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CARTIER MODULES ON TORIC VARIETIES

JEN-CHIEH HSIAO, KARL SCHWEDE, WENLIANG ZHANG

Abstract. Assume that X is an affine toric variety of characteristic p > 0. Let ∆ be an
effective toric Q-divisor such that KX + ∆ is Q-Cartier with index not divisible by p and
let φ∆ : F e

∗
OX → OX be the toric map corresponding to ∆. We identify all ideals I of OX

with φ∆(F e
∗
I) = I combinatorially and also in terms of a log resolution (giving us a version

of these ideals which can be defined in characteristic zero). This is motivated by the fact
that in the general, not necessarily toric setting, Blickle and Böckle have recently shown
that the set of such ideals is always finite.

1. Introduction

Suppose that R is a ring of characteristic p > 0 and F : R→ R is the Frobenius map, we
always assume that F is a finite map. If φ : R→ R is a splitting of Frobenius, then there are
finitely many ideals I such that φ(I) ⊆ I, see [KM09] and [Sch09]. These ideals are called
φ-compatible and are an interesting and useful collection of objects to study in their own
right (they are closely related to the characteristic zero notion of “log canonical centers”).

Much more generally, suppose that R is a reduced ring and φ : R → R is an additive
map that satisfies the condition φ(rp.x) = rφ(x) for all r, x ∈ R (for example, a splitting of
Frobenius). In [BB09], M. Blickle and G. Böckle generalize the above mentioned finiteness
results and show that there are finitely many I ⊆ R such that φ(I) = I (such ideals we call
φ-fixed).

However, very few examples of the sets of φ-fixed ideals are known. In this paper we
compute these ideals in the toric setting. In other words, X = Spec k[S] is an affine toric
variety and φ : F e

∗OX → OX is a toric map. Here S = M ∩ σ∨ for some lattice M and
some cone σ with σ∨ in MR. Because φ is a toric map, we can write φ( ) = φc(x

−w · ) for
some w ∈ M where φc is the canonical splitting1 of F e : k[S]→ k[S]. Our main result is as
follows:

Main Theorem (Theorem 3.4). Suppose that F is the set of all faces of σ∨ and for any
τ ∈ F , set

Jτ = 〈x
v|v ∈ relative interior(

w

1− pe
+ τ) ∩ S〉.

2000 Mathematics Subject Classification. 14M25, 13A35, 14F18, 14B05.
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was provided by the NSF and AMS.
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1The canonical splitting is the map which sends a monomial xm to xm/pe

if m/pe is an integer, and otherwise
sends xm to zero.
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Then a non-zero ideal I ⊆ S is φ-fixed if and only if there exists some subset G ⊆ F such
that

I =
∑

τ∈G

(
∑

τ⊆τ ′ in F

Jτ ′

)

We illustrate this theorem with some figures. In the following diagram, the circles represent
the monomials of the semi-group ring k[S] and the solid lines represent the boundaries of
σ∨. Given φ as above, we consider the vector w

1−pe
.

x0y0

x3y2

w
1−pe

The φ-fixed ideals will each be generated by monomials contained in the interior or bound-
ary of the above “dotted” region and we can explicitly identify them pictorially. Explicitly,
as our main theorem says, each of the φ-fixed ideals will be generated by all monomials
contained in one of the following shaded regions (in each region, the open circle corresponds
to the point w

1−pe
).

I

w
1−pe

II III IV V

While each of the ideals associated with these different bodies are potentially different, in
many cases (depending on the particular w), they are the same.

As we have already noted, in the case that φ is a Frobenius splitting, the φ-fixed ideals are
closely related to log canonical centers (a notion defined by using a resolution of singularities).
It is thus natural to ask if these ideals I such that φ(I) = I are also related to a notion
defined using a resolution of singularities. At least in the toric setting, we identify a class
of ideals, defined using a resolution of singularities which coincide with the φ-fixed ideals I.
Our main result on relating φ-fixed ideals and resolutions of singularities is the following.
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Theorem (Theorem 5.7). Let X be an affine toric variety of characteristic p > 0 and
let ∆ be an effective torus-invariant Q-divisor on X such that KX + ∆ is Q-Cartier. Let
φ : F e

∗OX → OX be the toric map corresponding to ∆. Then an ideal I ⊂ OX is φ-fixed if
and only if there exists a toric log resolution π : X ′ → X of (X,∆) and an effective divisor
E on X ′ with π(E) ⊂ Supp∆ ∪ SingX such that

I = π∗OX′(⌈KX′ − π∗(KX +∆) + εE⌉) for 1≫ ε > 0.

This result perhaps should not be unexpected. Very roughly speaking, φ extends to a map
of fractional ideals φ′ : F e

∗M →M on X ′. The sheaves OX′(⌈KX′ − π∗(KX +∆)+ εE⌉) for
the various E correspond to those φ′-fixed subsheaves of M which pushdown to ideals on X .
These ideals π∗OX′(⌈KX′−π∗(KX+∆)+εE⌉) are also a generalization of the (intermediate)
non-LC ideals introduced in [FST10].

Acknowledgements:
The authors began work on this project during the Commutative Algebra MRC held in

June 2010 in Snowbird Utah. We would like to thank Mircea Mustaţă, Lance Miller, and
Julian Chan for numerous valuable discussions and encouragement at the MRC. We also
thank Manuel Blickle several discussions related to these ideas and in particular discussions
clarifying Example 3.7.

2. Preliminaries for fixed ideals

In this section, R is a normal F -finite domain of characteristic p > 0 which admits an
additive map φ : R → R satisfying the relation that φ(rp

e

x) = rφ(x) for all r, x ∈ R. Such
a φ is called a p−e-linear map, which is nothing but an R-linear map F e

∗R → R. Typical
examples of such maps are the maps that split the Frobenius map F : R→ R.

Under this assumption, R fits into the theory of Cartier modules developed by Blickle and
Böckle [BB09]. One of the main theorems in [BB09] guarantees that there are only finitely
many ideals I of R satisfying φ(I) = I. We will call such an I a φ-fixed ideal (according to
the terminology of [Bli09], these ideals are also called F -pure Cartier-submodules of (R, φ)).

In the case where R is Gorenstein and local, there is a canonical p−e-linear map φ : R→ R.
The smallest non-zero ideal J such that φ(J) = J is the (big) test ideal of R, [Sch09].
Furthermore, if φ is surjective, the largest such proper ideal is the splitting prime of Aberbach
and Enescu, [AE05].

