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UNIFORMIZATION OF SIMPLY CONNECTED FINITE TYPE

LOG-RIEMANN SURFACES

KINGSHOOK BISWAS AND RICARDO PEREZ-MARCO

Abstract. We consider simply connected log-Riemann surfaces with a finite
number of infinite order ramification points. We prove that these surfaces are
parabolic with uniformizations given by entire functions of the form F (z) =∫
Q(z)eP (z) dz where P,Q are polynomials of degrees equal to the number of

infinite and finite order ramification points respectively.
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1. Introduction

In [BPM10a] we defined the notion of log-Riemann surface, as a Riemann surface
S equipped with a local diffeomorphism π : S → C such that the set of points R
added in the completion S∗ = S⊔R of S with respect to the flat metric on S induced
by π is discrete. The mapping π extends to the points p ∈ R, and is a covering of
a punctured neighbourhood of p onto a punctured disk in C; the point p is called a
ramification point of S of order equal to the degree of the covering π near p. The
finite order ramification points may be added to S to give a Riemann surface S×,
called the finite completion of S. In this article we are interested in log-Riemann
surfaces of finite type, i.e. those with finitely many ramification points and finitely
generated fundamental group, in particular simply connected log-Riemann surfaces
of finite type. We prove the following:

Theorem 1.1. Let S be a log-Riemann surface with d1 < +∞ infinite order ram-
ification points and d2 < +∞ finite order ramification points (counted with multi-
plicity), such that the finite completion S× is simply connected. Then S is biholo-

morphic to C and the uniformization F̃ : C → S× is given by an entire function
1
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F = π ◦ F̃ of the form F (z) =
∫

Q(z)eP (z)dz where P,Q are polynomials of degrees
d1, d2 respectively.

Conversely we have:

Theorem 1.2. Let P,Q ∈ C[z] be polynomials of degrees d1, d2 and F an en-
tire function of the form F (z) =

∫

Q(z)eP (z)dz. Then there exists a log-Riemann
surface S with d1 infinite order ramification points and d2 finite order ramification
points (counted with multiplicity) such that F lifts to a biholomorphism F̃ : C → S×.

The entire functions of the above form were first studied by Nevanlinna [Nev32],
who essentially proved Theorem 1.1, although his proof is in the classical language.
The uniformization theorem was also rediscovered by M. Taniguchi [Tan01] in the
form of a representation theorem for a class of entire functions defined by him called
”structurally finite entire functions”. The techniques we use are very different and
adapted to the more general context of log-Riemann surfaces. In a forthcoming
article [BPM10b] we use these techniques to generalize the above theorems to a
correspondence between higher genus finite type log-Riemann surfaces and holo-
morphic differentials on punctured Riemann surfaces with isolated singularities of
”exponential type” at the punctures (locally of the form gehdz where g, h are germs
meromorphic at the puncture).

The proof of Theorem 1.1 proceeds in outline as follows: we approximate S by
simply connected log-Riemann surfaces S×

n with finitely many ramification points
of finite orders such that d1 ramification points of S×

n converge to infinite order
ramification points. The surfaces Sn converge to S in the sense of Caratheodory
(as defined in [BPM10a]) and by the Caratheodory convergence theorem proved

in [BPM10a], the uniformizations F̃n of Sn converge to the uniformization F̃ of

S. The uniformizations F̃n are the lifts of polynomials Fn = πn ◦ F̃n, such that
the nonlinearities Gn = F ′′

n /F
′
n are rational functions of uniformly bounded degree

with simple poles at the critical points of Fn. As these critical points go to infinity
as n → ∞, the nonlinearity of the function F = π ◦ F̃ is a polynomial, from which
it follows that F is of the form

∫

Q(z)eP (z)dz.

To prove Theorem 1.2 we use the converse of Caratheodory convergence theorem:

we approximate F =
∫

Q(z)eP (z)dz by polynomials Fn =
∫

Q(z)(1+ P (z)
n )ndz. The

polynomials Fn define log-Riemann surfaces Sn which then converge in the sense
of Caratheodory to a log-Riemann surface S defined by F , and a study of the log-
Riemann surfaces Sn shows that the log-Riemann surface S has d1 infinite order
ramification points and d2 finite order ramification points (counted with multiplic-
ity).

