1011.0836v1 [math-ph] 3 Nov 2010

arxXiv

On the Efetov-Wegner terms by diagonalizing a Hermitian supermatrix

Mario Kieburgﬂ
Universitat Duisburg-Essen, Fakultat fir Physik, Lotharstrasse 1, 47048 Duisburg, Germany

The diagonalization of Hermitian supermatrices is studied. Such a change of coordinates is in-
evitable to find certain structures in random matrix theory. However it still poses serious problems
since up to now the calculation of all Rothstein contributions known as Efetov-Wegner terms in
physics was quite cumbersome. We derive the supermatrix Bessel function with all Efetov-Wegner
terms. As applications we consider representations of generating functions for Hermitian random
matrices with and without an external field as integrals over eigenvalues of Hermitian supermatrices.
All results are obtained with all Efetov-Wegner terms which were unknown before.
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I. INTRODUCTION

Many eigenvalue correlations for random matrix ensembles as matrix Green functions, the k-point correlation
functions?2 as well as the free energy? can be derived by generating functions. These functions are averages over
ratios of characteristic polynomials for random matrices.

A common approach to calculate generating functions is the supersymmetry method?# 6. Another approach is the
orthogonal polynomial method”. In the supersymmetry method one maps integrals over ordinary matrices to integrals
over supermatrices. Its advantage is the drastic reduction of the number of integration variables. Nevertheless there
is a disadvantage. Up to now it is not completely clear how to get the full structures found with the orthogonal
polynomial method for factorizing probability densities. For such probability densities the k-point correlation functions
can be written as determinants and Pfaffians of certain kernels. This property was extended to the generating
functions® . Unfortunately, the determinants and Pfaffians were not found for the full generating function after
mapping the integrals over ordinary matrices to integrals over supermatrices. Only the determinantal expression of
the k-point correlation function for rotation invariant Hermitian random matrix ensembles could be regained with
help of the supersymmetry method!12. Grénqvist, Guhr and Kohler studied this problem from another point of view
in Ref. [10. They started from the determinantal and Pfaffian expressions of the k-point correlation functions for
Gaussian orthogonal, unitary and symplectic random matrix ensembles and showed that the kernels of the generating
functions with two characteristic polynomials as integrals in superspace yield the known result.

Changing coordinates in superspaces causes serious problems since the Bereziniani? playing the role of the Jacobian
in superspace incorporates differential operators. These differential operators have no analog in ordinary space and
are known in the mathematical literature as Rothstein’s vector fields!4. For supermanifolds with boundaries such
differential operators yield boundary terms. In physics these boundary terms are called Efetov-Wegner termsi® 18,
They can be understood as corrections to the Berezinian without Rothstein’s vector fields. There were several
attempts to calculate these vector fields or the corresponding Efetov-Wegner terms for diagonalizations of Hermitian
supermatrices but this was only successful for low dimensional supermatrices, e.g. (1 + 1) x (1 + 1) Hermitian
supermatricest? 2L, For higher dimensions the calculation of all Efetov-Wegner terms becomes cumbersome. Also
for other sets of supermatrices such changes in the coordinates were studied?2:23, However they came never beyond
low dimensional examples. One approach to derive all Efetov-Wegner terms is the one to consider these terms as
boundary terms resulting from partial integrations of differential operators which are equivalent to the integration over
the Grassmann variables.*®> Though a quite compact form for a differential operator for the Hermitian supermatrices
was found we were unable to calculate all Efetov-Wegner terms. The order of such a differential operator is the
number of pairs of Grassmann variables.

We derive the supermatrix Bessel function for Hermitian supermatrices with all Efetov-Wegner terms. Thereby we
apply a method called “supersymmetry without supersymmetry”® on Hermitian matrix ensembles whose characteristic
function factorizes in the eigenvalues of the random matrix. This approach uses determinantal structures of Berezinians
without mapping into superspace. We combine this method with the supersymmetry method described in Refs. [1]12].
The supermatrix Bessel function is then obtained by simply identifying the left hand side with the right hand side
of the resulting matrix integrals. As a simple application we calculate the generating function of arbitrary, rotation
invariant Hermitian matrix ensembles with and without an external field. Hence we generalize known resultst8:12:24
because they now contain all Efetov-Wegner terms which guarantee the correct normalizations.

We organize the article as follows. In Sec. [[I, we will give an outline of our approach and introduce some basic
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quantities. Using the method “supersymmetry without supersymmetry” we derive a determinantal structure for
generating functions of rotation invariant Hermitian random matrices without an external field and with a factorizing
characteristic function, in Sec. [IIl In Sec.[[V] we briefly present the results of the supersymmetry method. We also
calculate the supermatrix representation of the generating function with one determinant in the numerator as in the
denominator. For this generating function the corresponding supermatrix Bessel function with all Efetov-Wegner
terms is known?® since it only depends on (1+1) x (1 + 1) Hermitian supermatrices. In Sec.[V] we plug the result of
Sec.Vlinto the result of Sec. [Illand obtain the supermatrix Bessel function with all Efetov-Wegner terms for arbitrary
dimensional Hermitian supermatrices. Moreover we discuss this result with respect to double Fourier transformations
and, thus, Dirac-distributions in superspace. In Sec. [VIl we, first, apply our result on arbitrary, rotation invariant
Hermitian random matrices without an external field and, then, in an external field. Details of the proofs and the
calculations are given in the appendices.

