UNIFORMIZATION OF SIMPLY CONNECTED FINITE TYPE LOG-RIEMANN SURFACES

KINGSHOOK BISWAS AND RICARDO PEREZ-MARCO

Abstract

We consider simply connected log-Riemann surfaces with a finite number of infinite order ramification points. We prove that these surfaces are parabolic with uniformizations given by entire functions of the form $F(z)=$ $\int Q(z) e^{P(z)} d z$ where P, Q are polynomials of degrees equal to the number of infinite and finite order ramification points respectively.

Contents

1. Introduction 1
2. Cell decompositions of log-Riemann surfaces 3
2.1. Decomposition into stars
2.2. The skeleton and fundamental group
2.3. Truncation and approximation by finite sheeted surfaces
2.4. Compactness for uniformly finite type log-Riemann surfaces
2.5. Decomposition into Kobayashi-Nevanlinna cells
2.6. Kobayashi-Nevanlinna parabolicity criterion 9
3. Uniformization theorems 11
References 12

1. Introduction

In BPM10a we defined the notion of log-Riemann surface, as a Riemann surface \mathcal{S} equipped with a local diffeomorphism $\pi: \mathcal{S} \rightarrow \mathbb{C}$ such that the set of points \mathcal{R} added in the completion $\mathcal{S}^{*}=\mathcal{S} \sqcup \mathcal{R}$ of \mathcal{S} with respect to the flat metric on \mathcal{S} induced by π is discrete. The mapping π extends to the points $p \in \mathcal{R}$, and is a covering of a punctured neighbourhood of p onto a punctured disk in \mathbb{C}; the point p is called a ramification point of \mathcal{S} of order equal to the degree of the covering π near p. The finite order ramification points may be added to \mathcal{S} to give a Riemann surface \mathcal{S}^{\times}, called the finite completion of \mathcal{S}. In this article we are interested in log-Riemann surfaces of finite type, i.e. those with finitely many ramification points and finitely generated fundamental group, in particular simply connected log-Riemann surfaces of finite type. We prove the following:

Theorem 1.1. Let \mathcal{S} be a log-Riemann surface with $d_{1}<+\infty$ infinite order ramification points and $d_{2}<+\infty$ finite order ramification points (counted with multiplicity), such that the finite completion \mathcal{S}^{\times}is simply connected. Then \mathcal{S} is biholomorphic to \mathbb{C} and the uniformization $\tilde{F}: \mathbb{C} \rightarrow \mathcal{S}^{\times}$is given by an entire function
$F=\pi \circ \tilde{F}$ of the form $F(z)=\int Q(z) e^{P(z)} d z$ where P, Q are polynomials of degrees d_{1}, d_{2} respectively.

Conversely we have:
Theorem 1.2. Let $P, Q \in \mathbb{C}[z]$ be polynomials of degrees d_{1}, d_{2} and F an entire function of the form $F(z)=\int Q(z) e^{P(z)} d z$. Then there exists a log-Riemann surface \mathcal{S} with d_{1} infinite order ramification points and d_{2} finite order ramification points (counted with multiplicity) such that F lifts to a biholomorphism $\tilde{F}: \mathbb{C} \rightarrow \mathcal{S}^{\times}$.

The entire functions of the above form were first studied by Nevanlinna Nev32, who essentially proved Theorem [1.1, although his proof is in the classical language. The uniformization theorem was also rediscovered by M. Taniguchi Tan01 in the form of a representation theorem for a class of entire functions defined by him called "structurally finite entire functions". The techniques we use are very different and adapted to the more general context of log-Riemann surfaces. In a forthcoming article BPM10b] we use these techniques to generalize the above theorems to a correspondence between higher genus finite type log-Riemann surfaces and holomorphic differentials on punctured Riemann surfaces with isolated singularities of "exponential type" at the punctures (locally of the form $g e^{h} d z$ where g, h are germs meromorphic at the puncture).

The proof of Theorem 1.1 proceeds in outline as follows: we approximate \mathcal{S} by simply connected log-Riemann surfaces \mathcal{S}_{n}^{\times}with finitely many ramification points of finite orders such that d_{1} ramification points of \mathcal{S}_{n}^{\times}converge to infinite order ramification points. The surfaces \mathcal{S}_{n} converge to \mathcal{S} in the sense of Caratheodory (as defined in BPM10a) and by the Caratheodory convergence theorem proved in BPM10a, the uniformizations \tilde{F}_{n} of \mathcal{S}_{n} converge to the uniformization \tilde{F} of \mathcal{S}. The uniformizations \tilde{F}_{n} are the lifts of polynomials $F_{n}=\pi_{n} \circ \tilde{F}_{n}$, such that the nonlinearities $G_{n}=F_{n}^{\prime \prime} / F_{n}^{\prime}$ are rational functions of uniformly bounded degree with simple poles at the critical points of F_{n}. As these critical points go to infinity as $n \rightarrow \infty$, the nonlinearity of the function $F=\pi \circ \tilde{F}$ is a polynomial, from which it follows that F is of the form $\int Q(z) e^{P(z)} d z$.

To prove Theorem 1.2 we use the converse of Caratheodory convergence theorem: we approximate $F=\int Q(z) e^{P(z)} d z$ by polynomials $F_{n}=\int Q(z)\left(1+\frac{P(z)}{n}\right)^{n} d z$. The polynomials F_{n} define \log-Riemann surfaces \mathcal{S}_{n} which then converge in the sense of Caratheodory to a log-Riemann surface \mathcal{S} defined by F, and a study of the logRiemann surfaces \mathcal{S}_{n} shows that the \log-Riemann surface \mathcal{S} has d_{1} infinite order ramification points and d_{2} finite order ramification points (counted with multiplicity).

We develop the tools necessary for the proofs in the following sections. We first describe a "cell decomposition" for log-Riemann surfaces, which allows one to approximate finite type log-Riemann surfaces by log-Riemann surfaces with finitely many ramification points of finite order. The cell decomposition allows us to read the fundamental group of a log-Riemann surface from an associated graph, and to prove a parabolicity criterion for simply connected log-Riemann surfaces which in particular implies that the \log-Riemann surfaces \mathcal{S} and \mathcal{S}_{n} considered in the proof of Theorem 1.1 are parabolic.

