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Abstract

A path in an edge-colored graph G, where adjacent edges may have the same

color, is called a rainbow path if no two edges of the path are colored the same.

The rainbow connectivity rc(G) of G is the minimum integer i for which there

exists an i-edge-coloring of G such that every two distinct vertices of G are con-

nected by a rainbow path. The strong rainbow connectivity src(G) of G is

the minimum integer i for which there exists an i-edge-coloring of G such that

every two distinct vertices u and v of G are connected by a rainbow path of

length d(u, v). In this paper, we show that rc(C(Γ, S)) ≤ min{Σa∈S∗⌈ |a|2 ⌉ | S∗ ⊆

S is a minimal generating set of Γ}, where Γ is an Abelian group, and |a| is the

order of a. Moreover, If S is a minimal inverse closed generating set of Γ, then

Σa∈S∗⌊ |a|2 ⌋ ≤ rc(C(Γ, S)) ≤ Σa∈S∗⌈ |a|2 ⌉. Furthermore, if any element a ∈ S has

even order, then src(C(Γ, S)) = rc(C(Γ, S)) = Σa∈S∗

|a|
2 .

Keywords: Edge-coloring, Rainbow path, Rainbow connectivity, Abelian group,

Cayley graph.

1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book[1]

for graph theory notation and terminology not described in this paper. A path in

an edge-colored graph G, where adjacent edges may have the same color, is called a

rainbow path if no two edges of the path are colored the same. A edge-coloring of G

is rainbow edge− coloring if any two distinct vertices is connected by a rainbow path.

Furthermore, the rainbow connectivity rc(G) of G is the minimum integer i for which
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there exists a i-edge-coloring of G such that every two distinct vertices of G are connected

by a rainbow path. If G is disconnected, we say that rc(G) = 0 by convention. The

strong rainbow connectivity src(G) of G is the minimum integer i for which there exists

a i-edge-coloring of G such that every two distinct vertices u and v of G are connected

by a rainbow path of length d(u, v). It is easy to see that src(G) ≤ rc(G) ≤ D(G) for

any connected graph, where D(G) is the diameter of G.

The concept of rainbow connectivity is of great use in transferring information of high

security in communication networks. Reader can see [3] for details.

Let Γ be a group, and let a ∈ Γ be an element. We use 〈a〉 denote the cyclic subgroup

generated by a. The number of elements of 〈a〉 is called the order of a, denoted by |a|.

A pair of elements a and b in a group commutes if ab = ba. A group is abelian if every

pair of its elements commutes.

The Cayley Graph of Γ with respect to S is the graph C(Γ, S) with vertex set Γ

in which two vertices x and y are adjacent if and only if xy−1 ∈ S (or equivalently

yx−1 ∈ S), where S ⊆ Γ \ 1 is closed under taking inverse. It is well-known that C(Γ, S)

is connected if and only if S is a generating set of Γ. We will find the following conception

is of great use in our proof. If xy−1 = a ∈ S, we call edge xy to be a-edge. It is not

difficult to see that an a-edge xy is also an a−1-edge yx since S is closed under taking

inverse. Thus we do not distinguish a-edges and a−1-edges in the following arguments.

There are some results on the (strong) rainbow connectivity of graphs, see [2, 4] for

examples. We show some results as follows.

Proposition 1. [2] Let G be a nontrivial connected graph of order n. Then rc(G) =

src(G) = 1 if and only if G ∼= Kn.

Krivelevich et al. show the following upper bound of graph G about order and mini-

mum degree.

Theorem 1. [4] A connected graph G with n vertices has rc(G) < 20n/δ(G).

A minimal generating set of a group Γ is generating set X such that on proper subset

of X is a generating set of Γ. A inverse closed minimal generating set of a group Γ is

X ∪X−1, where X is a minimal generating set of Γ and X−1 = {x | x ∈ X}. Clearly, A

inverse closed minimal generating set of Γ only has one minimal generating set of Γ up

to not distinguishing element a and its inverse element a−1.