II. OUTLINE
The main idea of our approach is the comparison of results for generating functions,

ko
H det(H — Iijg]lN)

N j=1
Zi1 e (R) = / PN(H)7 d[H], (2.1)
Herm (N) H det(H — Hjl]lN)
Jj=1

obtained with and without supersymmetry. The matrix 1y is the N dimensional unit matrix. The in-
tegration domain in Eq. (ZI) is the set Herm (N) of N x N Hermitian matrices and the parameter k =
diag (K11, ..., Kky1, K12, - - - 5 Kko2) = diag (K1, k2) are chosen in such a way that the integral is convergent. One common
choice of them is as real energies x; with a small imaginary part 1c and source variables J;, i.e. kj1/o = x; —J; Fre 142
N)
1

The differentiation with respect to J; of Z,i /K, generates the matrix Green function which are intimately related to

the k-point correlation functions. The measure d[H] is defined as

N N
diH] =[] dHw J] dRe Hyppdm H,, . (2:2)
n=1 1<m<n<N

The matrix 1y is the N x N unit matrix and P(N) is a probability density over N x N Hermitian matrices.
In Sec. [T we show that ZWM) s a determinant,

k1/k2
(N)
(N) Z7) (Ka1, Kb2)
Zy, iy (K) ~ det | ZL/L 70 0T Zﬁ)o(mﬂ) ’ (2.3)
Ral — Rb2
if the Fourier-transform
FPWN(H) = / PN (H)exp [m Hfﬂ d[H] (2.4)

Herm (N)

factorizes in the eigenvalues of the Hermitian matrix H. These determinantal structures are similar to those found
for generating functions with factorizing P(N) in the eigenvalues of the Hermitian matrix H.2

Moreover, the integral of Z,gjlv/)kZ can be easily mapped into superspace if the characteristic function FP®) is

rotation invariant, see Refs. [1/12]. In this representation one does not integrate over ordinary matrices but over
Wick-rotated Hermitian supermatrices. The integrand is almost rotation invariant apart from an exponential term
which reflects a Fourier-transformation in superspace. We aim at the full integrand with all Efetov-Wegner terms
appearing by a diagonalization of a supermatrix. In particular we want to find the distribution @y, /5, which satisfies

/ exp [—18tr p] F(p)d]p] = / Ber (2 (1)@, iy (— 2, ) F (r)dr] (2.5)

for an arbitrary rotation invariant superfunction F. In Eq. (23] we diagonalize the (k1 + ko) x (k1 + k2) Hermitian

supermatrix p to its eigenvalues r. This diagonalization does not only yield the Berezinian Ber l(fl)/kz but also the



distribution @y, /k,. The distribution @y, /5, is the integral over the supergroup U (ki/k2) and, additionally, all
Efetov-Wegner terms.

We derive @y, /1, in two steps. In the first step we combine the mapping into superspace with the determinant (2.3])
for factorizing FPW). This is a particular case of the identity Eq. @3) but it is sufficient to generalize its result to
an arbitrary rotation invariant superfunction F in the second step.

The procedure described above incorporates determinants derived in Ref. [8)26]. Let p > ¢. Then, these determi-
nants are

H (Hal - Hb1) H (fiaz - HbQ)
1<a<b<p 1<a<b<q

Berff)q(fi) = 7 (2.6)

[T IT (51 — i02)

a=1b=1
i P—q,.9—p
Fp1 Faz
Kbl — Kq2 | 1<a<q
1<b<p (2.7)
1<a<p—q

{rii '}
L 1<b<p

r 1
Kbl — Ka2 ) 1<a<q

= (=1)PP=1/2 det T 1<b<p | (2.8)
{in }1ga§p—q

L 1<b<p

= (—1)PP=1/2 det

All three expressions find their applications in our discussion. For p = ¢ we obtain the Cauchy-determinant?23

1
/Ber® (r) — (—1)P-D/2 4o {7} , 2.9
p/p( ) (1) Kal = Kb2 | 1<q,b<p 2.9)

whereas for p = 0 we have the Vandermonde-determinant

(2)
Ber 0/q

These determinants appear as square roots of Berezinians by diagonalizing Hermitian supermatrices. This also explains
our notation for them. The upper index 2 results from the Dyson index 8 which is two throughout this work. Thus
we are consistent with our notation used in other articles [8)9/12)27].

(k) = Ag(k) = (—=1)197D/2 det [kg5 "] (2.10)

1<ab<q

III. THE DETERMINANTAL STRUCTURE AND THE CHARACTERISTIC FUNCTION

We consider the generating function (). Let the probability density PM) be rotation invariant. Then, the
characteristic function ([24)) inherits this symmetry. We consider such characteristic functions which factorize in the

eigenvalues E= diag (El, cee E‘N) of the matrix H,

N

FPNI(E) =] f(E)). (3.1)

j=1
Due to the normalization of P?V) the function f : R — C is unity at zero. We restrict us to the case
ko <k <N. (3.2)
This case is sufficient for our purpose.

Theorem III.1 Let f be conveniently integrable and d = N + ko — k1. The generating function in Eq. 21)) has for
factorizing characteristic function [BI)) under the condition [B.2)) the determinantal expression

ZY/\[l)(Hala Kb2)

—1)k2(kat1)/2+k2ks ,

Zlgjlv/)kz(“) = CL) det — <a<k {Zf/)o(mn)} <a<k (3.3)
Ber (2) (k) Kal — Kb2 1<a<ky 1<a<k;
ki1/ko 1<b<ks d+1<b<N

for all N € {d,d+1,...,N}.
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Notice that indeed Eq. (83) is for all values N € {d,d+1,...,N} true because the determinant is skew symmetric.
Hence, we may add any linear combination of the last k; — k2 columns to the first ko columns.