We develop the tools necessary for the proofs in the following sections. We
first describe a ”cell decomposition” for log-Riemann surfaces, which allows one to
approximate finite type log-Riemann surfaces by log-Riemann surfaces with finitely
many ramification points of finite order. The cell decomposition allows us to read
the fundamental group of a log-Riemann surface from an associated graph, and to
prove a parabolicity criterion for simply connected log-Riemann surfaces which in
particular implies that the log-Riemann surfaces S and Sn considered in the proof
of Theorem 1.1 are parabolic.
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2. Cell decompositions of log-Riemann surfaces

We recall that a log-Riemann surface (S, π) comes equipped with a path metric
d induced by the flat metric |dπ|. Any simple arc (γ(t))t∈I in S which is the lift of
a straight line segment in C is a geodesic segment in S; we call such arc unbroken
geodesic segments. Note that an unbroken geodesic segment is maximal if and
only if, as t tends to an endpoint of I not in I, either γ(t) tends to infinity, or
γ(t) → p ∈ R.

2.1. Decomposition into stars. Let w0 ∈ S. Given an angle θ ∈ R/2πZ, for
some 0 < ρ(w0, θ) ≤ +∞, there is a unique maximal unbroken geodesic segment
γ(w0, θ) : [0, ρ(w0, θ)) → S starting at w0 which is the lift of the line segment
{π(w0)+teiθ : 0 ≤ t < ρ(w0, θ)}, such that γ(w0, θ)(t) → w∗ ∈ R if ρ(w0, θ) < +∞.

Definition 2.1. The star of w0 ∈ S is the union of all maximal unbroken geodesics
starting at w0,

V (w0) :=
⋃

θ∈R/2πZ

γ(w0, θ)

.
Similarly we also define for a ramification point w∗ of order n ≤ +∞ the star

V (w∗) as the union of all maximal unbroken geodesics γ(w∗, θ) starting from w∗,
where the angle θ ∈ [−nπ, nπ):

V (w∗) := {γ(w∗, θ)(t) : 0 ≤ t < ρ(w∗, θ),−nπ ≤ θ ≤ nπ}

Proposition 2.2. For w0 ∈ S the star V (w0) is a simply connected open subset
of S. The boundary ∂V (w0) ⊂ S is a disjoint union of maximal unbroken geodesic
segments in S.

Proof: Since R is closed, the function ρ(w0, θ) is upper semi-continuous in θ, from
which it follows easily that V (w0) is open. Moreover π is injective on each γ(w0, θ),
hence is a diffeomorphism from V (w0) onto its image C−F , where F is the disjoint
union of closed line segments {π(w0) + teiθ : ρ(w0, θ) < +∞, t ≥ ρ(w0, θ)}; clearly
C − F is simply connected. By continuity of π, each component C of ∂V (w0)
is contained in π−1(γ) for some segment γ in F , hence is an unbroken geodesic
segment (α(t))t∈I . Since C is closed in S, C must be maximal. ⋄

The set of ramification points R is discrete, hence countable. Let L ⊃ π(R) be
the union in C of all straight lines joining points of π(R). Then C − L is dense in
C. By a generic fiber we mean a fiber π−1(z0) = {wi} of π such that z0 ∈ C− L.

Proposition 2.3. Let {wi} be a generic fiber. Then:
(1) The stars {V (wi)} are disjoint.
(2) The connected components of the stars ∂V (wi) are geodesic rays γ : (0,+∞) →
S such that γ(t) → w∗ ∈ R as t → 0, γ(t) → ∞ as t → ∞.
(3) The union of the stars is dense in S:

S =
⋃

i

V (wi) =
⋃

i

V (wi)
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Proof: (1): If w ∈ V (wi)∩V (wj) then the geodesic segments from w to wi, wj are
lifts of [π(w), z0], so by uniqueness of lifts (π is a local diffeomorphism) wi = wj .

(2): By the previous Proposition, each component of ∂V (wi) is a maximal un-
broken geodesic segment γ : (0, r) → S with limt→0 γ(t) = w∗ ∈ R where w∗ is a
ramification point such that π(γ) is a straight line segment contained in the straight
line through π(wi) and π(w∗). If r < +∞ then γ(t) → w∗

1 ∈ R as t → r, so π(wi)
must lie on the straight line through π(w∗), π(w∗

1), contradicting the fact that {wi}
is a generic fiber. Hence r = +∞.

(3): Given p ∈ S, if π(p) 6= z0, take a path (p(t))0<t<ǫ ⊂ S converging to p as
t → 0 such that the line segments [π(p(t)), z0] make distinct angles at z0, then the
discreteness of R implies that for t small enough these line segments admit lifts;
again by discreteness of R for some i we have p(t) ∈ V (wi) for all t small, and

p ∈ V (wi). ⋄
It is easy to see that for wi 6= wj , the components of ∂V (wi), ∂V (wj) are either

disjoint or equal, and each component can belong to at most two such stars. The
above Propositions hence give a cell decomposition of S into cells V (wi) glued along
boundary arcs γ ⊂ ∂V (wi), ∂V (wj).