In the main result, we show that rc(C(Γ, S)) ≤ min{Σa∈S∗⌈ |a|
2
⌉ | S∗ ⊆ S is a minimal

generating subset of Γ}, where Γ is an abelian group. Moreover, If S is a minimal inverse

closed generating set of Γ, then, Σa∈S∗⌊ |a|
2
⌋ ≤ rc(C(Γ, S)) ≤ Σa∈S∗⌈ |a|

2
⌉, where S∗ ⊆ S is

a minimal generating set of Γ. Furthermore, if any element a ∈ S has even order, then

src(C(Γ, S)) = rc(C(Γ, S)) = Σa∈S∗

|a|
2
, where S∗ ⊆ S is a minimal generating set of Γ.
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2 Main result

In this section, we firstly present the following elementary proposition, secondly show

the main result, finally give some corollaries from the main result and one open problem.

Proposition 2. If H is a spanning subgraph of G, then rc(h) ≤ rc(G).

It is easy to prove above proposition since a rainbow edge-coloring of H induce a

rainbow edge-coloring of G.

Theorem 2. Given an Abelian group Γ and a generating set S ⊆ Γ \ {1} of Γ. We have

the following results:

(i) rc(C(Γ, S)) ≤ min{Σa∈S∗⌈ |a|
2
⌉ | S∗ ⊆ S is a minimal generating subset of Γ}.

(ii) If S is a minimal inverse closed generating set of Γ, then

Σa∈S∗⌊ |a|
2
⌋ ≤ rc(C(Γ, S)) ≤ Σa∈S∗⌈ |a|

2
⌉,

where S∗ ⊆ S is a minimal generating set of Γ.

(iii) If S is a minimal inverse closed generating set of Γ, and any element a ∈ S has

even order, then

src(C(Γ, S)) = rc(C(Γ, S)) = Σa∈S∗

|a|
2
,

where S∗ ⊆ S is a minimal generating set of Γ.

Proof. (i) Note that Cayley graph C(Γ, S) is connected if and only if S is a generating set

of Γ. Thus rc(C(Γ, S)) = 0 if and only if S is not a generating subset of Γ. Therefore, (i)

holds when S is not a generating set of Γ. Suppose that S is a generating set. We set that

Γ = {v1, v2, · · · , vn}, and we take any one minimal generating set S∗ = {a1, a2, · · · , ar} ⊆

S of Γ, then C(Γ, S∗∗) is a connected spanning subgraph of C(Γ, S), where S∗∗ = S∗ ∪

(S∗)−1. It suffices to show that rc(C(Γ, S∗∗)) ≤ Σa∈S∗⌈ |a|
2
⌉ by Proposition 2. We use

Mi, 1 ≤ i ≤ r denote the edge sets which are ai-edges. Then, Mi, 1 ≤ i ≤ r is a partition

of E(C(Γ, S∗∗)).

Set |ai| = bi. If bi = 2, clearly, C(Γ, S)[Mi] is a perfect matching. Then we assign

Mi the color (i, 1). If bi ≥ 3, firstly picking identity element 1 of Γ. Vertex sequence

(1, ai1, a
2
i 1, · · · , a

b1
i 1 = 1) is a cycle, denoted by Ci,1. Secondly, Picking vertex u ∈ Γ

such that u 6∈ V (Ci,1), then (u, aiu, a
2
iu, · · · , a

b1
i u = u) is a cycle, denoted by Ci,2. We

could go all the way until on vertex remains. We obtain n/bi cycles Ci,1, Ci,2, · · · , Ci,n/bi.

For any cycle Ci,k, 1 ≤ k ≤ n/bi, picking vertex vk ∈ V (Ci,k). We color the edge of

Ci,k = (vk, aivk, a
2
i vk, · · · , a

bi
i vk = vk) as follows.

Case 1. If bi ≥ 3 is even. Assign edges (ajivk)(a
j+1
i vk), 0 ≤ j ≤ bi/2 − 1 the color

(i, j + 1), and edges (a
bi/2+j
i vk)(a

bi/2+j+1
i vk), 0 ≤ j ≤ bi/2− 1 the color (i, j + 1).

Case 2. If bi ≥ 3 is odd. Assign edges (ajivk)(a
j+1
i vk), 0 ≤ j ≤ (bi − 1)/2 the color

(i, j+1), and edges (a
(bi+1)/2+j
i vk)(a

(bi+1)/2+j+1
i vk), 0 ≤ j ≤ (bi − 1)/2 the color (i, j+1).