We mention the following results about the set of φ-fixed ideals which we will need.

Proposition 2.1. Suppose that R is an F -finite domain2 and that φ : F e
∗R → R is an

R-linear map.

(i) The set of φ-fixed ideals of R is closed under sum.
(ii) If φ is surjective, then the set of φ-fixed ideals is closed under intersection.
(iii) If φ is surjective, then any φ-fixed ideal is a radical ideal.
(iv) If R is a normal domain and φ corresponds to a Q-divisor ∆φ as in subsection 2.1

below, then the test ideal3 τ(R,∆φ) is the unique smallest non-zero φ-fixed ideal of
R.

(v) There are finitely many φ-fixed ideals.

2We make this hypothesis only for simplicity, most of what follows below can be generalized outside of this
setting with minimal work.
3The reader may take this to be the definition of the test ideal if they are not already familiar with it.
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(vi) For an element d ∈ R, define a new map ψ( ) = φ(F e
∗d

pe−1 · ). Then an ideal
J ⊆ R is φ-fixed if and only if dJ is ψ-fixed.

Proof. Part (i) is trivial from the definition. Part (ii) follows from the observation that if φ
is surjective, then any ideal J satisfying the condition φ(F e

∗J) ⊆ J is automatically φ-fixed,
and the set of these ideals is closed under intersection. Part (iii) is again easy. Part (iv)
follows from [Sch09] and part (v) is as mentioned, one of the main results of [BB09].

To prove (vi), suppose first that J is φ-fixed so that φ(F e
∗J) = J . Then ψ(F e

∗dJ) =
φ(F e

∗d
pe−1dJ) = dφ(F e

∗J) = dJ . The converse statement merely reverses this. �

Remark 2.2. We will see in the toric setting that the set of φ-fixed ideals is closed under
intersection for any φ. It would be interesting to discover if this holds more generally (it also
holds if φ is surjective).

Remark 2.3. Suppose that R is a normal domain and φ : F e
∗R → R is an R-linear map as

in Proposition 2.1. One can always extend φ to a map φ̄ : F e
∗K(R) → K(R) where K(R)

is the fraction field of R. While it is true that there are only finitely many φ-fixed ideals of
R, in general there are infinitely many φ-fixed fraction ideals of K(R). Remark 3.2 below
explicitly provides such an example.

We now give a method for constructing φ-fixed ideals. While we will not use it directly, an
analog of this result for ideals defined using resolution of singularities is the key observation
which allows us to characterize φ-fixed ideals via a resolution, compare with Proposition
4.7. We first recall that given φ : F e

∗R → R, we can compose φ with itself to obtain a map
φ2 = φ ◦ F e

∗φ : F 2e
∗ R → R and similarly construct φn for any positive integer n. While a

priori, we may have an infinite descending chain of ideals φn(F ne
∗ R) ⊇ φn+1(F

(n+1)e
∗ R) ⊇ . . . ;

it is a theorem of Gabber that this chain eventually stabilizes, see [Gab04] (also see [Bli09]
for a generalization and [HS77] for the local dual version in the geometric setting). In
particular, this stable ideal which we denote by σ(φ) ⊆ R is automatically φ-fixed (and it is
by definition, the largest φ-fixed ideal).

Proposition 2.4. Suppose that R is a domain and d ∈ R is a non-zero element. Then for
any n ≫ 0, if we define a map ψn : F ne

∗ R → R by the formula ψn( ) = φn(F ne
∗ d · ), we

have that σ(ψn) is φ-fixed.

Proof. We first claim that σ(ψn) ⊆ σ(ψn+1) (compare with [FST10, Proposition 14.11(1)]).
To prove this claim, notice that for any α : F e

∗R→ R, σ(α) = σ(αm). Thus, in order to show

the desired containment for ψ, it suffices show that ψn+1
n (F

(n+1)ne
∗ R) ⊆ ψnn+1(F

(n+1)ne
∗ R).

However, because

1 + pne + · · ·+ pn
2e =

p(n+1)ne − 1

pne − 1
≥
pn(n+1)e − 1

p(n+1)e − 1
= 1 + p(n+1)e + · · ·+ p(n−1)(n+1)e

we obtain that

ψn+1
n (F (n+1)ne

∗ R) = φn(n+1)(F (n+1)ne
∗ d1+p

ne+···+pn
2e

R)

⊆ φn(n+1)(F (n+1)ne
∗ d1+p

(n+1)e+···+p(n−1)(n+1)e

R) = ψnn+1(F
(n+1)ne
∗ R)

which proves the claim.
4



We choose n which stabilizes this chain σ(ψn) ⊆ σ(ψn+1). Suppose now m > 0 is such

that σ(ψn) = ψmn (F
m(ne)
∗ R). Then

φ(σ(ψn))

= φ(F e
∗ψ

m+1
n (F (m+1)ne

∗ R))

= ψn+1

(
F (n+1)e
∗ (ψmn (F

mne
∗ R))

)

= ψn+1

(
F (n+1)e
∗ σ(ψn)

)

= ψn+1

(
F (n+1)e
∗ σ(ψn+1)

)

= σ(ψn+1)

= σ(ψn)

which proves the proposition. �

2.1. The relation between φ and Q-divisors. Later, we will relate the φ-fixed ideals with
the ideals come from a resolution of singularities in characteristic 0 (e.g. multiplier ideals,
Fujino’s non-LC ideal, and the ideals defining arbitrary unions of log canonical centers). This
relation comes from a correspondence between pairs (X = SpecR,∆) and certain p−e-linear
maps φ : R → R in the theory of F -singularities. The reader is referred to [Sch09] for a
detailed account of this correspondence. We only explain a rough idea of it.

Suppose that (X,∆) is a pair where X is a variety of finite type over an F -finite field k
such that KX + ∆ is Q-Cartier with index not divisible by p > 0. Further suppose that ∆
is an effective Q-divisor such that (pe − 1)∆ is integral and (pe − 1)(KX +∆) is Cartier for
some e. Then there is a bijection of sets:

{
Effective Q-divisors ∆ on X such

that (pe − 1)(KX +∆) is Cartier

}
←→

{
Line bundles L and non-zero

elements of HomOX
(F e

∗L ,OX)

}/
∼

The equivalence relation on the right side identifies two maps φ1 : F e
∗L1 → OX and φ2 :

F e
∗L2 → OX if there is an isomorphism γ : L1 → L2 and a commutative diagram:

F e
∗L1

φ1
−−−→ OX

F e
∗
γ

y
yid

F e
∗L2

φ2
−−−→ OX

.