2.2. The skeleton and fundamental group. Let π−1(z0) = {wi} be a generic
fiber. The 1-skeleton of the cell decomposition into stars gives an associated graph:

Definition 2.4. The skeleton Γ(S, z0) is the graph with vertices given by the stars
V (wi), and an edge between V (wi) and V (wj) for each connected component γ
of ∂V (wi) ∩ ∂V (wj). Each edge corresponds to a geodesic ray γ : (0,+∞) → S
starting at a ramification point. This gives us a map from edges to ramification
points, foot : γ 7→ foot(γ) := limt→0 γ(t) ∈ R ∈ V (wi) ∩ V (wj).

For w∗ ∈ R we let C(w∗) = {γ : foot(γ) = w∗}.

We omit the proof of the following proposition which is straightforward:

Proposition 2.5. If w∗ is of finite order n then C(w∗) = (γi)1≤i≤n is a cycle of
edges in Γ of length n. If w∗ is of infinite order then C(w∗) = (γi)i∈Z is a bi-infinite
path of edges in Γ.

We can compute the fundamental group of a log-Riemann surface from its skele-
ton:

Proposition 2.6. The log-Riemann surface S deformation retracts onto Γ(S, z0).
In particular π1(S) = π1(Γ(S, z0)).

Proof: Let ∂V (wi) = ⊔k∈Ji
γik be the decomposition of ∂V (wi) into its connected

components. Choose points vik ∈ γik, satisfying vik = vjl if γik = γkl. Choose
simple arcs αik, k ∈ Ji, joining wi to vik within V (wi), with αik∩αik′ = {wi}. Then
V (wi) deformation retracts onto the union of the arcs αik; moreover for i, j ∈ I
we can choose the retractions compatibly on arcs γ ⊂ ∂V (wi) ∩ ∂V (wj), giving a
retraction of S onto the union of all arcs αik, i ∈ I, k ∈ Jk, which is homeomorphic
to Γ(S, z0). ⋄
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The relation of Γ(S, z0) to the finitely completed log-Riemann surface S× is as
follows:

Definition 2.7. The finitely completed skeleton Γ×(S, z0) is the graph obtained
from Γ(S, z0) as follows: for each finite order ramification point w∗, add a vertex
v = v(w∗) to Γ(S, z0), remove all edges in the cycle C(w∗) and add an edge from
vi to v for each vertex vi in the cycle C(w∗).

Then as above we have:

Proposition 2.8. The finitely completed log-Riemann surface S× deformation re-
tracts onto the finitely completed skeleton Γ×(S, z0).

Proof: Let w∗ be a finite order ramification point. Observe that in the proof of
the previous Proposition, for γ = γik an edge in C(w∗), in the finitely completed
log-Riemann surface the arc αik can be be homotoped to an arc α̃ik from wi to
w∗. Then S× deformation retracts onto the union of the arcs αik, α̃ik which is
homeomorphic to Γ×(S, z0). ⋄

Given a graph Γ satisfying certain compatibility conditions along with the in-
formation of the locations of the ramification points, we can also construct an
associated log-Riemann surface S with skeleton Γ:

Proposition 2.9. Let Γ = (V,E) be a connected graph with countable vertex and
edge sets and a map foot : E → C. For each vertex v let Ev be the set of edges with
a vertex at v and let Rv = foot(Ev). Assume that the following hold:

(1) The image foot(E) ⊂ C is discrete.

(2) For all vertices v and points z ∈ Rv, the intersection foot−1(z)∩Ev has exactly
two edges, labelled {ez(v,+), ez(v,−)}.
(3) For an edge e between vertices v, v′ with foot(e) = z, either e = ez(v,+) =
ez(v

′,−) or e = ez(v,−) = ez(v
′,+).

Then there exists a log-Riemann surface S with skeleton Γ(S, z0) = Γ for some
z0 ∈ C.