2. Cell decompositions of log-Riemann surfaces

We recall that a log-Riemann surface (\mathcal{S}, π) comes equipped with a path metric d induced by the flat metric $|d \pi|$. Any simple $\operatorname{arc}(\gamma(t))_{t \in I}$ in \mathcal{S} which is the lift of a straight line segment in \mathbb{C} is a geodesic segment in \mathcal{S}; we call such arc unbroken geodesic segments. Note that an unbroken geodesic segment is maximal if and only if, as t tends to an endpoint of I not in I, either $\gamma(t)$ tends to infinity, or $\gamma(t) \rightarrow p \in \mathcal{R}$.
2.1. Decomposition into stars. Let $w_{0} \in \mathcal{S}$. Given an angle $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$, for some $0<\rho\left(w_{0}, \theta\right) \leq+\infty$, there is a unique maximal unbroken geodesic segment $\gamma\left(w_{0}, \theta\right):\left[0, \rho\left(w_{0}, \theta\right)\right) \rightarrow \mathcal{S}$ starting at w_{0} which is the lift of the line segment $\left\{\pi\left(w_{0}\right)+t e^{i \theta}: 0 \leq t<\rho\left(w_{0}, \theta\right)\right\}$, such that $\gamma\left(w_{0}, \theta\right)(t) \rightarrow w^{*} \in \mathcal{R}$ if $\rho\left(w_{0}, \theta\right)<+\infty$.

Definition 2.1. The star of $w_{0} \in \mathcal{S}$ is the union of all maximal unbroken geodesics starting at w_{0},

$$
V\left(w_{0}\right):=\bigcup_{\theta \in \mathbb{R} / 2 \pi \mathbb{Z}} \gamma\left(w_{0}, \theta\right)
$$

Similarly we also define for a ramification point w^{*} of order $n \leq+\infty$ the star $V\left(w^{*}\right)$ as the union of all maximal unbroken geodesics $\gamma\left(w^{*}, \theta\right)$ starting from w^{*}, where the angle $\theta \in[-n \pi, n \pi)$:

$$
V\left(w^{*}\right):=\left\{\gamma\left(w^{*}, \theta\right)(t): 0 \leq t<\rho\left(w^{*}, \theta\right),-n \pi \leq \theta \leq n \pi\right\}
$$

Proposition 2.2. For $w_{0} \in \mathcal{S}$ the star $V\left(w_{0}\right)$ is a simply connected open subset of \mathcal{S}. The boundary $\partial V\left(w_{0}\right) \subset \mathcal{S}$ is a disjoint union of maximal unbroken geodesic segments in \mathcal{S}.

Proof: Since \mathcal{R} is closed, the function $\rho\left(w_{0}, \theta\right)$ is upper semi-continuous in θ, from which it follows easily that $V\left(w_{0}\right)$ is open. Moreover π is injective on each $\gamma\left(w_{0}, \theta\right)$, hence is a diffeomorphism from $V\left(w_{0}\right)$ onto its image $\mathbb{C}-F$, where F is the disjoint union of closed line segments $\left\{\pi\left(w_{0}\right)+t e^{i \theta}: \rho\left(w_{0}, \theta\right)<+\infty, t \geq \rho\left(w_{0}, \theta\right)\right\}$; clearly $\mathbb{C}-F$ is simply connected. By continuity of π, each component C of $\partial V\left(w_{0}\right)$ is contained in $\pi^{-1}(\gamma)$ for some segment γ in F, hence is an unbroken geodesic segment $(\alpha(t))_{t \in I}$. Since C is closed in \mathcal{S}, C must be maximal. \diamond

The set of ramification points \mathcal{R} is discrete, hence countable. Let $L \supset \pi(\mathcal{R})$ be the union in \mathbb{C} of all straight lines joining points of $\pi(\mathcal{R})$. Then $\mathbb{C}-L$ is dense in \mathbb{C}. By a generic fiber we mean a fiber $\pi^{-1}\left(z_{0}\right)=\left\{w_{i}\right\}$ of π such that $z_{0} \in \mathbb{C}-L$.

Proposition 2.3. Let $\left\{w_{i}\right\}$ be a generic fiber. Then:
(1) The stars $\left\{V\left(w_{i}\right)\right\}$ are disjoint.
(2) The connected components of the stars $\partial V\left(w_{i}\right)$ are geodesic rays $\gamma:(0,+\infty) \rightarrow$ \mathcal{S} such that $\gamma(t) \rightarrow w^{*} \in \mathcal{R}$ as $t \rightarrow 0, \gamma(t) \rightarrow \infty$ as $t \rightarrow \infty$.
(3) The union of the stars is dense in \mathcal{S} :

$$
\mathcal{S}=\overline{\bigcup_{i} V\left(w_{i}\right)}=\bigcup_{i} \overline{V\left(w_{i}\right)}
$$

Proof: (1): If $w \in V\left(w_{i}\right) \cap V\left(w_{j}\right)$ then the geodesic segments from w to w_{i}, w_{j} are lifts of $\left[\pi(w), z_{0}\right]$, so by uniqueness of lifts (π is a local diffeomorphism) $w_{i}=w_{j}$.
(2): By the previous Proposition, each component of $\partial V\left(w_{i}\right)$ is a maximal unbroken geodesic segment $\gamma:(0, r) \rightarrow \mathcal{S}$ with $\lim _{t \rightarrow 0} \gamma(t)=w^{*} \in \mathcal{R}$ where w^{*} is a ramification point such that $\pi(\gamma)$ is a straight line segment contained in the straight line through $\pi\left(w_{i}\right)$ and $\pi\left(w^{*}\right)$. If $r<+\infty$ then $\gamma(t) \rightarrow w_{1}^{*} \in \mathcal{R}$ as $t \rightarrow r$, so $\pi\left(w_{i}\right)$ must lie on the straight line through $\pi\left(w^{*}\right), \pi\left(w_{1}^{*}\right)$, contradicting the fact that $\left\{w_{i}\right\}$ is a generic fiber. Hence $r=+\infty$.
(3): Given $p \in \mathcal{S}$, if $\pi(p) \neq z_{0}$, take a path $(p(t))_{0<t<\epsilon} \subset \mathcal{S}$ converging to p as $t \rightarrow 0$ such that the line segments $\left[\pi(p(t)), z_{0}\right]$ make distinct angles at z_{0}, then the discreteness of \mathcal{R} implies that for t small enough these line segments admit lifts; again by discreteness of \mathcal{R} for some i we have $p(t) \in V\left(w_{i}\right)$ for all t small, and $p \in \overline{V\left(w_{i}\right)} . \diamond$

It is easy to see that for $w_{i} \neq w_{j}$, the components of $\partial V\left(w_{i}\right), \partial V\left(w_{j}\right)$ are either disjoint or equal, and each component can belong to at most two such stars. The above Propositions hence give a cell decomposition of \mathcal{S} into cells $V\left(w_{i}\right)$ glued along boundary arcs $\gamma \subset \partial V\left(w_{i}\right), \partial V\left(w_{j}\right)$.
2.2. The skeleton and fundamental group. Let $\pi^{-1}\left(z_{0}\right)=\left\{w_{i}\right\}$ be a generic fiber. The 1 -skeleton of the cell decomposition into stars gives an associated graph:

Definition 2.4. The skeleton $\Gamma\left(\mathcal{S}, z_{0}\right)$ is the graph with vertices given by the stars $V\left(w_{i}\right)$, and an edge between $V\left(w_{i}\right)$ and $V\left(w_{j}\right)$ for each connected component γ of $\partial V\left(w_{i}\right) \cap \partial V\left(w_{j}\right)$. Each edge corresponds to a geodesic ray $\gamma:(0,+\infty) \rightarrow \mathcal{S}$ starting at a ramification point. This gives us a map from edges to ramification points, foot : $\gamma \mapsto$ foot $(\gamma):=\lim _{t \rightarrow 0} \gamma(t) \in \mathcal{R} \in \overline{V\left(w_{i}\right)} \cap \overline{V\left(w_{j}\right)}$.