Given ∆, set L = OX((1− p
e)(KX +∆)). Then observe that

F e
∗OX((p

e − 1)∆) ∼= F e
∗ H omOX

(L ,OX((1− p
e)KX)) ∼= H omOX

(F e
∗L ,OX).

The choice of a section η ∈ OX((p
e − 1)∆) corresponding to (pe − 1)∆ thus gives a map

φ∆ : F e
∗L → OX . The choice depends on various isomorphisms selected, but this is harmless

for our purposes.
For the converse direction, an element φ ∈ H omOX

(F e
∗L ,OX) ∼= F e

∗L −1((1 − pe)KX)
determines an F e

∗OX-linear map

F e
∗OX

17→φ
−−→H omOX

(F e
∗L ,OX)

∼
−→ F e

∗L −1((1− pe)KX)

which corresponds to an effective Weil divisor D such that OX(D) ∼= L −1((1− pe)KX). Set
∆φ = 1

pe−1
D.
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Remark 2.5. Explicitly, suppose φ : F e
∗R → R is an R-linear map and d ∈ R. Define a new

map ψ( ) = φ(F e
∗d · ). Then Dψ = Dφ +

1
pe−1

div(d).

Definition 2.6. Suppose that φ : F e
∗R → R corresponds to a divisor ∆. Then we define

σ(R,∆) to be σ(φ) where σ(φ) is defined in the paragraph before Proposition 2.4.

We illustrate the above construction by the case where X is an affine toric variety (which
recall has trivial Picard group, so that every line bundle is isomorphic to OX) Let M be
a lattice and σ be a cone. Set R = k[σ∨ ∩ M ]. Suppose ∆ is an effective Q-divisor on
X = SpecR as above. Then we can write

(1− pe)(KX +∆) = divX(x
w)

for some w ∈M . Then a map φ∆ corresponding to ∆ can be expressed as

φ∆( ) = φc(x
−w · )

where φc is the canonical splitting on R defined by

φc(x
v) =

{
x

v
pe if v

pe
∈M,

0 otherwise.

Let us explain these claims carefully since this identification is critical for what follows.
Our first claim is that the map φc corresponds to the torus invariant divisor ∆c = −KX . It
is sufficient to show that φc fixes every height-one prime torus invariant ideal (which implies
that ∆φc contains each torus invariant divisor as a component) and does not fix any other
height-one ideal (which implies that ∆φc is toric). While both these statements are well-
known to experts, we point out that the first statement is simply [Pay09, Proposition 3.2]
while the second is a very special case of the proof of Lemma 3.1 below. So now suppose
that ∆ is a torus invariant divisor such that (1 − pe)(KX +∆) is Cartier and thus is equal
to divX(x

w). Therefore

(1− pe)(KX +∆) = divX(x
w) + 0 = divX(x

w) + (1− pe)(KX + (−KX))

Dividing through by (1− pe) gives us ∆ = (−KX) +
1

pe−1
divX(x

−w). However, it is easy to

see that given any map β : F e
∗OX → OX and any element d ∈ F e

∗ FracR, the map α( ) =
β(d· ), if it is indeed a map α : F e

∗OX → OX , has associated divisor ∆α = ∆β+
1

pe−1
divX(d).

In other words, the map φ∆ as described above does indeed correspond to ∆.

Notation. For an R-Weil divisor D =
∑r

j=1 djDj such that Dj’s are distinct prime Weil
divisors, we define

⌈D⌉ =
r∑

j=1

⌈dj⌉Dj and ⌊D⌋ =
r∑

j=1

⌊dj⌋Dj ,

where for each real number x, the round-up (resp. round-down) ⌈x⌉ (resp. ⌊x⌋) denotes the
integer defined by x ≤ ⌈x⌉ < x+ 1 (resp. x1 < ⌊x⌋ ≤ x). We also define

D≥k =
∑

dj≥k

djDj.
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3. Fixed ideals on toric varieties

Throughout this section, we fix M to be a lattice and σ to be a cone, set S = σ∨ ∩M .

Lemma 3.1. Suppose that X = SpecR = Spec k[S] is a toric variety and φ : F e
∗OX → OX

is a toric p−e-linear map with φ( ) = φc(x
−w ) as before. Then all the φ-fixed ideals are

generated by monomials. Furthermore, every φ-fixed ideal of R is contained inside 〈xu|u ∈
M ∩ (σ∨ + 1

1−pe
w)〉.

Proof. Suppose that I is a φ-fixed ideal and choose h ∈ I. Write h =
∑

i cix
mi where the mi

are multi-indices. Our eventual goal will be to show that xmi ∈ I. First however, we will
bound the mi. For the convenience of proof, set w′ = 1

1−pe
w so that φ( ) = φc(x

(pe−1)w′

· ).

Since h ∈ I, there exists an h′ ∈ I such that φ(h′) = h. Writing h′ =
∑
c′ix

m′

i , we see that
xmi = φ(xm

′

i) for some m′
i. Thus, mi =

1
pe
(m′

i + (pe − 1)w′). But we can perform the same

procedure with m′
i in the place of mi and obtain that m′

i =
1
pe
(m′′

i + (pe − 1)w′). Plugging
this back in we see that

mi =
1

pe
(
1

pe
(m′′

i + (pe − 1)w′) + (pe − 1)w′) =
1

p2e
m′′
i + (1−

1

p2e
)w′

In general, we see that mi =
1
pnem

(n)
i + (1 − 1

pne )w
′ ∈ σ + (1 − 1

pne )w
′. In particular, taking

the limit, we see that mi ∈ σ + w′, or in other words that mi − w
′ ∈ σ.

Notice that

φn(x(p
ne−1)(mi−w

′)xmj )

=φnc (x
w′(pne−1)x(p

ne−1)(mi−w′)xmj )

=φnc (x
(pne−1)mi+mj )

=x
1

pne ((p
ne−1)mi+mj)

But 1
pne ((p

ne−1)mi+mj) = mi+
mj−mi

pne and this only is an integer for n≫ 0 when mi = mj .

