have the new formulas

Sn,1(x; t) =
∏ 1

1− xi

∏

1≤i<j≤n−k−1

1

1− xixj

1

1− t2
(c1(u) + c0(u)), (12)

where (1 + ui)
2un−3

i = un−3
i + 2un−2

i + un−1
i contributed to c−1(u) + 2c0(u) + c1(u) and by its definition

c−1 = c1. We are now ready to prove the following.
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Theorem 1. The number of shifted standard tableaux of shape δn \ δ1 is equal to

gn
CnCn−2

2C2n−3
,

where gn =
(n+1

2 )!
∏

0≤i<j≤n
(i+j) is the number of shifted staircase tableaux of shape (n, n − 1, . . . , 1) and Cm =

1
m+1

(
2m
m

)
is the m−th Catalan number.

Proof. We will use Proposition 4 and the formula (12).
By the properties of φ we have that for the shape D = δn \ δk,

FD(q) =
∑

T | sh(T )=D

q
∑

T [i,j] =
∑

P=φ(T )

q(n−k)|µ|+
∑

P [i,j] = Sn,k(q, q
2, . . . , qn−k−1; qn−k).

Let now k = 1. For the formula in Proposition 4 we have N =
(
n+1
2

)
− 1 and plugging x = (q, . . . , qn−2),

t = qn−1 in (12) we get

lim
q→1

(1 − q)NFD(q) =
∏ 1

1− qi

∏

1≤i<j≤n−2

1

1− qi+j

1

1− q2(n−1)
(c1(u) + c0(u)),

where u = (qn−1, qn, . . . , q2n−3).
We need to determine limq→1(1 − q)2n−3cs(u). Let cs(x; y) =

∑

l hl(x)hl+s(y) where x = (x1, . . . , xn)
and y = (y1, . . . , ym). We have that

cs(x; y) =
∑

l

∑

i1≤···≤il;j1≤···≤jl+s

xi1 · · ·xilyj1 · · · yjs+l

=
∑

p

hs(y1, . . . , yp)
∑

P :(1,p)→(n,m)

(−1)m+n−p−#P
∑

l

hl((xy)P ),

where the sum runs over all fully ordered collections of lattice points P in between (1, p) to (n,m) and
(xy)P = (xi1yj1 , . . .)|(i1, j1), . . . ∈ P and the −1s indicate the underlying inclusion-exclusion process. We
also have that

∑

l

hl((xy)P ) =
1

∏

(i,j)∈P (1− xiyj)
.

The degree of 1 − q dividing the denominators after substituting (xi, yj) = (ui, uj) = (qn−2+i, qn−2+j) for
the evaluation of cs(u) is equal to the number of points in P . #P is maximal when the lattice path is from
(1, 1) to (n − 1, n − 1) and is saturated, so max#P = 2(n − 1) − 1 = 2n − 3. The other summands will
contribute 0 when multiplied by the larger power of (1 − q) and the limit is taken. For each maximal path
we have {i+ j|(i, j) ∈ P} = {2, . . . , 2n− 2} and the number of these paths is

(
2n−4
n−2

)
, so

(1− q)2n−3cs(q
n−1, . . . , q2n−3) =

(
2n− 4

n− 2

) 2n−2∏

i=2

1− q

1− q2(n−2)+i
+ (1− q)...,

where the remaining terms are divisible by 1− q, hence contribute 0 when the limit is taken.
Now we can proceed to compute limq→1(1 − q)NSn,1(q

1, q2, . . . , ; qn−1). Putting all these together we
have that

lim
q→1

(1 − q)(
n+1

2 )−1Sn,1(q
1, . . . , qn−2; qn−1)

= lim
q→1

∏

1≤i≤n−2

1− q

1− qi

∏

1≤i<j≤n−2

1− q

1− qi+j

1− q

1− q2(n−1)

(
(1− q)2n−3(c1(u) + c0(u))

)

=
∏

0≤i<j≤n−2

1

i+ j

1

2(n− 1)
2

(
2n− 4

n− 2

) 2n−2∏

i=2

1

2n− 4 + i
=

gδn−2
(
n−1
2

)
!

1

(n− 1)

(
2n− 4

n− 2

)
(2n− 3)!