With this theorem we made the first step to obtain all Efetov-Wegner terms for the diagonalization of a supermatrix.
We prove it in App. [Al For non-normalized probability densities, we find Eq. (33) multiplied by f*(0) where
A=d(d+1)/2— (N —1)N/2 — Nky. We need the non-normalized version to analyze the integral in Sec. [V1

Theorem [[ILT] is also a very handy intermediate result. It yields an easier result than the one for factorizing
probability densities®. Thus, all eigenvalue correlations for probability densities stemming from a characteristic
function with the property ([B.I]) are determined by one and two point averages.

IV. INTEGRAL REPRESENTATION IN THE SUPERSPACE OF THE GENERATING FUNCTION
AND THE EFETOV-WEGNER TERM OF 7"

1/1
In Refs. [1)4)12)27], it was shown that the generating function ([2I]) can be mapped to an integral over supermatrices.

Let Z,i?)/kz be the set of supermatrices with the form

p:{pnl Z:] (4.1)

The Boson—Boson block p; is an ordinary ki X k1 positive definite Hermitian matrix and the Fermion—Fermion block
p2 is an ordinary ko X ko Hermitian matrix. The off-diagonal block 7 comprises k1 X ko independent Grassmann

variables. We recall that (n!)T = —7 and the integration over one Grassmann variable is defined by
[ttt = [t =01, g€ {01}, (12)
We need the Wick-rotated set Z,(;f}kz = ﬁwz;(fi)/hﬁw to regularize the integrals below. The matrix ﬁw =

(1x,,e"¥/?1y,) with o €]0,7[ is the generalized Wick-rotation!?12., We assume that a Wick-rotation exists such
that the characteristic function is a Schwartz function on the Wick-rotated real axis.
We define the supersymmetric extension ® of the characteristic function F P with help of a representation

FPi(tr H",m € N) = FPN) (H) (4.3)
as a function in matrix invariants,
dk1/k2) (o) = FPy(Strp™, m € N), (4.4)

see Ref. [12]. Let the signs of the imaginary parts for all k;; be negative. Assuming that ® is analytic in the Fermion-
Fermion block ps, the generalized Hubbard-Stratonovich transformationt12:27 tells us that the integral Eq. (2.1) with
the condition ([B.2) is

ko d—1
i . 0 1
z™) (x) =™ / &(41/52) (5) exp—iStr wpldetpy [ (e v ‘2> 5 (e%ry0) dipl, (4.5)
@) =1 !
k1/k2

where e’“"rjg are the eigenvalues of py and the matrix g is given by

5o |2 | ey (16)
e"/2n | e (p2 +npy 'nT)

The constant is

—1)k2(k2+2N—1)/2,N(ka—k1) N (k2 —k1)+k2 9kakr+ka—k1 Vo (U (N
[(d—1)Y Vol(U (d))

Here, the volume of the unitary group is

2md
G-

N
Vol(U(N) =[]

j=1



The term f(0) vanishes if we consider normalized probability densities. The definition of the measure d[p] =
d[p1]d[p2]d[n] is equal to the one in Ref. |27,

k1
dipr] = [[dpans [  dRe pmnidIm prm (4.9)
n=1 1<m<n<k;
k2
dlps] = etka¥ H dpnn2 H dRe pmn2dlm ppne (4.10)
n=1 1<m<n<ko
ki ko
dinl = e =TT 1T dnmndin, - (4.11)
n=1m=1

We use the conventional notation for the supertrace “Str” and superdeterminant “Sdet”.

Let p € ng}b with the form (@I]). Aslong as the eigenvalues of the Boson-Boson block p; are pairwise different with
those of the Fermion-Fermion block p2, we may diagonalize the whole supermatrix p by an element U € U (ki /k2).
The corresponding diagonal eigenvalue matrix is 7 = diag (r11,...,7k 1, €Y 712,...,eWryw) = diag (r1,e¥ry), ie.
p = UrUT. Due to Rothstein’s!? vector field resulting from such a change of coordinates in the Berezin measure, we
have

dlp] # Ber (7, (r)d[rldu(U), (4.12)

where d[r] is the product of all eigenvalue differentials and du(U) is the supersymmetric Haar-measure of the unitary
supergroup U (k1 /k2). We have to consider some boundary terms since the Berezin integral is fundamentally connected
with differential operatorsi®12:28.29

An arbitrary supersymmetric extension ® of a factorizing characteristic function (3]) has not always to factorize.
However, we want to consider only such extensions which have this property. In particular, we only use the extension

k1 ko
1
P (k1/k2) p) = f(ra1) - 4.13
( agl ( a bl;Il f(e“’ber) ( )
We consider the generating function Zij/vl). Equation (LX) is an integral over Dirac distributions. Hence, we cannot

15-18,30,31

(N)
1/1°

simply apply a Cauchy-like theorem . The following lemma states that also for this integration domain we

obtain an Efetov—Wegner term for Z

Lemma IV.1 Let the function 1/f be analytic at the zero point. Then, we have

ZfN)(l‘i) f( W
a ri) } o(=1)
= —15t )
Y0 {f(e“"m) bS]
k1 — Ky f(r1) N O N-1
X ) /R — 6“1’7“2 f (e“/JTQ) eXP[*ZStr HT]T1 € 6_7"2 1) (7’2) dradry (414)
+ X
G Vel / _ 1 (0w O\, mk
B (N - 1)']R R r — 6“1’7"2 or te ora + Zrl _ e“er
+ X
HOD st (e 2)
Ferra) exp[—Str kr]r]’ | e g 0 (r2) drodry . (4.15)

In Eq. [@18)), we integrate first over ro and then over ry.