In particular, we see that

φn
(
x(p

ne−1)(mi−w)h
)
= φn

(
x(p

ne−1)(mi−w)
∑

i

cix
mi

)
= c

1
pne

i xmi

for n≫ 0. Thus xmi ∈ I as desired. �

Remark 3.2. Lemma 3.1 only holds for ideals contained in R, it does not hold for fractional
ideals. For example, consider the ring R = k[x] with the canonical splitting φc : F∗R → R.
Then the fractional ideal generated by 1

x+1
is φc-fixed. Indeed, a generating set of this

fractional ideal over Rp is
{

xi

x+1

}
0≤i≤p−1

. Then

φc

(
xi

x+ 1

)
= φc

(
(x+ 1)p−1xi

(x+ 1)p

)
=

1

x+ 1
φc

(
xp−1+i +

(
p− 1

1

)
xp−1+i−1 + · · ·+ xi

)
=
x⌈i/p⌉

x+ 1

which proves the claim. Clearly the fractional ideal generated by 1
x+1

is not toric. Of course,

the same statement holds for the fractional ideal generated by 1
x+λ

for any λ ∈ k as well as
for many other ideals.
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The reason that the proof above does not apply to this fractional ideal is that 1
x+1

cannot
be written as a finite sum of monomials.

The next lemma is the key observation which lets us identify the φ-fixed ideals of a toric
variety.

Lemma 3.3. Fix a toric map φ : F e
∗R → R with φ( ) = φc(x

(pe−1)w′

· ) as above and
let I be a torus invariant (possibly fractional) ideal with φ(I) ⊆ I. Suppose that xm ∈ I
and also that m is in a face F of σ∨ + w′. Then I contains every element xn for n ∈
relative interior(F ) ∩M .

Proof. Choose n ∈ relative interior(F ) ∩M . Notice that

φl(xnp
le−(ple−1)w′

) = φlc(x
(ple−1)w′

xnp
le−(ple−1)w′

) = xn.

We will show thatm+σ∨ (which corresponds to the principal ideal generated by xm) contains
nple − (ple − 1)w′ for l sufficiently large. This will complete the proof.

Notice that nple − (ple − 1)w′ = (n − w′)(ple − 1) + n. Therefore, we simply have to
show that (n − w′)(ple − 1) + n − m ∈ σ∨ for l sufficiently large. Let us denote by G the
face F − w′ of σ∨. Then (n− w′) is in the interior of this face and the claim will follow as
soon as we see that n −m is contained in the linear subspace G⊗ R generated by G. But
n−m = (n− w′)− (m− w′) is in G⊗ R as desired. �

Now, we are ready to describe the φ-fixed ideals of a toric variety. Set

F = { the set of all faces of σ∨}.

For any τ ∈ F , denote Jτ = 〈x
v|v ∈ relative interior(w′ + τ) ∩ S〉 and then set

Iτ =
∑

τ⊆τ ′ in F

Jτ ′.

Recall that φ( ) = φc(x
−w · ) and w′ = 1

1−pe
w.

Theorem 3.4. With notation as above, φ(F e
∗ I) = I if and only if I =

∑
τ∈G Iτ for some

subset G ⊆ F .

Proof. The only if part follows immediately from Lemma 3.1 and Lemma 3.3. Conversely,
since the φ-fixed ideals are closed under sum, it suffices to show that φ(Iτ ) = Iτ for any
τ ∈ F . Let xm ∈ Iτ , say m ∈ relative interior(w′ + τ ′) for some τ ′ ⊇ τ , i.e. xm ∈ Jτ ′. Then

• m+(pe−1)w′

pe
= w′ + m−w′

pe
∈ relative interior(w′ + τ ′), and

• pem− (pe − 1)w′ = pe(m− w′) + w′ ∈ relative interior(w′ + τ ′).

Therefore, φ(xm) = x
m+(pe−1)w′

pe ∈ Jτ ′ ⊆ Iτ , and x
m = φ(xp

em−(pe−1)w′

) ∈ φ(Jτ ′) ⊆ φ(Iτ ). �

Corollary 3.5. In this toric setting above, the set of ideals I such that φ(F e
∗ I) = I are

closed under intersection.

Remark 3.6. It follows from the previous result that in general, the set of φ-fixed ideals
agrees with the set of (φ2 = φ ◦ F e

∗φ)-fixed ideals. This is also true when φ is surjective, see
for example [Sch09, Proposition 4.1], but it fails in general as the following example shows.

The following example was clarified to us in conversations with Manuel Blickle, also com-
pare with [Die55] and [Bli01, Example 5.28].
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Example 3.7. Suppose that S = F5[x, y, z] and f = x4 + y4 + z4. Consider the map
ΦS : F∗S → S which sends x4y4z4 7→ 1 and all other monomials xiyjzk to zero (as long
as 0 ≤ i, j, k ≤ 4 = 5 − 1). Further consider the map φ : F∗S → S defined by the rule
φ( ) = ΦS(f

4 · ). It is easy to verify that φ induces a map on R = S/(f).
Set m = (x, y, z). One can verify directly that both m and m

2 = (x2, xy, xz, y2, yz, z2) are
φ-fixed (as is (f)). Furthermore, φ(x) = 2x, φ(y) = 2y and φ(z) = 2z. Therefore, for any

elements a, b, c ∈ F5, φ(ax+ by + cz) = 2a
1
5x+ 2b

1
5 y + 2c

1
5z. Thus the ideal m2 + (x) is also

φ-fixed, as is m2 + (ax+ by + cz) for any elements a, b, c ∈ F5 ⊂ F5 (this is still a finite set).
However, if one considers φ2 = φ ◦ F∗φ : F 2

∗S → S, then one has φ2(ax + by + cz) =

4a
1
25x+4b

1
25 y+4c

1
25 z so that m2+(ax+by+cz) is φ2-fixed for any elements a, b, c ∈ F52 ⊆ F5.

Thus we have found ideals that are φ2-fixed but not φ-fixed. Even more, continuing in this
way, one obtains that the set of φn-fixed ideals can become arbitrarily large as n increases.

As we saw, toric varieties do not exhibit this phenomena.

4. Intermediate adjoint ideals

In this section, we develop the theory for a potential characteristic zero analog of the
φ-fixed ideals studied in the previous section. We begin with the following situation.