The edge (a
(bi−1)/2
i vk)(a

(bi+1)/2
i vk) can color (i, (bi + 1)/2).
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Note that Ci,k, 1 ≤ k ≤ n/bi use ⌈ bi
2
⌉ colors. Thus, the number of colors that we have

used equals Σa∈S∗⌈ |a|
2
⌉.

Next we will show that the above edge-coloring is a rainbow edge-coloring, that is, there

exists an rainbow path connecting any two distinct vertices x, y of C(Γ, S∗∗). we can

assume that x = ai11 a
i2
2 · · ·airr , y = aj11 a

j2
2 · · · ajrr satisfying 0 ≤ jk− ik ≤ ⌈ bk

2
⌉(mod bk), 1 ≤

k ≤ r. If some pair satisfies jk − ik > ⌈ bk
2
⌉(mod bk), we replace aikk and ajkk by (a−1

k )bk−ik

and (a−1
k )bk−jk respectively since aikk = (a−1

k )bk−ik , ajkk = (a−1
k )bk−jk and a−1

k ∈ S∗∗. Clearly

path p = (x = ai11 a
i2
2 · · · airr , a

i1+1
1 ai22 · · · airr , · · · , a

j1
1 a

i2
2 · · · airr , · · · , a

j1
1 a

j2
2 · · · ajrr = y) is a

rainbow path. This completes the proof of part (i).

(ii) Now suppose that S is a minimal inverse closed generating set of Γ. Note that Γ

only has one minimal generating set S∗ contained in S up to not distinguishing element

a and its inverse element a−1, and without loss of generality, set S∗ = {a1, a2, · · · , ar}

and |ai| = bi. It suffices to show that D(C(Γ, S)) = Σa∈S∗⌊ |a|
2
⌋. It is well-known that

Cayley graphs are vertex-transitive, we only consider the distance from 1 to other vertex

x of C(Γ, S). Without loss of generality, assume that x = ai11 a
i2
2 · · · airr satisfying ik ≤

⌊ bk
2
⌋, 1 ≤ k ≤ r. Otherwise, we replace aikk by (a−1

k )bk−ik since aikk = (a−1
k )bk−ik and

a−1
k ∈ S. p = (1 = a01a

0
2 · · · a

0
r , a

1
1a

0
2 · · · a

0
r , · · · , a

i1
1 a

0
2 · · · a

0
r, · · · , a

i1
1 a

i2
2 · · ·airr = x) is a

path from 1 to x with length Σ1≤k≤rik. Thus, D(C(Γ, S)) ≤ Σa∈S∗⌊ |a|
2
⌋. On the other

hand, for 1 and x = a
⌊
b1

2
⌋

1 a
⌊
b2

2
⌋

2 · · · a
⌊ br

2
⌋

r , if d(1, x) ≤ Σa∈S∗⌊ |a|
2
⌋, then, by pigeonhole

principle, there exists integer l such that the number of ai-edges of the shortest path

from 1 to x less than ⌊ bl
2
⌋, this is impossible. Therefore, D(C(Γ, S)) = Σa∈S∗⌊ |a|

2
⌋. Thus

Σa∈S∗⌊ |a|
2
⌋ ≤ rc(C(Γ, S)) ≤ Σa∈S∗⌈ |a|

2
⌉.

(iii) Suppose any element a ∈ S has even order. We only need show that for any x, y ∈

V (C(Γ, S)), there exists a rainbow path with length d(x, y) between x and y. We also can

assume that x = ai11 a
i2
2 · · · airr , y = aj11 a

j2
2 · · · ajrr satisfying 0 ≤ jk − ik ≤ bk

2
(mod bk), 1 ≤

k ≤ r. By a similar argument of the diameter D(Γ, S), we conclude d(x, y) = Σ1≤k≤r(jk−

ik). Moreover, path (x = ai11 a
i2
2 · · ·airr , a

i1+1
1 ai22 · · · airr , · · · , a

j1
1 a

i2
2 · · ·airr , · · · , a

j1
1 a

j2
2 · · · ajrr =

y) is a rainbow path from x to y with length d(x, y) = Σ1≤k≤r(jk − ik). This completes

the proof of this theorem.