We prove this lemma in App. [Bl The first summand of the equality [£I4) is 1 which is the Efetov-Wegner term. The
second equality ({I3]) is more convenient than equality ([@I4) for the discussions in the ensuing section.



V. SUPERMATRIX BESSEL FUNCTION WITH ALL EFETOV-WEGNER TERMS

Let supermatrices in il(;f}b be similar to those in ng}lw without the positive definiteness of the Boson-Boson block.

We want to find the distribution @y, s, which satisfies

/ exp [~18tr kp] F(p)d[p] = / Ber (2, (1) Bk, ko (—or, &) F (r)d[r] (5.1)
$@) RF1+k2
k1 /ko

for an arbitrary sufficiently integrable, rotation invariant superfunction F' analytic at the zero point. Recognizing
that the integral expression (X)) includes the supersymmetric Ingham-Siegel integralt12:27 the generating function
is apart from a shift in the Fermion-Fermion block and analyticity a particular example of this type of integral.

It is convenient to derive @y, /, in Eq. (@) for factorizing superfunctions (£I3) since the function F' can be
expressed in terms of such functions. Due to the analyticity of F', this superfunction can be chosen as a function of
supertraces,

F(p) = Fo(Strp™,m € N). (5.2)
As for the ordinary determinant and trace, the relation
Sdet (ap + 1k, +k,) = exp [Str In(ap + Lk, +4, )] (5.3)

holds, @ € C. By expansion of the logarithm at zero, we regain all supertraces from the superdeterminant with the
formula

,meN. (5.4)

o m—1 _\n
Str p™ = (_1)ma1_m8_a exp lz (%)Strp”] Sdet (ap + 1iy+k,)

n=1 a=0

The superfunction under the differentiation factorizes and has a generalized Wick-rotation to regularize the integral.
The superfunction F' may consist of products and sums of those functions and can be approximated by polyno-
mials in the traces with help of Weierstrafl approximation theorem. Thus, we can first restrict us to factorizing
superfunctions ([£I3) and, then, extend to arbitrary F.

Lemma V.1 The distribution oy, 1, defined by

ko d—1
/ F(p) exp[—iStr kp|det?p; H <ewi> 5 (€"'rs2) dlp]

. Irja
=1 J
E5;11)/&2 ’
) k2 P d—1
= / Ber ,(ﬁ)/kz (1) Py /1, (=2, k) F(r)det®r, H (ewﬁr—-g) 5 (€"'rso) dlr] (5.5)
i j
RE! xRE2 =1

18

(_1)(k1+k2)(k1+k2271)/2(Zﬂ_)(kz7}(}1)2/27(]614*162)/2

kl k2
® o D exP T ETugn e Y KT (o
2k1kz2 Jey kol s /Ber bt /s (k)Ber bt /s (r) w16 (k1) j=1 j=1
w2€6(k2)

@kl/kz (—ZT, Fé) =

{ . (i o)
(Hbl - HaQ)(Twl(b)l - elwrwg(aﬂ) aro.)l(b)l 674(1.)2((1)2 1<a<ke
x det 1<b<h (5.6)

e
Wi 1 <a<iy—ks
1<b<k:

for an arbitrary sufficiently integrable, rotation invariant superfunction F(p) analytic at zero. The set of permutations
over k elements is &(k).
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The Wick-rotated Dirac-distribution is defined by §(e*¥7y1) = e =¥ (rp1). We prove this lemma in App. [Cl The proof
incorporates theorem [II.1] and lemma [V.11

In the next theorem we extend this lemma to arbitrary rotation invariant superfunctions without the additional
Dirac-distributions in the integral, cf. Eq. (@3).

Theorem V.2 The distribution Oy, i, defined by Eq. (5.1)) is the one defined in Eq. (5.8) for an arbitrary sufficiently
integrable, rotation invariant superfunction F(p) analytic at zero. For such superfunctions and for generalized Wick-
rotations v €]0, 7| this distribution has alternatively the form

(_1)(k1+k2)(k1+k2—1)/2(m)(1¢2—k1)2/2—(k1+k2)/2

Py ko (—2, ) = = @ (5.7)
2k1k2 k1 ko !y / Ber hor /s (k)Ber bt /s (r)
—2M0 (T ()3 Tp@)2) | P (kT o1 + 1€ a2y (a)2) X (Kot — Ka2)
Kbl — Ka2 Twr(b)1 = €¥Tuw, ()2 [ 120k,
X Z det 1<b<k,
a—1 o
el {redpe (G}
1<b<k:
with the distribution
0,z=0,

x(x) = { 1, else. (58)

Equation (B.7)) is true because of the Cauchy-like theorem for (1+1) x (14 1) Hermitian supermatrices, see Refs. |15,
16,31]. One has to pay caution on which half of the complex plane the general Wick-rotation is lying. If ¢ €], 27]
then the minus changes to a plus infront of the Dirac-distributions.

We notice that the distribution @y, /i, (7, &) is not symmetric in exchanging its arguments r and . Apart from
the characteristic function x such a symmetry exists for the supermatrix Bessel functions!®:22:32 which is &y, ko (T3 )
without the Dirac-distributions, i.e.