Suppose that X is a normal variety over a field of characteristic zero and that Z is a
closed subset of X such that X \Z is dense in X and that ∆ is a (often effective) Q-divisor
such that KX +∆ is Q-Cartier. We consider log resolutions π : X ′ → X of X,Z,∆. In this
context, we can write KX′−π∗(KX+∆) =

∑
i aiEi (as is standard, for any proper birational

map π : X̃ → X , we assume that π∗KX̃ = KX). For each such π, we have the following set
of (possibly fractional) ideals:

I π
Z (X,∆) ={π∗OX′(⌈KX′ − π∗(KX +∆) + E⌉)|

E is a reduced divisor satisfying π(E) ⊆ Z

also such that each component Ei of E has associated ai ∈ Z.}

Definition 4.1. We define
IZ(X,∆) :=

⋃

π

I π
Z (X,∆).

We call this set the set of intermediate adjoint ideals with respect to Z.

We also give an alternative characterization of I π
Z (X,∆).

Lemma 4.2. The set of ideals I π
Z (X,∆) is equal to

{π∗OX′(⌈KX′ − π∗(KX +∆) + εE⌉)|E an effective divisor satisfying π(E) ⊆ Z

ε satisfying 1≫ ε > 0.}

Proof. It is obvious. �

We also recall several related definitions; the multiplier ideal and the maximal non-LC
ideal.

Definition 4.3. [Laz04a], [FST10], [Kaw98] Suppose that X is a normal variety over a field
of characteristic zero, that ∆ is an effective Q-divisor such that KX+∆ is Q-Cartier, a ⊆ OX
is an ideal sheaf and t ≥ 0 is a real number. Further suppose that π : X ′ → X is a log
resolution of (X,∆, a) where we set a · OX′ = OX′(−G).
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• The multiplier ideal J (X,∆, at) is defined to be

π∗OX′(⌈KX′ − π∗(KX +∆)− tG⌉)

This ideal is independent of the choice of resolution π. If J (X,∆, at) = OX , then
(X,∆, at) is said to have Kawamata log terminal (or klt) singularities.
• If E the reduced divisor on X ′ with support equal to Supp(G)∪Supp(π−1

∗ ∆)∪exc(π),
then the maximal non-LC-ideal J ′(X,∆, at) is defined to be

π∗OX′(⌈KX′ − π∗(KX +∆)− tG+ εE⌉)

where ε > 0 is arbitrarily small. This ideal is independent of the choice of resolution
π assuming that 1≫ ε > 0. If J ′(X,∆, at) = OX , then (X,∆, at) is said to have log
canonical (or lc) singularities.
• If W ⊆ X is an irreducible closed subvariety, then W is said to be a log canonical
center (or lc center) of (X,∆, at) if (X,∆, at) is lc at the generic point of W but not
klt at the generic point of W .

We prove a number of basic results about the sets J π
Z (X,∆) and JZ(X,∆).

Lemma 4.4. Suppose that X, Z, ∆ and π : X ′ → X are as above. Then the following hold:

(i) If Y ⊆ Z is closed and π is also a log resolution of Y , then I π
Y (X,∆) ⊆ I π

Z (X,∆).
(ii) For any Cartier divisor L such that π is a log resolution of ∆ and ∆ + L, we have

that

{OX(−L)⊗ I|I ∈ I π
Z (X,∆)} = I π

Z (X,∆+ L)

(iii) I π
Z (X,∆) = {π∗J |J ∈ I id

π−1(Z)(X
′, π∗(KX +∆)−KX′)}.

(iv) Suppose that π′ : X ′′ → X ′ is a proper birational map such that π ◦ π′ : X ′′ → X is
also a log resolution. Then I π◦π′

Z (X,∆) ⊇ I π
Z (X,∆).

(v) For any proper birational map σ : Y → X with Y normal, then

IZ(X,∆) = {π∗I|I ∈ Iσ−1(Z)(Y,−KY + σ∗(KX +∆))}.

(vi) If ∆ is effective, (X,∆) is log canonical and Z contains the non-Kawamata-log ter-
minal locus of (X,∆) and also satisfies Z ⊆ Sing(X) ∪ Supp(∆), then IZ(X,∆) is
the set of ideals defining all unions of log canonical centers of (X,∆).

(vii) If Z = SingX ∪ Supp∆ and ∆ ≥ 0, then the unique smallest element of IZ(X,∆)
is the multiplier ideal J (X,∆) and the unique largest element is the maximal non-
LC-ideal J ′(X,∆) of [FST10].

(viii) The set IZ(X,∆) is finite.
(ix) The set IZ(X,∆) is closed under intersection.

Proof. (i) is obvious. (ii) is a direct consequence of the projection formula. (iii) is clear from
the definition. To prove (iv), notice that for any divisor E on X ′ such that SuppE ⊆ π−1(Z),
we have that

OX′(⌈KX′ − π∗(KX +∆) + εE⌉) = π′
∗OX′′(⌈KX′′ − π′∗π∗(KX +∆) + επ′∗E)⌉)

by [Laz04b, Lemma 9.2.19]. The result then immediately follows from Lemma 4.2. For (v),
simply notice that by (iv), we may restrict ourselves to π : X ′ → X which factor through σ.
(vi) is obvious from the definition. (vii) is the definition of the multiplier ideal and maximal
non-LC-ideal respectively.
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We now prove (viii). By (v) it is sufficient to show that Iπ−1(Z)(X
′,−KX′ + π∗(KX +∆))

is finite. But using (ii), we can reduce to the case of Iπ−1(Z)(X
′,∆′) where ∆′ ≥ 0 and

(X ′,∆′) is log canonical and furthermore assume that π−1(Z) ⊆ Supp(∆). The result then
follows from (vi) since the set of log canonical centers of a log canonical pair is finite.

For (ix), suppose that I and J are contained in IZ(X,∆). By (iv), we may realize both
ideals as pushforward from a single log resolution, say I = π∗OX′(⌈KX′−π∗(KX+∆)+εE⌉)
and J = π∗OX′(⌈KX′ − π∗(KX + ∆) + εF ⌉) for some sufficiently small positive ε where E
and F are reduced divisors with image contained in Z. Let E ∧ F denote the sum of the
common components of E and F , i.e., we can write E = E ∧ F + E ′ and F = E ∧ F + F ′

where Supp(E ∧ F ), Supp(E ′) and Supp(F ′) are componentwise disjoint. Note that E ∧ F
is also a reduced divisor with π(E ∧ F ) ⊆ Z. We will show that I ∩ J = π∗OX′(⌈KX′ −
π∗(KX +∆) + ε(E ∧ F )⌉).