For $w^{*} \in \mathcal{R}$ we let $C\left(w^{*}\right)=\left\{\gamma:\right.$ foot $\left.(\gamma)=w^{*}\right\}$.
We omit the proof of the following proposition which is straightforward:
Proposition 2.5. If w^{*} is of finite order n then $C\left(w^{*}\right)=\left(\gamma_{i}\right)_{1 \leq i \leq n}$ is a cycle of edges in Γ of length n. If w^{*} is of infinite order then $C\left(w^{*}\right)=\left(\gamma_{i}\right)_{i \in \mathbb{Z}}$ is a bi-infinite path of edges in Γ.

We can compute the fundamental group of a log-Riemann surface from its skeleton:

Proposition 2.6. The log-Riemann surface \mathcal{S} deformation retracts onto $\Gamma\left(\mathcal{S}, z_{0}\right)$. In particular $\pi_{1}(\mathcal{S})=\pi_{1}\left(\Gamma\left(\mathcal{S}, z_{0}\right)\right)$.

Proof: Let $\partial V\left(w_{i}\right)=\sqcup_{k \in J_{i}} \gamma_{i k}$ be the decomposition of $\partial V\left(w_{i}\right)$ into its connected components. Choose points $v_{i k} \in \gamma_{i k}$, satisfying $v_{i k}=v_{j l}$ if $\gamma_{i k}=\gamma_{k l}$. Choose
 $\overline{V\left(w_{i}\right)}$ deformation retracts onto the union of the arcs $\alpha_{i k}$; moreover for $i, j \in I$ we can choose the retractions compatibly on arcs $\gamma \subset \partial V\left(w_{i}\right) \cap \partial V\left(w_{j}\right)$, giving a retraction of \mathcal{S} onto the union of all $\operatorname{arcs} \alpha_{i k}, i \in I, k \in J_{k}$, which is homeomorphic to $\Gamma\left(\mathcal{S}, z_{0}\right)$. \diamond

The relation of $\Gamma\left(\mathcal{S}, z_{0}\right)$ to the finitely completed log-Riemann surface \mathcal{S}^{\times}is as follows:

Definition 2.7. The finitely completed skeleton $\Gamma^{\times}\left(\mathcal{S}, z_{0}\right)$ is the graph obtained from $\Gamma\left(\mathcal{S}, z_{0}\right)$ as follows: for each finite order ramification point w^{*}, add a vertex $v=v\left(w^{*}\right)$ to $\Gamma\left(\mathcal{S}, z_{0}\right)$, remove all edges in the cycle $C\left(w^{*}\right)$ and add an edge from v_{i} to v for each vertex v_{i} in the cycle $C\left(w^{*}\right)$.

Then as above we have:
Proposition 2.8. The finitely completed log-Riemann surface \mathcal{S}^{\times}deformation retracts onto the finitely completed skeleton $\Gamma^{\times}\left(\mathcal{S}, z_{0}\right)$.

Proof: Let w^{*} be a finite order ramification point. Observe that in the proof of the previous Proposition, for $\gamma=\gamma_{i k}$ an edge in $C\left(w^{*}\right)$, in the finitely completed \log-Riemann surface the arc $\alpha_{i k}$ can be be homotoped to an arc $\tilde{\alpha}_{i k}$ from w_{i} to w^{*}. Then \mathcal{S}^{\times}deformation retracts onto the union of the $\operatorname{arcs} \alpha_{i k}, \tilde{\alpha}_{i k}$ which is homeomorphic to $\Gamma^{\times}\left(\mathcal{S}, z_{0}\right)$. \diamond

Given a graph Γ satisfying certain compatibility conditions along with the information of the locations of the ramification points, we can also construct an associated log-Riemann surface \mathcal{S} with skeleton Γ :

Proposition 2.9. Let $\Gamma=(V, E)$ be a connected graph with countable vertex and edge sets and a map foot $: E \rightarrow \mathbb{C}$. For each vertex v let E_{v} be the set of edges with a vertex at v and let $R_{v}=$ foot $\left(E_{v}\right)$. Assume that the following hold:
(1) The image foot $(E) \subset \mathbb{C}$ is discrete.
(2) For all vertices v and points $z \in R_{v}$, the intersection foot ${ }^{-1}(z) \cap E_{v}$ has exactly two edges, labelled $\left\{e_{z}(v,+), e_{z}(v,-)\right\}$.
(3) For an edge e between vertices v, v^{\prime} with foot $(e)=z$, either $e=e_{z}(v,+)=$ $e_{z}\left(v^{\prime},-\right)$ or $e=e_{z}(v,-)=e_{z}\left(v^{\prime},+\right)$.

Then there exists a log-Riemann surface \mathcal{S} with skeleton $\Gamma\left(\mathcal{S}, z_{0}\right)=\Gamma$ for some $z_{0} \in \mathbb{C}$.

Proof: Let $L \subset \mathbb{C}$ be the union of all straight lines through pairs of points in foot (E), and let $z_{0} \in \mathbb{C}-L$. For each vertex v of Γ, let L_{v} be the union of the half-lines l_{z} starting at points $z \in R_{v}$ with direction $z-z_{0}$. By assumption (1) this collection of half-lines is locally finite. Let U_{v} be the domain $\mathbb{C}-L_{v}$. Equip U_{v} with the path metric $d(a, b)=\inf _{\beta} \int_{\beta}|d z|$ (infimum taken over all rectifiable paths β joining a and b). Then the metric completion U_{v}^{*} of U_{v} is given by adjoining for each $z \in R_{v}$ two copies of l_{z} (the two 'sides' of the slit l_{z}) intersecting at a point z_{v}, which we denote by

$$
U_{v}^{*}=U_{v} \bigsqcup_{z \in R_{v}}\left(l_{z}(v,+) \cup l_{z}(v,-)\right)
$$

where we take $l_{z}(v,+)$ to be the 'upper side' and $l_{z}(v,-)$ the 'lower' side (so $z \rightarrow$ $l_{z}(v,+)$ if $z \rightarrow l_{z}$ in U_{v} with $\arg \left(z-z_{0}\right)$ increasing and $z \rightarrow l_{z}(v,-)$ if $z \rightarrow l_{z}$ in U_{v} with $\arg \left(z-z_{0}\right)$ decreasing $)$. The inclusion of U_{v} in \mathbb{C} extends to a local isometry $\pi_{v}: U_{v}^{*} \rightarrow \mathbb{C}$ with $\pi_{v}\left(l_{z}(v,+)\right)=\pi_{v}\left(l_{z}(v,-)\right)=l_{z}$.