Proof: Let L ⊂ C be the union of all straight lines through pairs of points in
foot(E), and let z0 ∈ C − L. For each vertex v of Γ, let Lv be the union of the
half-lines lz starting at points z ∈ Rv with direction z− z0. By assumption (1) this
collection of half-lines is locally finite. Let Uv be the domain C − Lv. Equip Uv

with the path metric d(a, b) = infβ
∫

β |dz| (infimum taken over all rectifiable paths

β joining a and b). Then the metric completion U∗
v of Uv is given by adjoining for

each z ∈ Rv two copies of lz (the two ’sides’ of the slit lz) intersecting at a point
zv, which we denote by

U∗
v = Uv

⊔

z∈Rv

(lz(v,+) ∪ lz(v,−))

where we take lz(v,+) to be the ’upper side’ and lz(v,−) the ’lower’ side (so z →
lz(v,+) if z → lz in Uv with arg(z− z0) increasing and z → lz(v,−) if z → lz in Uv

with arg(z − z0) decreasing). The inclusion of Uv in C extends to a local isometry
πv : U∗

v → C with πv(lz(v,+)) = πv(lz(v,−)) = lz.
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Let S∗ be

S∗ =
⊔

v∈V

U∗
v / ∼

with the following identifications: for each edge e with vertices v, v′ and foot(γ) = z,
if e = ez(v,+) = ez(v

′,−) we paste isometrically the half-lines lz(v,+), lz(v
′,−),

otherwise we paste isometrically lz(v,−), lz(v
′,+). The identifications are compat-

ible with the maps πv, giving a a map π : S∗ → C. We let R ⊂ S∗ be the subset
corresponding to the points {zv} and S = S∗ −R.

Since π(R) = foot(E) is discrete, the set R is discrete. Moreover π restricted
to S is a local isometry, and the completion of S with respect to the induced path
metric is precisely S∗, hence S is a log-Riemann surface. The fiber π−1(z0) is
generic since z0 ∈ C − L. The stars with respect to this fiber are precisely the
open subsets Uv ⊂ S. For any star Uv its closure in S∗ is the image of U∗

v in
S∗. For vertices v, v′, according to the above identifications between U∗

v , U
∗
v′ in S∗,

each component of ∂Uv ∩ ∂Uv′ (if non-empty) is a half-line l arising from an edge e
between v1, v2, of either the form l = lz(v,+) = lz(v

′,−) or l = lz(v,−) = lz(v
′,+).

It follows that Γ(S, z0) = Γ. ⋄

2.3. Truncation and approximation by finite sheeted surfaces. We can use
the decomposition into stars to approximate any log-Riemann surface by finite
sheeted log-Riemann surfaces by ”truncating” infinite order ramification points to
finite order ramification points. More precisely we have:

Theorem 2.10. Let (S, p) be a pointed log-Riemann surface. Then:

(1) There exists a sequence of pointed log-Riemann surfaces (Sn, pn) converging
to (S, p) in the Caratheodory topology such that each Sn has only finitely many
ramification points all of finite order.

(2) If S× is simply connected then all the surfaces S×
n are simply connected.

We recall the definition of convergence of log-Riemann surfaces in the Caratheodory
topology from [BPM10a]: (Sn, pn) → (S, p) if for any compact K ⊂ S containing p
there exists N = N(K) ≥ 1 such that for all n ≥ N there is an isometric embedding
ιn,K of K into Sn mapping p to pn which is a translation in the charts π, πn on
S,Sn.

Proof of Theorem 2.10: (1): Since the generic fibers are dense in S we may
assume without loss of generality that p = w0 lies in a generic fiber {wi} = π−1(z0).
Let Vi = V (wi) be the corresponding stars and Γ = Γ(S, z0) the associated skeleton,
equipped with the graph metric dΓ (where each edge has length 1). For any star Vi

and R > 0, the set Vi ∩ B(wi, R) is compact, so it contains at most finitely many
ramification points. It follows that the collection of edges

E(Vi, R) := {γ : γ is an edge with a vertex at Vi, foot(γ) ∈ B(wi, R)}
is finite, and hence so is the corresponding collection of vertices

V(Vi, R) := {Vj : γ ∈ E(Vi, R) is an edge between Vi, Vj}.
For n ≥ 1 we define collections of edges and vertices (En,k)1≤k≤n, (Vn,k)1≤k≤n as
follows:
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We let En,1 = E(V0, n),Vn,1 = V(V0, n) and for 1 < k ≤ n,

En,k :=
⋃

Vi∈Vn,k−1

E(Vi, n)

Vn,k :=
⋃

Vi∈Vn,k−1

V(Vi, n)

This gives us finite connected subgraphs Γn = (Vn,n, En,n) of Γ increasing to Γ.
Let