For the ⊆ direction, suppose that g ∈ I∩J , then divX′(g)+⌈KX′−π∗(KX+∆)+εE⌉ ≥ 0
and divX′(g) + ⌈KX′ − π∗(KX +∆)+ εF ⌉ ≥ 0. Since Supp(E ∧F ), Supp(E ′) and Supp(F ′)
are componentwise disjoint, it then immediately follows that

divX′(g) + ⌈KX′ − π∗(KX +∆) + ε(E ∧ F )⌉ ≥ 0.

Conversely, suppose that g ∈ π∗OX′(⌈KX′ − π∗(KX + ∆) + ε(E ∧ F )⌉). Thus divX′(g) +
⌈KX′ − π∗(KX + ∆) + ε(E ∧ F )⌉ ≥ 0 which immediately implies that g ∈ I and g ∈ J as
well since E ∧ F ≤ E, F . �

Question 4.5. Is the set IZ(X,∆) is closed under sums as well? In the case that (X,∆) is log
canonical, this follows from the main theorem of [Amb98] as described in [Fuj09, Theorem
3.46].

Remark 4.6. If one instead ignores the restriction on Z and considers the set

I π(X,∆) = {π∗OX′(⌈KX′ − π∗(KX +∆) + E⌉)|E a reduced divisor

such that each component Ei of E has associated ai ∈ Z.}

then it is fairly easy to see that the set has infinitely many elements (all but finitely many
being fractional ideals). Compare with Remarks 2.3 and 3.2 in the characteristic p > 0
context.

We now describe a method for producing intermediate adjoint ideals which will be crucial
in the next section.

Proposition 4.7. Suppose that (X = SpecR,∆) is a pair, that Z = SingX ∪ Supp∆ and
∆ ≥ 0. Then for any 0 6= a ⊆ R, J ′(X,∆, aδ) ∈ IZ(X,∆) for sufficiently small δ > 0.

Proof. Choose a log resolution π : X ′ → X of (X,∆, aδ) such that a · OX′ = OX′(−G). Set

E = Supp(π∗(KX +∆) + δG−KX′)≥1.

Note that E = Supp(π∗(KX+∆)−KX′)≥1 for sufficiently small δ > 0, and hence π(E) ⊆ Z.
By definition,

J ′(X,∆, aδ) = π∗OX′(⌈KX′ − π∗(KX +∆)− δG+ εE⌉)

where 0 < ε≪ 1 and ε≪ δ. Set F to be the reduced divisor made up of all components of
E that do not appear in Supp(G) (it might be that F = 0). Then we claim that π(F ) ⊆ Z

11



(which is obvious) and also that

(1) ⌈KX′ − π∗(KX +∆)− δG+ εE⌉ = ⌈KX′ − π∗(KX +∆) + εF ⌉

again for δ ≫ ε > 0 sufficiently small. This will complete the proof. To see this second
claim, consider ai, the Ei-coefficient of KX′−π∗(KX+∆), where on Ei is a component of E.
There are two cases, if Ei is a component of G, then before rounding up, the Ei-coefficient
of the left side of Equation 1 is ai− δ+ ε while the Ei-coefficient of the right side is ai, these
have the same round-up since 1≫ δ ≫ ε > 0. On the other hand, if Ei does not appear in
G, then along Ei, Equation 1 is already an equality and there is nothing to show. �

Example 4.8. Suppose that X = A2 = Spec k[x, y] and ∆ = divX(xy). In this case, (X,∆)
is log canonical and the log canonical centers are V (x), V (y), V (x, y).

5. Intermediate adjoint ideals on toric varieties

In this section we will work only with toric varieties. Throughout this section, we fixM to
be a lattice and σ to be a cone, set S = σ∨ ∩M . Let X be the affine toric variety Spec k[S]
and suppose that ∆ ≥ 0 is a torus-invariant Q-divisor on X such that KX +∆ is Q-Cartier.
Set Z = Supp∆ ∪ SingX , in this section we describe the set of ideals IZ(X,∆).

Lemma 5.1. The ideals of IZ(X,∆) are torus invariant.

Proof. First suppose that π : X ′ → X is a toric log resolution. By Lemma 4.4(v), it
is enough to show that Iπ−1Z(X

′,−KX′ + σ∗(KX + ∆)) is a collection of torus invariant
(fractional) ideals since the pushforward of a torus invariant fractional ideal is still torus
invariant. However, using the trick of 4.4(ii), it is easy to see that, up to twisting by a line
bundle on, Iπ−1Z(X

′,−KX′ +σ∗(KX +∆)) is just a finite collection of log canonical centers
of a torus invariant pair on X ′. This completes the proof. �

Remark 5.2. In the toric setting and any characteristic, we have a sufficiently good theory
of resolution of singularities to generalize the notions from Section 4 (alternately, one could
define similar notions by considering all proper birational maps instead of log resolutions).
Therefore, since in this section we work only with toric varieties, we can now work in any
characteristic (either characteristic p > 0 or characteristic zero).

We now describe the non-LC ideal sheaf J ′(X,∆, at) in the toric language. First choose
l ∈ N such that l(KX +∆) = divX(x

m) for some m ∈M .

Proposition 5.3.

J ′(X,∆, at) = 〈xv | v −
m

l
∈ tNewt(a)〉

where Newt(a) is the Newton polygon of a. In particular, the ideal J ′(X,∆) is generated by
the monomials xv such that v ∈ σ∨ and v ≥ m

l
.

Proof. Write KX′ − π∗(KX +∆)− tG =
∑
aiEi and set E to be the reduced divisor whose

components are made up of Ei such that the corresponding ai ≤ −1. It immediately follows
that xv ∈ J ′(X,∆, at) if and only if

divX′(xv) + ⌈KX′ − π∗(KX +∆)− tG+ εE⌉ ≥ 0.

We claim that this is true if and only if divX′(xv)− π∗(KX +∆)− tG ≥ 0 and we reason
as follows.
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Let Di be a torus invariant divisor and let ci be the coefficient of divX′(xv) on Di. Further
set bi to be the coefficient of −π∗(KX +∆)− tG along Di. It follows that the coefficient of
⌈KX′ − π∗(KX +∆)− tG+ εE⌉ along Di is ⌈−(1− ε) + bi⌉. Thus our claim is simply that
ci ≥ −bi if and only if ci ≥ ⌊−bi + (1− ε)⌋ for 1≫ ε > 0. But this is obvious.