Let \mathcal{S}^{*} be

$$
\mathcal{S}^{*}=\bigsqcup_{v \in V} U_{v}^{*} / \sim
$$

with the following identifications: for each edge e with vertices v, v^{\prime} and foot $(\gamma)=z$, if $e=e_{z}(v,+)=e_{z}\left(v^{\prime},-\right)$ we paste isometrically the half-lines $l_{z}(v,+), l_{z}\left(v^{\prime},-\right)$, otherwise we paste isometrically $l_{z}(v,-), l_{z}\left(v^{\prime},+\right)$. The identifications are compatible with the maps π_{v}, giving a a map $\pi: \mathcal{S}^{*} \rightarrow \mathbb{C}$. We let $\mathcal{R} \subset \mathcal{S}^{*}$ be the subset corresponding to the points $\left\{z_{v}\right\}$ and $\mathcal{S}=\mathcal{S}^{*}-\mathcal{R}$.

Since $\pi(\mathcal{R})=$ foot (E) is discrete, the set \mathcal{R} is discrete. Moreover π restricted to \mathcal{S} is a local isometry, and the completion of \mathcal{S} with respect to the induced path metric is precisely \mathcal{S}^{*}, hence \mathcal{S} is a log-Riemann surface. The fiber $\pi^{-1}\left(z_{0}\right)$ is generic since $z_{0} \in \mathbb{C}-L$. The stars with respect to this fiber are precisely the open subsets $U_{v} \subset \mathcal{S}$. For any star U_{v} its closure in \mathcal{S}^{*} is the image of U_{v}^{*} in \mathcal{S}^{*}. For vertices v, v^{\prime}, according to the above identifications between $U_{v}^{*}, U_{v^{\prime}}^{*}$ in \mathcal{S}^{*}, each component of $\partial U_{v} \cap \partial U_{v^{\prime}}$ (if non-empty) is a half-line l arising from an edge e between v_{1}, v_{2}, of either the form $l=l_{z}(v,+)=l_{z}\left(v^{\prime},-\right)$ or $l=l_{z}(v,-)=l_{z}\left(v^{\prime},+\right)$. It follows that $\Gamma\left(\mathcal{S}, z_{0}\right)=\Gamma$. \diamond
2.3. Truncation and approximation by finite sheeted surfaces. We can use the decomposition into stars to approximate any log-Riemann surface by finite sheeted log-Riemann surfaces by "truncating" infinite order ramification points to finite order ramification points. More precisely we have:

Theorem 2.10. Let (\mathcal{S}, p) be a pointed log-Riemann surface. Then:
(1) There exists a sequence of pointed log-Riemann surfaces $\left(\mathcal{S}_{n}, p_{n}\right)$ converging to (\mathcal{S}, p) in the Caratheodory topology such that each \mathcal{S}_{n} has only finitely many ramification points all of finite order.
(2) If \mathcal{S}^{\times}is simply connected then all the surfaces \mathcal{S}_{n}^{\times}are simply connected.

We recall the definition of convergence of log-Riemann surfaces in the Caratheodory topology from BPM10a: $\left(\mathcal{S}_{n}, p_{n}\right) \rightarrow(\mathcal{S}, p)$ if for any compact $K \subset \mathcal{S}$ containing p there exists $N=N(K) \geq 1$ such that for all $n \geq N$ there is an isometric embedding $\iota_{n, K}$ of K into \mathcal{S}_{n} mapping p to p_{n} which is a translation in the charts π, π_{n} on $\mathcal{S}, \mathcal{S}_{n}$.

Proof of Theorem 2.10; (1): Since the generic fibers are dense in \mathcal{S} we may assume without loss of generality that $p=w_{0}$ lies in a generic fiber $\left\{w_{i}\right\}=\pi^{-1}\left(z_{0}\right)$. Let $V_{i}=V\left(w_{i}\right)$ be the corresponding stars and $\Gamma=\Gamma\left(\mathcal{S}, z_{0}\right)$ the associated skeleton, equipped with the graph metric d_{Γ} (where each edge has length 1). For any star V_{i} and $R>0$, the set $\overline{V_{i}} \cap \overline{B\left(w_{i}, R\right)}$ is compact, so it contains at most finitely many ramification points. It follows that the collection of edges

$$
\mathcal{E}\left(V_{i}, R\right):=\left\{\gamma: \gamma \text { is an edge with a vertex at } V_{i}, \text { foot }(\gamma) \in \overline{B\left(w_{i}, R\right)}\right\}
$$

is finite, and hence so is the corresponding collection of vertices

$$
\mathcal{V}\left(V_{i}, R\right):=\left\{V_{j}: \gamma \in \mathcal{E}\left(V_{i}, R\right) \text { is an edge between } V_{i}, V_{j}\right\} .
$$

For $n \geq 1$ we define collections of edges and vertices $\left(\mathcal{E}_{n, k}\right)_{1 \leq k \leq n},\left(\mathcal{V}_{n, k}\right)_{1 \leq k \leq n}$ as follows:

We let $\mathcal{E}_{n, 1}=\mathcal{E}\left(V_{0}, n\right), \mathcal{V}_{n, 1}=\mathcal{V}\left(V_{0}, n\right)$ and for $1<k \leq n$,

$$
\begin{aligned}
\mathcal{E}_{n, k} & :=\bigcup_{V_{i} \in \mathcal{V}_{n, k-1}} \mathcal{E}\left(V_{i}, n\right) \\
\mathcal{V}_{n, k} & :=\bigcup_{V_{i} \in \mathcal{V}_{n, k-1}} \mathcal{V}\left(V_{i}, n\right)
\end{aligned}
$$

This gives us finite connected subgraphs $\Gamma_{n}=\left(\mathcal{V}_{n, n}, \mathcal{E}_{n, n}\right)$ of Γ increasing to Γ. Let

$$
\hat{\mathcal{S}}_{n}=\bigcup_{V \in \mathcal{V}_{n, n}} \bar{V} \subset \mathcal{S}^{*}
$$

be the corresponding union of stars in \mathcal{S}^{*}. It is a Riemann surface with boundary, each boundary component being an edge γ of Γ_{n}. We paste appropriate boundary components isometrically to obtain a Riemann surface without boundary $\mathcal{S}_{n}=$ $\hat{\mathcal{S}}_{n} / \sim$ as follows:

We let \mathcal{R}_{n} be the set of ramification points $\left\{\operatorname{foot}(\gamma): \gamma \in \mathcal{E}_{n, n}\right\}$. For $w^{*} \in \mathcal{R}_{n}$ we let $\Gamma_{n}\left(w^{*}\right)$ be the subgraph of Γ_{n} consisting of vertices V_{i} and edges γ such that $w^{*}=\operatorname{foot}(\gamma) \in \overline{V_{i}}$. Two cases arise:
(i) The ramification point w^{*} is of finite order: Then there are finitely many stars V_{i} such that $w^{*} \in \overline{V_{i}}$. If $\Gamma_{n}\left(w^{*}\right)$ does not contain all of them, then the union of stars $\overline{V_{i}}, V_{i} \in \Gamma_{n}\left(w^{*}\right)$ has two boundary components, both of which are lifts of a half-line in \mathbb{C} starting at $\pi\left(w^{*}\right)$; in this case we can paste the two components by an isometry which is the identity in charts.
(ii) The ramification point w^{*} is of infinite order: Then the union of stars $\overline{V_{i}}, V_{i} \in$ $\Gamma_{n}\left(w^{*}\right)$ always has two boundary components, both of which are lifts of a half-line in \mathbb{C} starting at $\pi\left(w^{*}\right)$; we paste the two components by an isometry which is the identity in charts.

Let $q_{n}: \hat{\mathcal{S}}_{n} \rightarrow \hat{\mathcal{S}}_{n} / \sim$ denote the quotient of $\hat{\mathcal{S}}_{n}$ under the identifications made in (i), (ii). The subset $\mathcal{S}_{n}:=\left(\hat{\mathcal{S}}_{n} / \sim\right)-q_{n}\left(\mathcal{R}_{n}\right)$ is a Riemann surface without boundary. Since the identifications are compatible with the map π, π induces a map $\pi_{n}: \mathcal{S}_{n} \rightarrow \mathbb{C}$ which is a local diffeomorphism. The completion of \mathcal{S}_{n} with respect to the flat metric induced by π_{n} is isometric to $\hat{\mathcal{S}}_{n} / \sim$, so that \mathcal{S}_{n} is a log-Riemann surface with finite ramification set $q_{n}\left(\mathcal{R}_{n}\right)$; it is clear from the construction in (i), (ii) above that these ramification points are all of finite order. We let $p_{n}=q_{n}(p)$.

Any compact $K \subset \mathcal{S}$ containing p can only intersect finitely many stars V_{i} and hence $K \subset \hat{\mathcal{S}}_{n}$ for n large enough. Moreover for n large K does not intersect the boundary of $\hat{\mathcal{S}}_{n}$ (which is contained in stars going to infinity in Γ as n goes to infinity), hence the quotient map q_{n} isometrically embeds K in \mathcal{S}_{n}. Thus $\left(\mathcal{S}_{n}, p_{n}\right)$ converges to (\mathcal{S}, p) as required.
(2): The graph $\Gamma\left(\mathcal{S}_{n}, z_{0}\right)$ can be obtained by adding edges to the finite graph Γ_{n} between certain vertices corresponding to edges in the sets $C\left(w^{*}\right)$, $w^{*} \in \mathcal{R}_{n}$, to give cycles $C\left(q_{n}\left(w^{*}\right)\right)$ in $\Gamma\left(\mathcal{S}_{n}, z_{0}\right)$. If \mathcal{S}^{\times}is simply connected then by Proposition 2.8 the graph $\Gamma^{\times}\left(\mathcal{S}, z_{0}\right)$ is a tree. It follows from the construction of $\Gamma^{\times}\left(\mathcal{S}, z_{0}\right)$ that $\pi_{1}\left(\Gamma\left(\mathcal{S}, z_{0}\right)\right)$ is generated by cycles corresponding to finite order ramification points
and hence $\pi_{1}\left(\Gamma\left(\mathcal{S}_{n}, z_{0}\right)\right)$ is generated by the cycles $C\left(q_{n}\left(w^{*}\right)\right)$. In constructing $\Gamma^{\times}\left(\mathcal{S}_{n}, z_{0}\right)$ from $\Gamma\left(\mathcal{S}_{n}, z_{0}\right)$ these cycles become trivial so $\pi_{1}\left(\Gamma^{\times}\left(\mathcal{S}_{n}, z_{0}\right)\right)$ is trivial. \diamond
2.4. Compactness for uniformly finite type log-Riemann surfaces. The family of finite type log-Riemann surfaces with a given uniform bound on the number of ramification points is compact, in the following sense:

Theorem 2.11. Let $\left(\mathcal{S}_{n}, p_{n}\right)$ be a sequence of pointed log-Riemann surfaces with ramification sets \mathcal{R}_{n}. If for some $M, \epsilon>0$ we have $\# \mathcal{R}_{n} \leq M, d\left(p_{n}, \mathcal{R}_{n}\right)>\epsilon$ for all n then there is a pointed log-Riemann surface (\mathcal{S}, p) with ramification set \mathcal{R} such that $\# \mathcal{R} \leq M$ and $\left(\mathcal{S}_{n}, p_{n}\right)$ converges to (\mathcal{S}, p) along a subsequence.

Proof: Composing π_{n} with a translation if necessary we may assume $\pi_{n}\left(p_{n}\right)=0$ for all n. Since $d\left(p_{n}, \mathcal{R}_{n}\right)>\epsilon$ we can change p_{n} slightly (within the ball $B\left(p_{n}, \epsilon\right)$) to assume without loss of generality that the fiber $\pi_{n}^{-1}(0)$ containing p_{n} is generic. Let Γ_{n} be the corresponding skeleton and $v_{n, 0}$ the vertex containing p_{n}. Passing to a subsequence we may assume the projections $\pi_{n}\left(\mathcal{R}_{n}\right)$ converge (in the Hausdorff topology) to a finite set $\left\{w_{1}^{*}, \ldots, w_{N}^{*}\right\} \cup\{\infty\} \subset \widehat{\mathbb{C}}-B(0, \epsilon)$ (where $N \leq M$), and for all n lie in small disjoint neighbourhoods B_{1}, \ldots, B_{N} and B of the points of $R=\left\{w_{1}^{*}, \ldots, w_{N}^{*}\right\}$ and ∞ respectively.

Let $\gamma_{1}, \ldots, \gamma_{N}$ be generators for the group $G=\pi_{1}(\mathbb{C}-R)$ where each γ_{i} is a simple closed curve in $\mathbb{C}-\left(B \cup_{i} B_{i}\right)$ starting at the origin with winding number one around B_{i} and zero around $B_{j}, j \neq i$. There is a natural action of G on the vertices of Γ_{n} : given a vertex v, let w be the point of the fiber $\pi_{n}^{-1}(0)$ in v. Then any $g \in G$ has a unique lift \tilde{g} to \mathcal{S}_{n} starting at w. Let $g \cdot v$ be the vertex of Γ_{n} containing the endpoint of \tilde{g}.