Ŝn =
⋃

V ∈Vn,n

V ⊂ S∗

be the corresponding union of stars in S∗. It is a Riemann surface with boundary,
each boundary component being an edge γ of Γn. We paste appropriate boundary
components isometrically to obtain a Riemann surface without boundary Sn =
Ŝn/ ∼ as follows:

We let Rn be the set of ramification points {foot(γ) : γ ∈ En,n}. For w∗ ∈ Rn

we let Γn(w
∗) be the subgraph of Γn consisting of vertices Vi and edges γ such that

w∗ = foot(γ) ∈ Vi. Two cases arise:

(i) The ramification point w∗ is of finite order: Then there are finitely many stars
Vi such that w∗ ∈ Vi. If Γn(w

∗) does not contain all of them, then the union of
stars Vi, Vi ∈ Γn(w

∗) has two boundary components, both of which are lifts of a
half-line in C starting at π(w∗); in this case we can paste the two components by
an isometry which is the identity in charts.

(ii) The ramification point w∗ is of infinite order: Then the union of stars Vi, Vi ∈
Γn(w

∗) always has two boundary components, both of which are lifts of a half-line
in C starting at π(w∗); we paste the two components by an isometry which is the
identity in charts.

Let qn : Ŝn ։ Ŝn/ ∼ denote the quotient of Ŝn under the identifications made

in (i), (ii). The subset Sn := (Ŝn/ ∼) − qn(Rn) is a Riemann surface without
boundary. Since the identifications are compatible with the map π, π induces a map
πn : Sn → C which is a local diffeomorphism. The completion of Sn with respect
to the flat metric induced by πn is isometric to Ŝn/ ∼, so that Sn is a log-Riemann
surface with finite ramification set qn(Rn); it is clear from the construction in (i),
(ii) above that these ramification points are all of finite order. We let pn = qn(p).

Any compact K ⊂ S containing p can only intersect finitely many stars Vi and

hence K ⊂ Ŝn for n large enough. Moreover for n large K does not intersect the
boundary of Ŝn (which is contained in stars going to infinity in Γ as n goes to
infinity), hence the quotient map qn isometrically embeds K in Sn. Thus (Sn, pn)
converges to (S, p) as required.
(2): The graph Γ(Sn, z0) can be obtained by adding edges to the finite graph Γn

between certain vertices corresponding to edges in the sets C(w∗), w∗ ∈ Rn, to give
cycles C(qn(w

∗)) in Γ(Sn, z0). If S× is simply connected then by Proposition 2.8
the graph Γ×(S, z0) is a tree. It follows from the construction of Γ×(S, z0) that
π1(Γ(S, z0)) is generated by cycles corresponding to finite order ramification points
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and hence π1(Γ(Sn, z0)) is generated by the cycles C(qn(w
∗)). In constructing

Γ×(Sn, z0) from Γ(Sn, z0) these cycles become trivial so π1(Γ
×(Sn, z0)) is trivial. ⋄

2.4. Compactness for uniformly finite type log-Riemann surfaces. The
family of finite type log-Riemann surfaces with a given uniform bound on the num-
ber of ramification points is compact, in the following sense:

Theorem 2.11. Let (Sn, pn) be a sequence of pointed log-Riemann surfaces with
ramification sets Rn. If for some M, ǫ > 0 we have #Rn ≤ M,d(pn,Rn) > ǫ for
all n then there is a pointed log-Riemann surface (S, p) with ramification set R such
that #R ≤ M and (Sn, pn) converges to (S, p) along a subsequence.

Proof: Composing πn with a translation if necessary we may assume πn(pn) = 0
for all n. Since d(pn,Rn) > ǫ we can change pn slightly (within the ball B(pn, ǫ))
to assume without loss of generality that the fiber π−1

n (0) containing pn is generic.
Let Γn be the corresponding skeleton and vn,0 the vertex containing pn. Passing to
a subsequence we may assume the projections πn(Rn) converge (in the Hausdorff

topology) to a finite set {w∗
1 , . . . , w

∗
N} ∪ {∞} ⊂ Ĉ − B(0, ǫ) (where N ≤ M), and

for all n lie in small disjoint neighbourhoods B1, . . . , BN and B of the points of
R = {w∗

1 , . . . , w
∗
N} and ∞ respectively.

Let γ1, . . . , γN be generators for the group G = π1(C − R) where each γi is a
simple closed curve in C − (B ∪i Bi) starting at the origin with winding number
one around Bi and zero around Bj , j 6= i. There is a natural action of G on the
vertices of Γn: given a vertex v, let w be the point of the fiber π−1

n (0) in v. Then
any g ∈ G has a unique lift g̃ to Sn starting at w. Let g · v be the vertex of Γn

containing the endpoint of g̃.