71 (k1+k2)(k1+k271)/2 (k27k1)2/27(k1+k2)/2
Py Jho (0T, K) = (=1) () (5.9)

2k1k2 oy kol /Ber z(fl)ﬂw (r)Ber l(j)/kz (r)

€xXp (*Mbﬂ"wl(bn + zezwnasz(m)
Twr ()1 — €% 7w, (a)2

X(Hm - Haz)}

1<a<ks

" Z det 1<b<ky
a—1
w1 €6 (k1) {r(—dl (b)1 exp (*Zﬂblrwl(b)l)} 1<a<ki—k
w2 €6 (k) 71<7b<1k1 ’

(71)k2(k271)/2+k1k2 (Zﬂ.)(szkl)z/Qf(lirkz)/Q
o 2k1k2 o oo ! X(Ka1 — Kb2)
1<a<k;

1§a§k2

det [exp(—tKqa17p1 )]1§a,b§k1 det [exp(zewmagrbg)] 1 <ab<ks
2 2
\/Ber gcl)/kQ (k) \/Ber l(cl)/kz (r)

The asymmetry, @k, /k, (7, £) # Pk, /k, (K, 7), is mainly due to the diagonalization of p to r whereas the supermatrix
is already diagonal. The characteristic function x in Egs. (51) and (59) is crucial because of the commutator

4+ e*“bi
|:arw1(b)1 6ro.)g(a)2

, €XP (7’“{b17ﬂw1 (b)1 + ’Le“ﬁHGQTwQ(a)Q)

= —1(Kp1 — Ka2) €XP (*mbﬂwl(bn + zewnagrm(a)g) X(Kb1 — Ka2) - (5.10)

Indeed the set which is cutted out by x is a set of measure zero and does not play any role when one integrates
Pk, ey (=7, K) OF g, /i, (=27, k) over k with a conveniently smooth function. However it becomes important for the



integral
2
O 1o (15, 7) Py 1 (—or, F)Ber 2 (r)d[r] (5.11)
Rk1+k2
B lka—k1)? C det [6(ka1 — 561)]1<qp<p, det [€V0(Kaz — sbg)} 1<ab<ks
- 22k1k2 k1 — kal'kQ H X Ral — ’ib2)
1<a<k; \/Berk /k \/Berk
1/k2
1<a<ks
where s = diag (s11, - - -, Sk, 1, € ¥s19,..., e ¥sp,2) and & = diag (K11, .. ., ke 1,6 VK12, ..., e Whi,o) With sap, Kap €

R. This result is the correct one for the supermatrix Bessel function. The difference to other resultsi®2%:32 ig the
distribution x which guarantees that the Dirac-distribution (G.I1]) in the eigenvalues s of a Hermitian supermatrix
o vanishes if a bosonic eigenvalue of k equals with a fermionic one. The reasoning becomes clear when we interpret
Eq. (BI1) as an integral over the supergroup U (k1/k2), i.e

ra a5 pns (R Ber 2 (e ~ [ SUSUT R0, (5.12)
Rk1+k2 U(kl/kZ)

The measure du(U) is the Haar measure on U (k1 /k2) and the Dirac-distribution is defined by two Fourier transfor-
mations

S(UsUT — &) ~ /exp [2Str p(UsUT — )] dlp]. (5.13)

The Haar measure du of the supergroup U (k1 /k2) can not be normalized as it can be done for the ordinary unitary
groups since the volume of U (k;/k2) is zero for k1ks # 0. This is also the reason why Eq. (B.I1]) has to vanish if one
bosonic eigenvalue of K equals to a fermionic one. Then the integral (B.12]) is rotation invariant under the subgroup
U (1/1) which has zero volume, too. This cannot be achieved without the distribution x as it was done in the common
literature [15,25,32]. Interestingly the replacement of ¢y, /i, by @, /&, in Eq. (EI0)) yields the Dirac-distribution

B /s (15, 7) By ey (—or, F)Ber (2 (7)) (5.14)
Rk1+k2
B akz—k1)? det [0(ka1 — Sbl)]l(a b<hy det [e“"(S(naz — Sbg)} 1<ab<ks
- 22]61]627]61*]62]{: !k !
1:h2 \/Berk /k \/Berkl/k2

which is similar to the one in Eq. (511)). Equation (5.I4) is derived in Appendix [El

We want to finish this section by a remark about the relation of the result for the supermatrix Bessel function,
see Eq. (51, and the differential operator derived by the author in an earlier work [15]. This differential operator is
defined by

DE () = [ F(pydl (515)
for an arbitrary sufficiently integrable superfunction F' on the (k1 + k2) x (k1 + k2) supermatrices invariant under
U (k1/k2). It has the form

1 1
(1{31 kQ)!(47T)k1 k2 Alﬁ (Tl)Akl (6“%“2)

SIGE str 2 e W st 2\ B ® 5.16
X Z n tr 572 H (ra1 —e¥rpa) | — trﬁ erkl/kz(r), (5.16)

n=0 1<a<k;
1<b<ks

D£k1 ka2) __

where we define

Str— Z R —WZ 87’b2 (5.17)
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Due to Eq. (5.15)) the differential operator DiFk2) g equivalent to the integration over all Grassmann variables of the
supermatrix p.

The comparison of Egs. (5.15) and (516) with Egs. (51 and (57) for an arbitrary sufficiently integrable, rotation
invariant superfunction F' and arbitrary diagonal supermatrix x yields

1 1 0 0
Deiks) || - B (2) . 5.18
' @ B b AL G ¢ g ) VBT (518)
sasr
1<Zb<ks

Thus, we have found a quite compact form for Dﬁklh) which is easier to deal with as the one in Eq. (516]).