An n-dimensional hypercube Qn has 2n vertices. Each vertex x can be represented by

a sequence of n binary bits x1, x2, · · · , xn where xi ∈ {0, 1}. Two vertices are adjacent

if and only if the binary representations of the two vertices differ in exactly one bit.

The Cartesian product of simple graphs G and H is the graph G�H whose vertex

set is V (G) × V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)} and whose edge set is the set of

all pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and

u1 = u2.

Let Zn be the additive group of integers modulo n. Note that Zn
2 is an abelian group.

The next corollary follows from Theorem 2 by taking Γ = Z
n
2 and S = {(1, 0, · · · , 0),

(0, 1, · · · , 0), · · · , (0, 0, · · · , 1)}.
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Corollary 1. Let Qn be an n-dimensional hypercube, then src(Qn) = rc(Qn) = n.

Proof. It is easy to see that Qn
∼= P2�P2�P2

∼= C(Zn
2 , S) by the definitions of n-

dimensional hypercube, cartesian product and Cayley graph C(Zn
2 , S). Note that S

is a minimal inverse closed generating set of Zn, and also is a minimal generating

set of Zn. Thus, src(Qn) = rc(Qn) = n follows from Theorem 2 and the fact that

|(0, · · · , 1
︸ ︷︷ ︸

k

, · · · , 0)| = 2.

Z = Zi1×Zi2×· · ·×Zir is an abelian group, where ik ≥ 3, 1 ≤ k ≤ r, and has a inverse

closed minimal generating set S = {(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1), (i1 −

1, 0, · · · , 0), (0, i2 − 1, · · · , 0), · · · , (0, 0, · · · , ir − 1)}.

Corollary 2. Let Cik , ik ≥ 3, 1 ≤ k ≤ r be cycles, then Σ1≤k≤r⌊
ik
2
⌋ ≤ rc(Ci1�Ci2�Cir) ≤

Σ1≤k≤r⌈
ik
2
⌉. Furthermore, if ik are even for all 1 ≤ k ≤ r, src(Ci1�Ci2�Cir) =

rc(Ci1�Ci2�Cir) = Σ1≤k≤r
ik
2
.

Proof. We have Ci1�Ci2�Cir
∼= C(Z, S) by the definitions of cartesian product and Cay-

ley graph C(Z, S). Moreover, Z only has one minimal generating set S = {(1, 0, · · · , 0),

(0, 1, · · · , 0), · · · , (0, 0, · · · , 1)} contained in S up to not distinguishing the element a and

its inverse element a−1, and |(0, · · · , 1
︸ ︷︷ ︸

k

, · · · , 0)| = ik, 1 ≤ k ≤ r. Thus the first inequality

holds by the second part of Theorem 2. Furthermore, if ik are even for all 1 ≤ k ≤ r,

we immediately deduce src(Ci1�Ci2�Cir) = rc(Ci1�Ci2�Cir) = Σ1≤k≤r
ik
2
by the third

part of Theorem 2.

A circulant is a Cayley graph C(Zn, S) where S ⊆ Zn\{1} is closed under taking

inverse.

Corollary 3. Let G be a circulant graph with n vertices, then rc(G) ≤ ⌈n
2
⌉

For the remainder of this paper we present the following remark, and completes this

paper.

Remark: In Theorem 2, we show that, given an Abelian group Γ and a minimal inverse

closed generating set S ⊆ Γ \ {1} of Γ, if any element a ∈ S has even order, then

src(C(Γ, S)) = rc(C(Γ, S)) = Σa∈S∗

|a|
2
,

where S∗ ⊆ S is a minimal generating set of Γ.

What happens when some element a ∈ S has odd order? We leave the following

open problem: given an Abelian group Γ and a inverse closed minimal generating set

S ⊆ Γ \ {1} of Γ, is it true that

src(C(Γ, S)) = rc(C(Γ, S)) = Σa∈S∗⌈ |a|
2
⌉ ?

where S∗ ⊆ S is a minimal generating set of Γ.
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