We define a graph Γ′
n = (Vn, En) as follows: the vertex set Vn is the orbit of

vn,0 under G. We put an edge e between distinct vertices v, v′ of Γ′
n for each

generator γ ∈ {γ±
i , i = 1, . . . , N} such that v′ = γ · v. We define footn(e) = w∗

i

if the edge e corresponds to either of the generators γi, γ
−1
i . This defines a map

footn : En → R ⊂ C.

For v ∈ Vn let Ev be the set of edges with a vertex at v and Rv = footn(Ev) ⊂ R.
Since γi · v = v if and only if γ−1

i · v = v, it follows that for z = w∗
i ∈ Rv, the

intersection foot−1
n (z)∩Ev consists of precisely the two edges corresponding to the

generators γi, γ
−1
i ; we label these edges as ez(v,+), ez(v,−).

It is easy to see that the graphs Γ′
n satisfy the hypotheses of Proposition 2.9.

Since each vertex has valence at most 2N , the balls B(vn,0, k) are finite, so we can
pass to a subsequence such that the pointed graphs (Γ′

n, vn,0) converge to a limit
pointed graph (Γ = (V,E), v0), in the sense that for any k ≥ 1, for all n large
enough there is an isomorphism in of the ball B(v0, k) with B(vn,0, k) taking v0 to
vn,0. We may also assume that the isomorphisms in for different n are compatible
with the mappings footn and the labeled edges ez(v,+), ez(v,−), thus inducing
a corresponding mapping foot : E → R ⊂ C and a labeling of the edges of Γ.
Then the limit graph Γ satisfies the hypotheses of Proposition 2.9 and we obtain
a corresponding pointed log-Riemann surface (S, p) ramified over the points of R
such that Γ(S, 0) = Γ, with p in a generic fiber π−1(0), and the star containing p
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corresponding to the vertex v0 of Γ. Moreover S has at most N ramification points.
It is easy to see that any compact K ⊂ S containing p embeds isometrically in all
the log-Riemann surfaces Sn via an isometry ιn such that ιn(p) = pn, ι

′
n(p) = 1,

hence (Sn, pn) converges to (S, p). ⋄

2.5. Decomposition into Kobayashi-Nevanlinna cells. Let S be a log-Riemann
surface with R 6= ∅. We define a cellular decomposition of S due to Kobayashi
[Kob35] and Nevanlinna ([Nev53] which is useful in determining the type (para-
bolic or hyperbolic) of simply connected log-Riemann surfaces.

Definition 2.12. Let w∗ ∈ R. The Kobayashi-Nevanlinna cell of w∗ is defined to
be the set

W (w∗) := {w ∈ S∗|d(w,w∗) < d(w,R− {w∗})}

Proposition 2.13. The Kobayashi-Nevanlinna cells satisfy:
(1) Any w ∈ W (w∗) lies on an unbroken geodesic [w∗, w] ⊂ W (w∗). In particular
W (w∗) ⊂ V (w∗) is open and path-connected.
(2) The boundary of W (w∗) is a locally finite union of geodesic segments.

(3) S = ∪w∗∈RW (w∗)

Proof: (1): For any w ∈ W (w∗), w 6= w∗, since R 6= ∅ there is a maximal unbroken
geodesic γ(w, θ) converging to a point of R at one end, and since w∗ is the point in
R closest to w, there must be such a geodesic [w,w∗] converging to w∗. Moreover
for any w′ ∈ [w,w∗], w∗

1 ∈ R− {w∗}, we have

d(w∗, w′) = d(w∗, w)− d(w,w′) < d(w∗
1 , w)− d(w,w′) ≤ d(w∗

1 , w
′)

hence [w,w∗] ⊂ W (w∗).

(2): Let w ∈ ∂W (w∗). By discreteness of R there are finitely many ramification
points w∗ = w∗

1 , . . . , w
∗
n at minimal distance r > 0 from w, and n ≥ 2. The

disc B(w, r) is a euclidean disk, with the points w∗
i lying on its boundary; the

angular bisectors of the sectors formed by [w,w∗
i ], [w,w

∗
i+1] then are equidistant

from w∗
i , w

∗
i+1 and lie in ∂W (w∗

i ) ∩ ∂W (w∗
i+1), while all other points in the disk

lie in W (w∗
i ) for some i. Hence a neighbourhood of w in ∂W (w∗) is given either

by a geodesic segment passing through w (if n = 2) or by two geodesic segments
meeting at w (if n > 2).