VI. SOME APPLICATIONS FOR HERMITIAN MATRIX ENSEMBLES

In random matrix theory generating functions as

k
(N) . (N) det(H + OéHO — Iijg]lN>
Z Hy) = P H dH]. 6.1
Ottt = [ PO ] G g ) (61)
Herm (N) J=1

are paramount important since they model Hermitian random matrices in an external potential?433 or intermediate
random matrix ensembles®4 32, The matrix Hy is a N x N Hermitian matrix and can be an arbitrary matrix or
can also be drawn from another random matrix ensemble. The external parameter @ € R is the coupling constant
between the two matrices H and Hy and yields the generating function 2] for o = 0, i.e. Z,iN)(m, 0) = Z,gj/vk) (k). The
variables k1 have to have an imaginary increment to guarantee the convergence of the integral, i.e. kj; = x;1 —J; —1€.

In subsection [VT Al we consider the generating function (G.I]) with A = 0. We will use the mapping of this integral
to a representation in superspace which is shown in a previous work by the authors® and diagonalize the supermatrix.
In a formalism similar to the case o = 0 we will treat the more general case o # 0 in subsection [VIBl

A. Hermitian matrix ensembles without an external source (« = 0)

Omitting the index N in P®N) we consider a normalized rotation invariant probability density P with respect to
N x N Hermitian random matrices.

Following the derivations made in Refs. [1]12] we have to calculate the characteristic function FP, see Eq. (2.4).
Assuming that this can be done we recall the rotation invariance of FP. This allows us to choose a representation
of FP as a function in a finite number of matrix invariants, i.e. FP(H) = FPi(tr H,...,tr HY). A straightforward
supersymmetric extension ® of the characteristic function is the one in Eq. [@3]) and its Fourier transform is

Fd(o) = 22601 / ®(p) exp(—1Str po)d[p] . (6.2)

$(¥)
Xk

The Fourier-transform is denoted by @ in Ref. [1]. The supermatrices p and o are Wick-rotated with the phases e
and e~*¥, respectively.

The supersymmetric integral for Z,EN)(,%, aHy) isti2
ZM (k, aHy) = / Fd(0)Sdet Mo @ 1y + aljs ® Ho — r)d[o]. (6.3)
e

Setting the coupling constant « to zero we also find

200) = 220 [ [ 7o) explistrplo — )Ly (pdildl. (6.4

S(¥) (=)
Xk Sk
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where the supersymmetric Ingham-Siegel integral ist

I]gN)(p) = / Sdet ~N (0 + 16141 ) exp(—1Str po + Str p)d[o]
DI
k 5 \N-1
= (_1)k(k+1)/227k(k 1) Hl 5 319(%1)( warﬂ) 5(611/%2)1 , (6.5)

The distribution © is the Heavyside distribution and r;; and e“/’rjg are the bosonic and fermionic eigenvalues of p,
respectively. In App. [l we perform the integration (B3] with help of the results in Sec. [V] and find

k d
. 5L ros)
2k(k71) B (2)
R2k er k/k(n)
5(5p1)0(€"¥ 542) ( Ka2 N N (e7"Sa2 — Ka2
x det [REUNE  Saz) (a2 ) — .
bl = a2 Fal 2m(e™sp — kp1) (o1 — e Wsa2) [y oy

zM (k) = (6.6)

)Nfl

The first term in the determinant is the Efetov-Wegner term whereas the second term can be understood as integrals
over supergoups.

B. Hermitian matrix ensembles in the presence of an external source (« # 0)

For Hermitian matrix ensembles in an external field it is convenient to consider the integral representation

zWM) Kk, aHy) = 2%k(—1) D (p) exp|—1Strkp
k

(%)
sk

X / exp(—1Str po + Str p)Sdet ~H (6 @ 1y + adjpyp ® Ho + 1€l y(ptry)dlo]| dlp]  (6.7)

S(=v)
Ek/k

for the generating function, see Egs. (6.1) and (6.3). In App. [Gl we integrate this representation in two steps and get

{B1(ro1, 72, fvs Ka2) bicapar {Br2(ra2, Ra2)}

_1)k(k—1)/2 _a
ZM (i, aHy) = (=1) det oy =Y e,
k ®) Bs(ry1, kip1, aEY) (—aE®)b—1
A (aEo)y/Ber ) (k) g, N R @ 1<a,b<N
1<b<k
(6.8)
where
O(rn)d(eran) I (rin, era
Builroa, raz, fin, haz) = (Tfiﬁ iaz : HQ;(eri’ Zﬁ;; exp (=1t + 16" Kaaraz) X(Ken = Ka2) . (6.9)
9 b—1 k
Byo(Ta2s ka2) = exp (1€ Kqa2T402) <Zew—8ra2) 5(e"rqa2) 1;[)((%;'1 — Ka2) (6.10)
oy _ (zaEa rb1
Bs(rp1, kb1, aEY) = —vexp (—tkp17p1) ©(rp1) HX Kot — €"Vkja) . (6.11)
n=N

The case o = 0 can be easily deduced from the result ([G.8]),

1)k 1)/2/ O(rn)d(eras) | LY (ryy, € r40)
7
Kbl — Ka2 27 (rp1 — €¥rq2)

ZIEN)(H) = X(Kb1 — Ka2) exp (—Str k1) D(r)d[r] .

Ber k/k 1<a,b<k

(6.12)
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Again we are able to distinguish the Efetov-Wegner terms from those terms corresponding to supergroup integrals.
In the determinant of Eq. (G.12]) and in the left upper block of Eq. ([6.8]), see Eq. ([6.9), the Dirac-distributions are the
contribution from the Efetov-Wegner terms. When we expand the determinants in the Dirac-distribution we obtain

the leading terms of Z,gN), Z,gi, cen ZéN) which are exactly those found in Refs. [1]12]. Thus, we have found an

expression which can be understood as a generator for all generating functions Z ,iN).