(4n− 6)!
,
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where gn−2 =
(n−1

2 )!
∏

0≤i<j≤n−2
(i+j) is the number of shifted staircase tableaux of shape (n − 2, . . . , 1). After

algebraic manipulations we arrive at the desired formula.

7 Straight truncated SYTs

We will compute the number of standard tableaux of straight truncated shape D = nm\δk using propositions
1, 4 and 3.

By proposition 1 we have that

FD(q) =
∑

T :sh(T )=D

q
∑

T [i,j]

=
∑

λ,µ|l(µ)≤k+1,l(λ)≤n

∑

P,sh(P ),λ/µ,Q,sh(Q)=λ

q
∑

P [i,j]+
∑

Q[i,j]−|λ|+(n−k)|µ|

=
∑

λ,µ|l(λ)≤n,l(µ)≤k+1

sλ(1, q, q
2, . . . , qm−1)sλ/µ(q, q

2, . . . , qn−k−1)q(n−k)|µ|,

which is Dn,m,k(x, z; t) for x = (q, q2, . . . , qn−k−1), z = (1, q, . . . , qm−1) and t = qn−k and from its simplified
formula from proposition 3 and proposition 4 the number of standard tableaux of shape nm \ δk is

lim
q→1

(1− q)nm−(k+1

2 )FD(q) (13)

= lim
q→1





n−k−1,m−1
∏

i=1,j=0

1− q

1− qi+j
(1− q)m(k+1)−(k+1

2 )(
∑

ν|l(ν)≤k+1

sν(q
n−k, qn−k+1, . . . , qm−1+n−k))



 .

We are thus going to compute the last factor.

Lemma 2. Let p ≥ r and N = rp−
(
r−1
2

)
. Then for any s we have

lim
q→1

(1− q)N
∑

λ|l(λ)≤r

sλ(q
1+s, . . . , qp+s) =

g(p,p−1,...,p−r+1)

N !

E1(r, p, s)

E1(r, p, 0)
,

where

E1(r, p, s) =
∏

m−1<l<2n−m+1

1

(l + 2s)m/2

∏

l<m

1

((l + 2s)(2n− l+ 1 + 2s))⌊(l+1)/2⌋

for r even and E1(r, p, s) =
((r−1)/2+s)!

(p−(r−1)/2+s)!E1(r− 1, p, s) when r is odd and gλ is the number of shifted SYTs

of shape λ.

Proof. Consider the Robinson-Schensted-Knuth (RSK) correspondence between SSYTs with no more than
r rows filled with x1, . . . , xp and symmetric p × p integer matrices A. The limit on the number of rows
translates through Schensted’s theorem to the fact that there are no m + 1 nonzero entries in A with
coordinates (i1, j1), . . . , (ir+1, jr+1), s.t. i1 < · · · < ir+1 and j1 > · · · > jr+1 (i.e. a decreasing subsequence
of length r + 1 in the generalized permutation corresponding to A). Let A be the set of such matrices. Let
A′ ⊂ A be the set of 0− 1 matrices satisfying this condition, we will refer to them as allowed configurations.
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Notice that A ∈ A if and only if B ∈ B, where B[i, j] =

{

1, if A[i, j] 6= 0

0, if A[i, j] = 0
. We thus have that

∑

λ|l(λ)≤r

sλ(x1, . . . , xp) =
∑

A∈A

∏

i

x
A[i,i]
i

∏

i>j

(xixj)
A[i,j]

=
∑

B∈B

∏

i:B[i,i]=1

(

∞∑

ai,i=1

x
ai,i

i )
∏

i>j:B[i,j]=1

(

∞∑

ai,j=1

(xixj)
ai,j )

=
∑

B∈B

∏

i:B[i,i]=1

xi

1− xi

∏

i>j:B[i,j]=1

xixj

1− xixj
.

Notice that B cannot have more than N nonzero entries on or above the main diagonal. No diagonal
i+ j = l (i.e. the antidiagonals) can have more than r nonzero entries on it because of the longest decreasing
subsequence condition. Also if l < r or l > 2p− r+1, the total number of points on such diagonal are l and
2n− l+ 1 respectively. Since B is also symmetric the antidiagonals i+ j = l will have r − 1 entries if l ≡ r(
mod 2) and r is odd. Counting the nonzero entries on each antidiagonal on or above the main diagonal gives
always exactly N in each case for the parity of r and p.