(3): Any w ∈ S belongs toW (w∗) for any ramification point w∗ at minimal distance
from w. ⋄

2.6. Kobayashi-Nevanlinna parabolicity criterion. We consider a log-Riemann
surface S such that the finite completion S× is simply connected. We will use the
following theorem of Nevanlinna ([Nev53] p. 317):
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Theorem 2.14. Let F ⊂ S× be a discrete set and U : S× − F → [0,+∞) be a
continuous function such that:
(1) U is C1 except on at most a family of locally finite piecewise smooth curves.
(2) U has isolated critical points.
(3) U → +∞ as z → F or as z → ∞.

For ρ > 0 let Γρ be the union of the curves where U = ρ, and let

L(ρ) =

∫

Γρ

|gradzU ||dz|.

where |gradzU ||dz| is the conformally invariant differential given by

√

(

∂U
∂x

)2
+
(

∂U
∂y

)2

|dz|
for a local coordinate z = x+ iy. If the integral

∫ ∞

0

dρ

L(ρ)

is divergent then the surface S× is parabolic.

We now define a function U on S as follows:

Let ω be the continuous differential ω := |d arg(w −w∗)|, where for each w ∈ S,
w∗ is a ramification point such that w ∈ W (w∗). Fix a base point w0 ∈ S and
define τ : S → [0,+∞) by

τ(w) := inf

∫ w

w0

ω

where the infimum is taken over all paths from w0 to w. We define another non-
negative continuous function σ : S → [0,+∞) by

σ(w) := | log |w − w∗||
where as before for each w ∈ S the point w∗ is a ramification point such that
w ∈ W (w∗).

Then the sum U = τ + σ : S → R is a function satisfying the conditions (1)-(3)
of the above theorem. The map t = σ + iτ gives a local holomorphic coordinate
away from the boundaries of the Kobayashi-Nevanlinna cells, for which we have
|gradtU ||dt| =

√
2|dt|. On a level set Γρ = {U = ρ} we have 0 ≤ τ ≤ ρ, t =

(ρ − τ) + iτ , so |gradtU ||dt| =
√
2|dt| = 2|dτ |. For a given θ > 0, the connected

components of the level set {τ(w) = θ} are Euclidean line segments which are half-
lines or intervals; let 0 ≤ n(θ) ≤ ∞ denote the number of such line segments. Each
such segment intersects Γρ in at most one point; hence we obtain

L(ρ) =

∫

Γρ

|gradtU ||dt| = 2

∫

Γρ

|dτ | ≤
∫ ρ

0

n(θ)dθ

Using Theorem 2.14 above, we obtain the following:

Theorem 2.15. Let S be a log-Riemann surface such that S× is simply connected.
For θ > 0 let 0 ≤ n(θ) ≤ ∞ denote the number of connected components of the level
set {τ(w) = θ}. If the integral

∫ ∞

0

dρ
∫ ρ

0
n(θ)dθ

is divergent then S× is biholomorphic to C.
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This implies:

Corollary 2.16. Let S be a log-Riemann surface with a finite number of ramifica-
tion points such that S× is simply connected. Then S is biholomorphic to C.

Proof: In this case the function n(θ) is bounded above by twice the number of
ramification points of S, so

∫ ρ

0
n(θ)dθ ≤ Cρ and hence the integral in Theorem 2.15

diverges. ⋄

3. Uniformization theorems

We can now prove Theorem 1.1 as follows:

Proof of Theorem 1.1: Let p ∈ S. Let D1, D2 be the numbers of infinite
and finite order ramification points respectively of S. By Corollary 2.16 the log-
Riemann surface S× is biholomorphic to C. The approximating finitely completed
log-Riemann surfaces S×

n given by Theorem 2.10 are also biholomorphic to C and for

n large all have D1+D2 ramification points. Let F̃ : C → S× and F̃n : C → S×
n be

corresponding normalized uniformizations such that F̃ (0) = p, F̃ ′(0) = 1, F̃n(0) =

pn, F̃
′
n(0) = 1, with inverses G = F̃−1, Gn = F̃−1

n . By Theorem 1.2 of [BPM10a]

the entire functions Fn = πn ◦ F̃n converge uniformly on compacts to the entire
function F = π ◦ F̃ . Since πn : S×

n → C is finite to one, the entire function Fn has
a pole at ∞ of order equal to the degree of πn, and is hence a polynomial. The
nonlinearities Rn = F ′′

n /F
′
n are rational functions whose poles are simple poles with

integer residues at the critical points of Fn, which are images of the ramification
points of Sn under Gn. Thus the rational functions Rn are all of degree D1 +D2,
converging normally to F ′′/F ′, so R = F ′′/F ′ is a rational function of degree at
most D.