The external matrix Hy can also be drawn from another random matrix ensemble as it was done in Refs. [34439)].
However, we do not perform the calculation, here, since it is straightforward to those in an application of Ref. [g].

VII. REMARKS AND CONCLUSIONS

We derived the supermatrix Bessel function with all Efetov-Wegner terms for Hermitian supermatrices of arbitrary
dimensions. We arrived at an expression from which one can easily deduce what the Efetov-Wegner terms are and
which terms result from supergroup integrals. With this result we showed that the completeness and orthogonality
relation for the supermatrix Bessel function without Efetov-Wegner terms slightly differs from the formerly assumed
one32. Tt is has to be zero on a set of measure zero and, thus, does not matter for smooth integrands but plays an
important role if the integrand has singularities on this set.

We applied the supermatrix Bessel function with all Efetov-Wegner terms to arbitrary, rotation invariant Hermitian
random matrix ensembles with and without an external field. The already known leading terms!:8:12:24:33-39 were
obtained plus all Efetov-Wegner terms. The correction terms were unknown before and yield new insights in the
supersymmetric representation of the generating functions. For example the Efetov-Wegner terms become important
for the matrix Green functions.

We also found an integral identity for the generating functions whose integrand can be easily expanded in the
Efetov-Wegner terms. In such an expansion one obtains correlation functions related to k-point correlation functions
which are of lower order than those corresponding to the originally considered generating function. Thus, it reflects the
relation of Mehta’s definition? for the k-point correlation function and the one commonly used in the supersymmetry
method! which was explained in Ref. [40].

We expect that similar results may also be derived for other supermatrices, e.g. diagonalization of complex
supermatrices?!. Nevertheless we guess that the knowledge about the supergroup integrals as well as about the
ordinary group integrals is crucial. We could only obtain these compact results due to this knowledge.
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from Deutsche Forschungsgemeinschaft within Sonderforschungsbereich Transregio 12 “Symmetries and Universality
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Appendix A: Proof of theorem [IIL1]

We plug the characteristic function (24) in Eq. () and diagonalize H. This yields

ko
H det(H — /ijg]lN)

N
v 1 o
20 (%) = 3725 / / exp |—atr HE| 22 [T F(E)AX(E)dIEL[H] (A1)
Herm (N) RN H det(H — K’jl]lN) Jj=1
Jj=1

where the constant is

1 N mi—1
VN:mEm. (A2)
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42,43

The diagonalization of H gives the matrix Bessel function according to the unitary group U (IV),

on(E,E) = / exp [fztrEUEUT] du(U)

U (N)
N det [exp(—zEaEb)} ,
= G — 1) = 1=ab=N A3
= Faw (A3)

The measure dy is the normalized Haar-measure. Thus, we find

JN(N=1)/2

Zlgjlv/)kZ(H) = —=— det [eXp(—zEaEb)} oben (A4)
(27T)NN! l:loj' R2N -
ko
N (S )
< T (B = An(B)An (B)IBVIE). (45)
o=t [T (Ea — 1)
b=1
(V)

Here, one can easily check that the normalization is Z; ks (0) = £N¥(0). Since determinants are skew-symmetric, we

first expand the Vandermonde determinant Ay (E) and then the determinant of the exponential functions. We have

k2
et B  (oe] N
k}l/kz(ﬁ) = N H f(Ea) eXp(_lEaEa)Eg_ ;;7 AN(E)d[E]d[E]- (AG)
(27T)N l;[l(j — 1)' R2N a=1 bl;ll(Ea — Hbl)

Following the ideas in Ref. [8], we extend the integrand by a square root Berezinian and find with help of (Z8) the
determinant

71 kz(kz*l)/?Jr(szrl)kl N(N*l)/? 1
2™ () = £V ’ (A7)
k1 /k2 N (2)
N TG =1t Ber [y, (%)
j=1
1 f(Es)ES!
_ e —1FyFq|d[E
{nal . } 1<a<k a1 — B expl—1E ErJd[E] 1<a<k
% det 1<b<ks R2 1<b<N
S SR i ST o SN A T s S
1<b<ko R? 1<b<N
We define the sign of the imaginary parts of x;; by
Im Rj1
- ) A8
J |IH1 Iij1| ( )
Integrating over Ey, Eq. (A1) reads
Z(N) (’i) _ (71)k2(k271)/2+(k22+1)k1ZN(N*l)/Q 1 (Ag)
k1 /ko N 2)
H (.7 - 1)! Berkl/kz(ﬁ)
j=1
1 b—1
{Kal o } achy 1L, / f(EYE®™ " exp[—1ka1 F]O (L E)dE s
% det 1<b<ks R 1<b<N
b a—1
a—1 b—1 -
{ris '} \cusd /f(E)E (zaE) S(E)dE | cucd
1<b<ky R 1<b<
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In the lower right block we use the following property of the integral
a—1
/f E)E"! (z—) S(E)YdE=0 forb>a. (A10)

Since d = N + ko — k1 < N, cf. Eq. (32)), the last N — d columns in the lower right block in the determinant (A9) is
zero. The matrix

a—1
/f E)E"! (z—) §(E)dE (A11)
1<a,b<d
is a lower triangular matrix with diagonal elements
j—1 ‘
M;; /f VBT (z—) S(E)dE = (=)~ (j — 1)!. (A12)
Thus, the determinant of this matrix is
N
det M = (=) NN=D2TT (- 1)1 (A13)
j=1