Notice that the integral closure ā = π∗OX′(−G) = 〈xv | v ∈ Newt(a)〉. If t > 0 is a
rational number, we see that xv ∈ J ′(X,∆, at) if and only if v − m

l
∈ tNewt(a) as stated.

The general case is achieved by taking a limit. �

We now transition to characteristic p > 0 and show that IZ(X,∆) coincides with the
φ∆-fixed ideals. Choose w ∈M and e ∈ Z≥0 so that divX(x

w) = (1− pe)(KX +∆).

Theorem 5.4. Suppose that (X,∆) is as above and that φ : F e
∗OX → OX corresponds to

∆. Then every φ-fixed ideal appears in the set IZ(X,∆).

Proof. Using the notation in Theorem 3.4, we first show that Iτ ∈ IZ(X,∆) for each τ ∈ F .
Take a ∈ relative interior(τ) ∩ S. By Proposition 4.7, J ′(X,∆ + 1

n
divX(x

a)) ∈ IZ(X,∆)
for sufficiently large n ∈ N. Notice that

n(pe − 1)(KX +∆+
1

n
divX(x

a)) = −n divX(x
w) + (pe − 1) divX(x

a) = divX(x
−nw+(pe−1)a).

By Proposition 5.3, J ′(X,∆+ 1
n
divX(x

a)) is generated by the monomials xv such that

v ≥
−nw + (pe − 1)a

(pe − 1)n
=

1

1− pe
w +

a

n
.

Therefore, J ′(X,∆+ 1
n
divX(x

a)) coincides with the ideal Iτ .
To complete the proof, we must show that for any subset G of F , the ideal

∑

τ∈G

Iτ ∈ IZ(X,∆).

For each τ ∈ G , pick a lattice point aτ in the relative interior of τ and consider the ideal
a = 〈xaτ | τ ∈ G 〉 with integral closure ā. We claim that for 0 < δ ≪ 1,

∑

τ∈G

Iτ = J
′(X,∆, aδ) = J ′(X,∆, āδ).

Choose a toric log resolution π : X ′ → X for X,∆, a so that a · OX′ = OX′(−G) for some
Cartier divisor G. Since for each τ ∈ G , divX′(xaτ ) ≥ G, we have

Iτ = J
′(X,∆+ δ divX(x

aτ ))

= π∗OX′(⌈KX′ − π∗(KX +∆)− δ divX′(xaτ ) + εE⌉)

⊆ π∗OX′(⌈KX′ − π∗(KX +∆)− δG+ εE⌉)

= J ′(X,∆, aδ).

Given a face γ of σ, set Tγ = {xv|v ∈ relative interior(w′ + γ) ∩ S}. It remains to show
that if J ′(X,∆, aδ) ∩ Tγ 6= ∅ for some face γ of σ then γ contains some face τ ∈ G .
Let xv be a nonzero element in J ′(X,∆, aδ)∩Tγ , then v+

w
pe−1
∈ γ (note that w′ = − 1

pe−1
w

in the definition of Tγ) and by Proposition 5.3 xn
′v+n′ 1

pe−1
w ∈ ā for some n′ ∈ N, Hence

(xn
′v+n′ 1

pe−1
w)n

′′

∈ a for some n′′ ∈ N. Since n′′n′(v + 1
pe−1

w) is also in γ, it follows from the

construction of a that γ contains a face τ ∈ G , as desired. �
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Our next goal is to prove that every element of IZ(X,∆) is φ∆-fixed. We will need the
following in order to do this.

Given an effective Q-divisor ∆ such that (1− pe)(KX +∆) is Cartier, we have the corre-
sponding p−e-linear morphism φ∆ : F e

∗L → OX for some line bundle L as described in Sec-
tion 2. However, even if ∆ is not effective, we can still do something similar. Choose a Cartier
effective divisor D such that ∆ +D is effective. This produces a map φ∆+D : F e

∗L → OX
where L = OX((1−p

e)(KX +∆+D)). Twisting by D and applying the projection formula
gives us a map

φ′ : F e
∗OX((1− p

e)(KX +∆+D) + peD)→ OX(D)

which thus induces

φ∆ : F e
∗OX((1− p

e)(KX +∆)) ⊆ F e
∗OX((1− p

e)(KX +∆) +D)→ OX(D) ⊆ K(X),

where K(X) is the fraction field of X . This is the map which we declare to be the map
corresponding to ∆.

Lemma 5.5. The composition defining φ∆ above is independent of the choice of D. Explic-
itly, it is uniquely determined up to the equivalence on maps described in Subsection 2.1.

Proof. It is sufficient to show this in codimension 1 because the sheaves involved are reflexive,
and so we assume that X is the spectrum of a DVR R with uniformizer r ∈ R. We may write
∆ = a

pe−1
div(r) for some integer a and D = b div(r) for some integer b where b+ a

pe−1
≥ 0.

Consider the map ΦR : F e
∗R → R which generates HomR(F

e
∗R,R) and thus corresponds to

the divisor 0. Thus the map φ∆+D sends an element z to ΦR(r
a+b(pe−1)z). The map φ′ above

is then defined as by the rule sending z/rbp
e

to φ∆+D(z)/r
b = ΦR(r

a+b(pe−1)z)/rb. We thus
obtain a map φ′

∆, defined at the level of fraction fields, by sending z/rp
e

to ΦR(r
a+b(pe−1)z)/rb.

Making the identification of ψ : R ∼= 〈r−p
e+b〉R (corresponding to the inclusion map in

the composition defining φ∆ noting that OX((1 − pe)(KX + ∆)) ∼= OX) gives us a map
φ∆ = φ′

∆ ◦ ψ : F e
∗R→ K(R) which sends z ∈ R to z/rp

e−b = zrb/rp
e

and then to

ΦR(r
a+b(pe−1)zrb)/rb = ΦR(r

a+bpez)/rb.

Which is clearly independent of the choice of b (and thus of D). �

We now prove a lemma which allows us to identify certain Φ-fixed ideals when Φ corre-
sponds to a simple normal crossings divisor.

Lemma 5.6. Suppose that X is a regular variety, G is a reduced simple normal crossings
divisor on X and that φ : F e

∗L → K(X) is a map such that divφ has support contained in G.
Then for any effective divisor E with support also contained in G and any ε > 0 sufficiently
small, OX(⌈− divφ+εE⌉) is a φ-fixed fractional ideal.