Each ramification point w∗ of S corresponds to a ramification point w∗
n of Sn

of order converging to that of w∗. We note that for n large any compact K ⊂
S× containing p embeds into the approximating surfaces S×

n . Since the maps Gn

converge to G uniformly on compacts of S× by Theorem 1.1 [BPM10a], the images
under Gn of ramification points in S×

n corresponding to finite ramification points in
S converge to their images under G, giving in the limit D2 simple poles of R, with
residue at each equal to the order of the corresponding finite ramification point of
S minus one.

On the other hand the infinite order ramification points of S are not contained in
S×, so the images of the corresponding ramification points in S×

n under Gn cannot
be contained in any compact in C and hence converge to infinity. The rational
functions Rn have a simple zero at infinity, and have D1 simple poles converging
to infinity. Applying the Argument Principle to a small circle around infinity it
follows that R has a pole of order D1 − 1 at infinity.

Thus R is of the form

F ′′

F ′
=

D2
∑

i=1

mi − 1

z − zi
+ P ′(z)
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where m1, . . . ,mD2
are the orders of the finite ramification points of S and P is a

polynomial of degree D1. Integrating the above equation gives

F (z) = π(p) +

∫ z

0

(t− z1)
m1−1 . . . (t− zD2

)mD2
−1eP (t)dt

as required. ⋄
We can prove the converse using the above Theorem and the compactness The-

orem. We need a lemma:

Lemma 3.1. Let (Sn, pn) converge to (S, p). If all the surfaces S×
n are simply

connected then S× is simply connected.

Proof: We may assume the points pn, p belong to generic fibers. Let Γn,Γ denote
the corresponding skeletons. Let γ be a loop in S× based at p. We may homotope
γ away from the finite ramification points to assume that γ ⊂ S. By Proposition
2.6, γ corresponds to a path of edges α = {e1, . . . , en}. By induction on the number
of edges we may assume that α is simple. If foot(α) = {w∗} is a singleton then w∗

is a finite ramification point and γ is trivial in S×. Otherwise there are distinct
ramification points w∗

1 , w
∗
2 ∈ foot(α). Considering the isometric embedding of γ

in Sn for n large gives a path γn and a corresponding path of edges αn; for n
large, it follows that there are distinct ramification points in footn(αn), hence γn
is non-trivial in S×

n , a contradiction. ⋄
Proof of Theorem 1.2: Given an entire function F with F ′(z) = Q(z)eP (z) we
can approximate it by polynomials Fn such that F ′

n(z) = Q(z)(1 + P (z)/n)n. Let
Zn = {P = −n}∪{Q = 0}∪ ⊂ C be the zeroes of F ′

n. The pair (Sn = C−Zn, πn =
Fn : C − Zn → C) is a log-Riemann surface with finite ramification set Rn which
can be naturally identified with Zn, the order of a ramification point being the local
degree of Fn at the corresponding point of Zn.

For n large the surfaces Sn all have the same number of ramification points
D = D1 +D2 where D1 is the degree of P and D2 the number of distinct zeroes
of Q. Moreover since F ′

n converge uniformly on compacts, choosing a point z0
such that Q(z0) 6= 0, for all n large |F ′

n| is uniformly bounded away from 0 on
a fixed neighbourhood of z0, so d(z0,Rn) is uniformly bounded away from 0. It
follows from Theorem 2.11 that (Sn, pn = z0) converge along a subsequence to a
limit log-Riemann surface (S, p) with finitely many ramification points such that
π(p) = z0. Since S×

n is simply connected for all n, by the previous Lemma S× is

simply connected. By Theorem 2.16, S× is biholomorphic to C. Let F̃ : C → S×

be a normalized uniformization such that F̃ (z0) = p, F̃ ′(z0) = F ′(z0). It follows

from Theorem 1.2 of [BPM10a] that the maps Fn converge normally to π ◦ F̃ , so

F = π ◦ F̃ . Thus F defines the uniformization of a simply connected log-Riemann
surface with finitely many ramification points. The degrees of Q,P relate to the
numbers of finite poles and poles at infinity respectively of the nonlinearity F ′′/F ′;
the relations between the degrees of Q,P and the numbers of finite and infinite
order ramification points of S then follow from the previous Theorem. ⋄
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