We define a graph $\Gamma_{n}^{\prime}=\left(V_{n}, E_{n}\right)$ as follows: the vertex set V_{n} is the orbit of $v_{n, 0}$ under G. We put an edge e between distinct vertices v, v^{\prime} of Γ_{n}^{\prime} for each generator $\gamma \in\left\{\gamma_{i}^{ \pm}, i=1, \ldots, N\right\}$ such that $v^{\prime}=\gamma \cdot v$. We define foot ${ }_{n}(e)=w_{i}^{*}$ if the edge e corresponds to either of the generators $\gamma_{i}, \gamma_{i}^{-1}$. This defines a map foot $_{n}: E_{n} \rightarrow R \subset \mathbb{C}$.

For $v \in V_{n}$ let E_{v} be the set of edges with a vertex at v and $R_{v}=\operatorname{foot}_{n}\left(E_{v}\right) \subset R$. Since $\gamma_{i} \cdot v=v$ if and only if $\gamma_{i}^{-1} \cdot v=v$, it follows that for $z=w_{i}^{*} \in R_{v}$, the intersection foot ${ }_{n}^{-1}(z) \cap E_{v}$ consists of precisely the two edges corresponding to the generators $\gamma_{i}, \gamma_{i}^{-1}$; we label these edges as $e_{z}(v,+), e_{z}(v,-)$.

It is easy to see that the graphs Γ_{n}^{\prime} satisfy the hypotheses of Proposition 2.9 Since each vertex has valence at most $2 N$, the balls $B\left(v_{n, 0}, k\right)$ are finite, so we can pass to a subsequence such that the pointed graphs $\left(\Gamma_{n}^{\prime}, v_{n, 0}\right)$ converge to a limit pointed graph $\left(\Gamma=(V, E), v_{0}\right)$, in the sense that for any $k \geq 1$, for all n large enough there is an isomorphism i_{n} of the ball $B\left(v_{0}, k\right)$ with $B\left(v_{n, 0}, k\right)$ taking v_{0} to $v_{n, 0}$. We may also assume that the isomorphisms i_{n} for different n are compatible with the mappings foot ${ }_{n}$ and the labeled edges $e_{z}(v,+), e_{z}(v,-)$, thus inducing a corresponding mapping foot $: E \rightarrow R \subset \mathbb{C}$ and a labeling of the edges of Γ. Then the limit graph Γ satisfies the hypotheses of Proposition 2.9 and we obtain a corresponding pointed log-Riemann surface (\mathcal{S}, p) ramified over the points of R such that $\Gamma(\mathcal{S}, 0)=\Gamma$, with p in a generic fiber $\pi^{-1}(0)$, and the star containing p
corresponding to the vertex v_{0} of Γ. Moreover \mathcal{S} has at most N ramification points. It is easy to see that any compact $K \subset \mathcal{S}$ containing p embeds isometrically in all the log-Riemann surfaces \mathcal{S}_{n} via an isometry ι_{n} such that $\iota_{n}(p)=p_{n}, \iota_{n}^{\prime}(p)=1$, hence $\left(\mathcal{S}_{n}, p_{n}\right)$ converges to (\mathcal{S}, p). \diamond
2.5. Decomposition into Kobayashi-Nevanlinna cells. Let \mathcal{S} be a log-Riemann surface with $\mathcal{R} \neq \emptyset$. We define a cellular decomposition of \mathcal{S} due to Kobayashi Kob35 and Nevanlinna (Nev53 which is useful in determining the type (parabolic or hyperbolic) of simply connected log-Riemann surfaces.

Definition 2.12. Let $w^{*} \in \mathcal{R}$. The Kobayashi-Nevanlinna cell of w^{*} is defined to be the set

$$
W\left(w^{*}\right):=\left\{w \in \mathcal{S}^{*} \mid d\left(w, w^{*}\right)<d\left(w, \mathcal{R}-\left\{w^{*}\right\}\right)\right\}
$$

Proposition 2.13. The Kobayashi-Nevanlinna cells satisfy:
(1) Any $w \in W\left(w^{*}\right)$ lies on an unbroken geodesic $\left[w^{*}, w\right] \subset W\left(w^{*}\right)$. In particular $W\left(w^{*}\right) \subset V\left(w^{*}\right)$ is open and path-connected.
(2) The boundary of $W\left(w^{*}\right)$ is a locally finite union of geodesic segments.
(3) $\mathcal{S}=\overline{\cup_{w^{*} \in \mathcal{R}} W\left(w^{*}\right)}$

Proof: (1): For any $w \in W\left(w^{*}\right), w \neq w^{*}$, since $\mathcal{R} \neq \emptyset$ there is a maximal unbroken geodesic $\gamma(w, \theta)$ converging to a point of \mathcal{R} at one end, and since w^{*} is the point in \mathcal{R} closest to w, there must be such a geodesic $\left[w, w^{*}\right]$ converging to w^{*}. Moreover for any $w^{\prime} \in\left[w, w^{*}\right], w_{1}^{*} \in \mathcal{R}-\left\{w^{*}\right\}$, we have

$$
d\left(w^{*}, w^{\prime}\right)=d\left(w^{*}, w\right)-d\left(w, w^{\prime}\right)<d\left(w_{1}^{*}, w\right)-d\left(w, w^{\prime}\right) \leq d\left(w_{1}^{*}, w^{\prime}\right)
$$

hence $\left[w, w^{*}\right] \subset W\left(w^{*}\right)$.
(2): Let $w \in \partial W\left(w^{*}\right)$. By discreteness of \mathcal{R} there are finitely many ramification points $w^{*}=w_{1}^{*}, \ldots, w_{n}^{*}$ at minimal distance $r>0$ from w, and $n \geq 2$. The disc $B(w, r)$ is a euclidean disk, with the points w_{i}^{*} lying on its boundary; the angular bisectors of the sectors formed by $\left[w, w_{i}^{*}\right],\left[w, w_{i+1}^{*}\right]$ then are equidistant from w_{i}^{*}, w_{i+1}^{*} and lie in $\partial W\left(w_{i}^{*}\right) \cap \partial W\left(w_{i+1}^{*}\right)$, while all other points in the disk lie in $W\left(w_{i}^{*}\right)$ for some i. Hence a neighbourhood of w in $\partial W\left(w^{*}\right)$ is given either by a geodesic segment passing through w (if $n=2$) or by two geodesic segments meeting at w (if $n>2$).
(3): Any $w \in \mathcal{S}$ belongs to $\overline{W\left(w^{*}\right)}$ for any ramification point w^{*} at minimal distance from w.
2.6. Kobayashi-Nevanlinna parabolicity criterion. We consider a log-Riemann surface \mathcal{S} such that the finite completion \mathcal{S}^{\times}is simply connected. We will use the following theorem of Nevanlinna (Nev53 p. 317):

Theorem 2.14. Let $F \subset \mathcal{S}^{\times}$be a discrete set and $U: \mathcal{S}^{\times}-F \rightarrow[0,+\infty)$ be a continuous function such that:
(1) U is C^{1} except on at most a family of locally finite piecewise smooth curves.
(2) U has isolated critical points.
(3) $U \rightarrow+\infty$ as $z \rightarrow F$ or as $z \rightarrow \infty$.