Proof. The statement is local so we may assume that X is the spectrum of a regular local
ring. By the method of Proposition 2.1(vi), it is harmless to assume that the image of φ
is inside OX and thus that divφ is effective. Furthermore, using again Proposition 2.1(vi),
we can assume that divφ =

∑
biDi is a simple normal crossings divisor with coefficients

0 < bi ≤ 1 and in particular, the support of divφ is equal to the support of G. Therefore, by
Proposition 2.4 and Remark 2.5 it suffices to show that

OX(⌈− divφ+εE⌉) = σ(X, divφ+ε(G− E))
14



where ε is chosen sufficiently small and can be written with denominator not divisible by
p. Let B be the reduced divisor made up of components of G− E such that the coefficient
of divφ = 1 (notice, we have just arranged things so that OX(⌈− divφ+εE⌉) = OX(−B)).
Then σ(X, divφ+ε(G−E)) = σ(X, divφ+ε(G−E)−B+B) where we have arranged things
such that for each term of B, divφ+ε(G− E)− B is positive. We then claim that

OX(−B) · σ(X, divφ+ε(G− E)− B) = σ(X, divφ+ε(G− E)− B +B).

To show this, one can either mimic the argument of [FST10, Proposition 14.11(6)] or the
argument of Proposition 2.1(vi). However, (X, divφ+ε(G− E) − B) is F -pure (the divisor
is simple normal crossings with coefficients less than or equal to 1). This implies that
σ(X, divφ+ε(G− E)− B) = OX which completes the proof. �

Theorem 5.7. Suppose that (X,∆) is as above and that φ : F e
∗OX → OX corresponds to ∆

as in Section 2. If J ∈ IZ(X,∆), then J is φ-fixed.

Proof. Suppose that π : X ′ → X is a toric resolution such that J = π∗OX′(⌈KX′ − π∗(KX +
∆) + εE⌉). The map φ induces a map φ′ : F e

∗OX′(⌈KX′ − π∗(KX + ∆)⌉) → K(X ′), see
for example [HW02, Proof #2 of Theorem 3.3] and [Sch10, Theorem 6.7]. It then follows
from Lemma 5.6 that OX′(⌈KX′ − π∗(KX + ∆) + εE⌉) is a φ-fixed fractional OX′-ideal
sheaf (here we extend φ to K(X) = K(X ′) in the natural way). We need to show that
J = π∗OX′(⌈KX′−π∗(KX+∆)+εE⌉) is also φ-fixed. Thus, suppose that xm ∈ J . It follows
that xm is a section of each affine chart of OX′(⌈KX′ − π∗(KX +∆) + εE⌉). Since these are
φ-fixed, there is an element fj in each such affine chart which is sent to xm. However, this
is a fractional monomial ideal on each affine chart, and so we may assume that each fj is
a monomial. However, there is exactly one monomial in K(X ′) which is sent to xm via φ,
which implies that all the fj ’s coincide in a monomial which we will call f . Therefore f ∈ J
as well which completes the proof. �

An alternate proof of Proposition 5.7. Let J (E) denote π∗OX′(⌈KX′ − π∗(KX +∆)+ εE⌉).
Then it follows immediately from [Sch10, Theorem 6.7] that J (E) is φ∆-stable, i.e. φ∆(J (E)) ⊆
J (E). It remains to prove that φ∆|J (E) is surjective.

Assume that (1− pe)π∗(KX +∆) = divX′(xw) and hence φ∆(x
u) = x

u−w
pe if u−w

pe
∈M and

0 otherwise. Given any xu ∈ J (E), it is clear that φ∆(x
peu+w) = xu. Therefore, to prove

that φ∆|J (E) is surjective, it suffices to show that xp
eu+w is contained in J (E).

write 1
1−pe

divX′(xw) = π∗(KX +∆) =
∑

i aiDi, where {Di} is the set of toric prime Weil

divisors on X ′ and let vi be the first lattice point on the ray associated with Di. Hence

〈w, vi〉 = (1− pe)ai.

Since xu ∈ J (E), we have

divX′(xu) + ⌈
∑

i

(−1− ai)Di + εE⌉ ≥ 0.

Therefore, we have

〈u, vi〉+ ⌈−1 − ai + ε⌉ ≥ 0, when Di ∈ Supp(E)

and

〈u, vi〉+ ⌈−1 − ai⌉ ≥ 0, when Di /∈ Supp(E)
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It is not hard to see from both inequalities that

〈u, vi〉 ≥ ai.

Now
∑

i

〈peu+ w, vi〉Di + ⌈
∑

i

(−1 − ai)Di + εE⌉

=
∑

i

〈u, vi〉Di + ⌈
∑

i

(−1− ai)Di + εE⌉+ (pe − 1)
∑

i

〈u, vi〉Di +
∑

i

〈w, vi〉Di

= divX′(xu) + ⌈
∑

i

(−1 − ai)Di + εE⌉+ (pe − 1)
∑

i

(〈u, vi〉 − ai)Di ≥ 0.

Therefore, xp
eu+w ∈ J (E). This finishes the proof. �

Corollary 5.8. Suppose that X is an affine toric variety in characteristic zero or charac-
teristic p > 0 and that ∆ is an effective toric Q-divisor such that KX + ∆ is Q-Cartier so
that l(KX +∆) = div(xm). Set F to be the set of all faces of σ∨ and for any τ ∈ F , set

Kτ = 〈x
v|v ∈ relative interior(

m

l
+ τ) ∩ S〉.

Then a non-zero ideal I ⊆ S is in JZ(X,∆) if and only if there exists some subset G ⊆ F
such that

I =
∑

τ∈G

(
∑

τ⊆τ ′ in F

Kτ ′

)

Proof. The statement in characteristic zero reduces to the characteristic p > 0 statement
from reduction to characteristic p≫ 0. For the characteristic p > 0 statement, suppose that
l(KX +∆) = div(xm) in characteristic p≫ 0. Then if φ∆( ) = φc(x

−w · ), we already saw
that ∆ = (−KX) +

1
pe−1

divX(x
−w) in Section 2, thus div(x−w) = (pe − 1)(KX +∆) so that

w
1−pe

= m
l
and the result follows by Theorems 3.4, 5.4, and 5.7. �

Corollary 5.9. Suppose that X is an affine toric variety in characteristic zero or character-
istic p > 0 and that ∆ is an effective toric Q-divisor such that KX +∆ is Q-Cartier. Then
the elements of JZ(X,∆) are closed under sum.
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