If B has less than N nonzero entries, then

lim
q→1

(1 − q)N
∏

i:B[i,i]=1

qi+1

1− qi+s

∏

i>j:B[i,j]=1

qi+j+2s

1− qi+j+2s
=

lim
q→1

(1− q)N−|B|>0
∏

i:B[i,i]=1

qi+1(1− q)

1− qi+s

∏

i>j:B[i,j]=1

qi+j+2s(1− q)

1− qi+j+2s
= 0,

so such Bs won’t contribute to the final answer.
Consider now only Bs with maximal possible number of nonzero entries (i.e. N), which forces them to

have exactly r (or r − 1) nonzero entries on every diagonal i + j = l for r < l < 2p− r if and all entries in
i+ j < r and i+ j > 2p− r.

If r is even, then there are no entries on the main diagonal when r < l < 2p−r and so there are r/2 terms
on each diagonal i+ j = l. Thus every such B contributes the same factor when evaluated at x = (q1+s, . . .):

Eq(r, p, s) :=
∏

r−1<l<2p−r+1

q(l+2s)r/2

(1− ql+2s)r/2

∏

l<r

q(l+4s+2p−l+1)⌊(l+1)/2⌋

((1− ql+2s)(1 − q2p−l+1+2s))⌊(l+1)/2⌋
.

If r is odd, then the entries on the main diagonal will all be present with the rest being as in the even case
with r − 1, so the contribution is

Eq(r, p, s) :=
∏

r+1

2
≤i≤p− r+1

2
+1

qi+s

1− qi+s
Eq(r − 1, p, s).

Let now M be the number of such maximal Bs in A0. The final answer after taking the limit is ME1(r, p, s),
where E1(r, p, s) = limq→1(1− q)NEq(r, p, s), so if r is even

E1(r, p, s) =
∏

m−1<l<2n−m+1

1

(l + 2s)m/2

∏

l<m

1

((l + 2s)(2n− l+ 1 + 2s))⌊(l+1)/2⌋

and if r is odd E1(r, p, s) =
((r−1)/2+s)!

(p−(r−1)/2+s)!E1(r − 1, p, s).

In order to find M observe that the case of s = 0 gives

lim
q→1

(1− q)N
∑

λ|l(λ)≤r

sλ(q
1, . . . , qp) = ME1(r, p, 0), (14)
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on one hand. On the other hand via the bijection φ we have that
∑

λ|l(λ≤m

sλ(q
1, . . . , qn) =

∑

T

q
∑

T [i,j],

where the sum on the right goes over all shifted plane partitions T of shape (p, p − 1, . . . , p − r + 1).
Multiplying by (1 − q)N and taking the limit on the right hand side gives us by the inverse of proposition
4 1

N ! times the number of standard shifted tableaux of that shape. This number is well known and is

g(p,p−1,...,p−r+1) =
N !∏
u
hu

, where the product runs over the hook lengths of all boxes on or above the main

diagonal of (pr, rp−r). Putting all this together gives

ME1(r, p, 0) =
g(n,n−1,...,n−m+1)

N !
.

Solving for M we obtain the final answer as

g(n,n−1,...,n−m+1)

N !

E1(r, p, s)

E1(r, p, 0)
.

We can now put all of this together and state

Theorem 2. The number of truncated straight tableaux of shape (n− k, n− k + 1, . . . , n, · · · , n
︸ ︷︷ ︸

m

) (m > n)is

equal to
(

mn−

(
k + 1

2

))

!×
f(n−k)m

((n− k)m)!
×

g(n,n−1,...,n−k)

((k + 1)n−
(
k
2

)
)!

×
∏

k<l<2n−k

(
l

l + 2s

)(k+1)/2 ∏

l<k+1

(
l(2n− l + 1)

(l + 2s)(2n− l + 1 + 2s)

)⌊(l+1)/2⌋

,

if k is odd and
(

mn−

(
k + 1

2

))

!×
f(m−k)n

((m− k)n)!
×

g(m,m−1,...,m−k)

((k + 1)m−
(
k
2

)
)!

×
(k/2 + s)!

(m− k/2 + s)!

∏

k−1<l<2m−k+1

(
l

l + 2s

)k/2 ∏

l<k

(
l(2m− l + 1)

(l + 2s)(2m− l + 1 + 2s)

)⌊(l+1)/2⌋

,

when k is even, where s = n− k.
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