For $\rho>0$ let Γ_{ρ} be the union of the curves where $U=\rho$, and let

$$
L(\rho)=\int_{\Gamma_{\rho}}\left|\operatorname{grad}_{z} U\right||d z|
$$

where $\left|\operatorname{grad}_{z} U \| d z\right|$ is the conformally invariant differential given by $\sqrt{\left(\frac{\partial U}{\partial x}\right)^{2}+\left(\frac{\partial U}{\partial y}\right)^{2}}|d z|$ for a local coordinate $z=x+i y$. If the integral

$$
\int_{0}^{\infty} \frac{d \rho}{L(\rho)}
$$

is divergent then the surface \mathcal{S}^{\times}is parabolic.
We now define a function U on \mathcal{S} as follows:
Let ω be the continuous differential $\omega:=\left|d \arg \left(w-w^{*}\right)\right|$, where for each $w \in \mathcal{S}$, w^{*} is a ramification point such that $w \in \overline{W\left(w^{*}\right)}$. Fix a base point $w_{0} \in \mathcal{S}$ and define $\tau: \mathcal{S} \rightarrow[0,+\infty)$ by

$$
\tau(w):=\inf \int_{w_{0}}^{w} \omega
$$

where the infimum is taken over all paths from w_{0} to w. We define another nonnegative continuous function $\sigma: \mathcal{S} \rightarrow[0,+\infty)$ by

$$
\sigma(w):=|\log | w-w^{*}| |
$$

where as before for each $w \in \mathcal{S}$ the point w^{*} is a ramification point such that $w \in \overline{W\left(w^{*}\right)}$.

Then the sum $U=\tau+\sigma: \mathcal{S} \rightarrow \mathbb{R}$ is a function satisfying the conditions (1)-(3) of the above theorem. The map $t=\sigma+i \tau$ gives a local holomorphic coordinate away from the boundaries of the Kobayashi-Nevanlinna cells, for which we have $\left|\operatorname{grad}_{t} U\right||d t|=\sqrt{2}|d t|$. On a level set $\Gamma_{\rho}=\{U=\rho\}$ we have $0 \leq \tau \leq \rho, t=$ $(\rho-\tau)+i \tau$, so $\left|\operatorname{grad}_{t} U\right||d t|=\sqrt{2}|d t|=2|d \tau|$. For a given $\theta>0$, the connected components of the level set $\{\tau(w)=\theta\}$ are Euclidean line segments which are halflines or intervals; let $0 \leq n(\theta) \leq \infty$ denote the number of such line segments. Each such segment intersects Γ_{ρ} in at most one point; hence we obtain

$$
L(\rho)=\int_{\Gamma_{\rho}}\left|\operatorname{grad}_{t} U\right||d t|=2 \int_{\Gamma_{\rho}}|d \tau| \leq \int_{0}^{\rho} n(\theta) d \theta
$$

Using Theorem 2.14 above, we obtain the following:
Theorem 2.15. Let \mathcal{S} be a log-Riemann surface such that \mathcal{S}^{\times}is simply connected. For $\theta>0$ let $0 \leq n(\theta) \leq \infty$ denote the number of connected components of the level set $\{\tau(w)=\theta\}$. If the integral

$$
\int_{0}^{\infty} \frac{d \rho}{\int_{0}^{\rho} n(\theta) d \theta}
$$

is divergent then \mathcal{S}^{\times}is biholomorphic to \mathbb{C}.

This implies:
Corollary 2.16. Let \mathcal{S} be a log-Riemann surface with a finite number of ramification points such that \mathcal{S}^{\times}is simply connected. Then \mathcal{S} is biholomorphic to \mathbb{C}.

Proof: In this case the function $n(\theta)$ is bounded above by twice the number of ramification points of \mathcal{S}, so $\int_{0}^{\rho} n(\theta) d \theta \leq C \rho$ and hence the integral in Theorem 2.15 diverges. \diamond

3. Uniformization theorems

We can now prove Theorem 1.1 as follows:
Proof of Theorem 1.1; Let $p \in \mathcal{S}$. Let D_{1}, D_{2} be the numbers of infinite and finite order ramification points respectively of \mathcal{S}. By Corollary 2.16 the logRiemann surface \mathcal{S}^{\times}is biholomorphic to \mathbb{C}. The approximating finitely completed \log-Riemann surfaces \mathcal{S}_{n}^{\times}given by Theorem2.10 are also biholomorphic to \mathbb{C} and for n large all have $D_{1}+D_{2}$ ramification points. Let $\tilde{F}: \mathbb{C} \rightarrow \mathcal{S}^{\times}$and $\tilde{F}_{n}: \mathbb{C} \rightarrow \mathcal{S}_{n}^{\times}$be corresponding normalized uniformizations such that $\tilde{F}(0)=p, \tilde{F}^{\prime}(0)=1, \tilde{F}_{n}(0)=$ $p_{n}, \tilde{F}_{n}^{\prime}(0)=1$, with inverses $G=\tilde{F}^{-1}, G_{n}=\tilde{F}_{n}^{-1}$. By Theorem 1.2 of BPM10a the entire functions $F_{n}=\pi_{n} \circ \tilde{F}_{n}$ converge uniformly on compacts to the entire function $F=\pi \circ \tilde{F}$. Since $\pi_{n}: \mathcal{S}_{n}^{\times} \rightarrow \mathbb{C}$ is finite to one, the entire function F_{n} has a pole at ∞ of order equal to the degree of π_{n}, and is hence a polynomial. The nonlinearities $R_{n}=F_{n}^{\prime \prime} / F_{n}^{\prime}$ are rational functions whose poles are simple poles with integer residues at the critical points of F_{n}, which are images of the ramification points of \mathcal{S}_{n} under G_{n}. Thus the rational functions R_{n} are all of degree $D_{1}+D_{2}$, converging normally to $F^{\prime \prime} / F^{\prime}$, so $R=F^{\prime \prime} / F^{\prime}$ is a rational function of degree at most D.

Each ramification point w^{*} of \mathcal{S} corresponds to a ramification point w_{n}^{*} of \mathcal{S}_{n} of order converging to that of w^{*}. We note that for n large any compact $K \subset$ \mathcal{S}^{\times}containing p embeds into the approximating surfaces \mathcal{S}_{n}^{\times}. Since the maps G_{n} converge to G uniformly on compacts of \mathcal{S}^{\times}by Theorem 1.1 BPM10a, the images under G_{n} of ramification points in \mathcal{S}_{n}^{\times}corresponding to finite ramification points in \mathcal{S} converge to their images under G, giving in the limit D_{2} simple poles of R, with residue at each equal to the order of the corresponding finite ramification point of \mathcal{S} minus one.

On the other hand the infinite order ramification points of \mathcal{S} are not contained in \mathcal{S}^{\times}, so the images of the corresponding ramification points in \mathcal{S}_{n}^{\times}under G_{n} cannot be contained in any compact in \mathbb{C} and hence converge to infinity. The rational functions R_{n} have a simple zero at infinity, and have D_{1} simple poles converging to infinity. Applying the Argument Principle to a small circle around infinity it follows that R has a pole of order $D_{1}-1$ at infinity.

Thus R is of the form

$$
\frac{F^{\prime \prime}}{F^{\prime}}=\sum_{i=1}^{D_{2}} \frac{m_{i}-1}{z-z_{i}}+P^{\prime}(z)
$$

where $m_{1}, \ldots, m_{D_{2}}$ are the orders of the finite ramification points of \mathcal{S} and P is a polynomial of degree D_{1}. Integrating the above equation gives

$$
F(z)=\pi(p)+\int_{0}^{z}\left(t-z_{1}\right)^{m_{1}-1} \ldots\left(t-z_{D_{2}}\right)^{m_{D_{2}}-1} e^{P(t)} d t
$$

as required. \diamond
We can prove the converse using the above Theorem and the compactness Theorem. We need a lemma:

Lemma 3.1. Let $\left(\mathcal{S}_{n}, p_{n}\right)$ converge to (\mathcal{S}, p). If all the surfaces \mathcal{S}_{n}^{\times}are simply connected then \mathcal{S}^{\times}is simply connected.

Proof: We may assume the points p_{n}, p belong to generic fibers. Let Γ_{n}, Γ denote the corresponding skeletons. Let γ be a loop in \mathcal{S}^{\times}based at p. We may homotope γ away from the finite ramification points to assume that $\gamma \subset \mathcal{S}$. By Proposition 2.6. γ corresponds to a path of edges $\alpha=\left\{e_{1}, \ldots, e_{n}\right\}$. By induction on the number of edges we may assume that α is simple. If foot $(\alpha)=\left\{w^{*}\right\}$ is a singleton then w^{*} is a finite ramification point and γ is trivial in \mathcal{S}^{\times}. Otherwise there are distinct ramification points $w_{1}^{*}, w_{2}^{*} \in$ foot (α). Considering the isometric embedding of γ in \mathcal{S}_{n} for n large gives a path γ_{n} and a corresponding path of edges α_{n}; for n large, it follows that there are distinct ramification points in foot ${ }_{n}\left(\alpha_{n}\right)$, hence γ_{n} is non-trivial in \mathcal{S}_{n}^{\times}, a contradiction. \diamond
Proof of Theorem 1.2; Given an entire function F with $F^{\prime}(z)=Q(z) e^{P(z)}$ we can approximate it by polynomials F_{n} such that $F_{n}^{\prime}(z)=Q(z)(1+P(z) / n)^{n}$. Let $Z_{n}=\{P=-n\} \cup\{Q=0\} \cup \subset \mathbb{C}$ be the zeroes of F_{n}^{\prime}. The pair $\left(\mathcal{S}_{n}=\mathbb{C}-Z_{n}, \pi_{n}=\right.$ $\left.F_{n}: \mathbb{C}-Z_{n} \rightarrow \mathbb{C}\right)$ is a log-Riemann surface with finite ramification set \mathcal{R}_{n} which can be naturally identified with Z_{n}, the order of a ramification point being the local degree of F_{n} at the corresponding point of Z_{n}.

For n large the surfaces \mathcal{S}_{n} all have the same number of ramification points $D=D_{1}+D_{2}$ where D_{1} is the degree of P and D_{2} the number of distinct zeroes of Q. Moreover since F_{n}^{\prime} converge uniformly on compacts, choosing a point z_{0} such that $Q\left(z_{0}\right) \neq 0$, for all n large $\left|F_{n}^{\prime}\right|$ is uniformly bounded away from 0 on a fixed neighbourhood of z_{0}, so $d\left(z_{0}, \mathcal{R}_{n}\right)$ is uniformly bounded away from 0 . It follows from Theorem 2.11 that $\left(\mathcal{S}_{n}, p_{n}=z_{0}\right)$ converge along a subsequence to a limit log-Riemann surface (\mathcal{S}, p) with finitely many ramification points such that $\pi(p)=z_{0}$. Since \mathcal{S}_{n}^{\times}is simply connected for all n, by the previous Lemma \mathcal{S}^{\times}is simply connected. By Theorem 2.16, \mathcal{S}^{\times}is biholomorphic to \mathbb{C}. Let $\tilde{F}: \mathbb{C} \rightarrow \mathcal{S}^{\times}$ be a normalized uniformization such that $\tilde{F}\left(z_{0}\right)=p, \tilde{F}^{\prime}\left(z_{0}\right)=F^{\prime}\left(z_{0}\right)$. It follows from Theorem 1.2 of BPM10a] that the maps F_{n} converge normally to $\pi \circ \tilde{F}$, so $F=\pi \circ \tilde{F}$. Thus F defines the uniformization of a simply connected log-Riemann surface with finitely many ramification points. The degrees of Q, P relate to the numbers of finite poles and poles at infinity respectively of the nonlinearity $F^{\prime \prime} / F^{\prime}$; the relations between the degrees of Q, P and the numbers of finite and infinite order ramification points of \mathcal{S} then follow from the previous Theorem. \diamond

References

[BPM10a] K. Biswas and R. Perez-Marco. Log-riemann surfaces, caratheodory convergence and euler's formula. preprint, 2010.
[BPM10b] K. Biswas and R. Perez-Marco. Uniformization of higher genus finite type log-riemann surfaces. preprint, 2010.
[Kob35] Z. Kobayashi. Theorems on the conformal representation of riemann surfaces. Sci. Rep. Tokyo Bunrika Daigaku, sect. A, 39, 1935.
[Nev32] R. Nevanlinna. Uber riemannsche flache mit endlich vielen windungspunk- ten. Acta Mathematica, 58, 1932.
[Nev53] R. Nevanlinna. Analytic functions. Grundlehren der Matematischen Wissenschaften in Einzeldarstellungen 162, 2nd Edition, Springer Verlag, 1953.
[Tan01] M. Tanighuchi. Explicit representation of structurally finite entire functions. Proc. Japan Acad., 77, pages 69-71, 2001.

RKM Vivekananda University, Belur Math, WB-711 202, India
CNRS, LAGA, UMR 7539, Université Paris 13, Villetaneuse, France