We pull the Matrix M out the determinant (A9) and find

(71)]62(]6271)/24’(]{224’1)]61

(N) _
Zy ey () = 5 (A14)
Ber P (k)
(d) b—1
% det {K (Ka1s Hbg)} cachs 1Lg /f VE°~" exp|—1kq1 E]O(L,E)dE Iach, ,
1<b<ks d+1<b<N
where
KD ka1, k) = e 1Ly, Z /f E)E™ L exp[—141 E|O(LoE)dEM,; Lkt . (A15)
@ m,n= 1
Again we use the fact that the determinant is skew-symmetric which allows also to write
71 kz(kz*l)/?Jr(szrl)kl
2 (k) = =) (A16)
1 2 (2)
Ber k1/]€2( K)
x det {K(N)(Hal, Hbg)} I <a<ki ’LLa / f(E)Eb_l exp[_l"ialE]@(LaE)dE 1<a<ki )
1<b<ks R d+1<b<N
for an arbitrary N € {d,d+1,...,N}. For the cases (k1/ks) = (1/1) and (k1 /k) = (1/0), we identify
Z) (a1, 12) = (ka1 — ) K™ (a1, hi2) (A17)
7300 (Ka1) = —1Lq / F(E)EN Y exp[—1kq1 E]O (L, E)dE . (A18)

This yields the theorem.
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Appendix B: Proof of lemma [[V.1]

The proof of this Lemma is similar to the derivation of the supermatrix Bessel function with the Efetov—Wegner
term in Sec. V.A of Ref. [15]. We consider the integral

2™ () AN N-1

/1 _(=D)72r 1/1)( 4 G N O v

O T (N (/) ®/Y () exp[—1Str kp)r] (e waw) 5 (e"rs) dfp] . (B1)
=

As in Ref. |15], we exchange the integration over the Grassmann variables by a differential Operator which yields

(N) B
Zip k) (DN o\ V! oy

1/1 _ N O k=R

fN(O) (N _ 1)| / ™ <€ 6712) 6 (TQ) |:'L711 — 6711/}742 (B2)

R+XR
L (0, ) e o] S
- | = w Y\ o .
" r— ey (87"1 e 37"2) r 87"2] [f (ery) exp[—1Str ’W]] dridrs .
The term
. Z(il)N K1 — K2 f(’]"l) B N 7Z,¢}i N-1
Z = (N 1)1 / 1 — e"ry f (€rs) exp[—uStr kr|ry | e s 8 (rg) dridre (B3)

Ry xR

15,25,32

contains the supermatrix Bessel function with respect to U (1/1) . The second term

Ry xR

% [; ( 9 + eﬂbi) — e i} {ff(ﬁ) exp[—uStr m’]} dridrs .

T —ery \ Orq Ors ri Oro (ery)

has to yield the Efetov—Wegner term. By partial integration, we evaluate the Dirac distribution and omit the
generalized Wick-rotation. Thus, Eq. (B2) becomes

N—1 ) .
-1 (N-1)! ;[ ¢itt §Iit+1 Nog ON
2 = Noo T Bl I B5
2 (N — 1)!]11{[ jgo 5! 1 <(’)T15r§ 8r;+1 1 ary (B5)
f(r) }
exp|—Str k7 dry .
|:f(7‘2) p[ ] ro=0 '

For all terms up to j = 0 we perform a partial integration in r; and find a telescope sum. Hence, we have

Zy = —/ a% [;((:12)) exp[zStrnT]]

Ry

dTl =1. (B6>

) =0

This is indeed the Efetov—Wegner term.



The second equality (@3] follows from
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]R+/><R ﬁ (817’1 “"%) (% exp[—1Str kr]rY (e_“/’aiw)]v_l 5(T2)> dridrg
— R+/XR rV l(e“ﬁ%y\[_l 5(?‘2)1 ﬁ (817’1 w%) (% exp[—1Str m]) dridrs
o B () ) o
R4 xR
_ R/XR N [(e—zwa%)]“(;(rz)] m (a% + w@%) (% exp[zStrm*]) dridrs
. (DNlR/ g%ril% é%!ﬂl% (%em[ﬁtmo Odrl. (BT)
+ 2=

Both sum cancel each other up to the term j = N which is the term =¥ 9V /9r} in Eq. (B5).

Appendix C: Proof of lemma [V.1]

Let the characteristic function and, hence, the superfunction ®(*1/k2) be factorizable, cf. Eq. @I3). To prove
lemma [V.I] we plug Eqgs. (£3]) and (£I5) into the result [3.3) for N = d. We find

k1
[1 f(rjn)

d—1
- =1 s O
/ Ber l(fl)/kz (7) Py 1o (1, ) kJ2 detr, H (e i 5 2) §(rj2)d[r]
e 0 fevry o 0
j=1

(71)(k1+kz)(k1+kz71)/2(Zﬂ.)(k27k1)2/27(k1+k2)/2

Qk1ka Ber,(fl)/kz(n)
/ exp(=thinr + 1€ riora) (0 DN ) a4 O dilé(r) dfr]
(kb1 — Ka2)(r1 — €¥rg) or1 Ors fery) ! Orja 2 1<a<ks
x det | VEE 1<b<k;
a—1_—iKkp171
/f(rl)rl e dry 1o
i Ry 1<b<k; |
(C1)

The next step is to pull all factors of f, the monomials 7{ and the distribution (e~"¥9/ 8rj2)d71 d(r2) out the deter-
minant. This proves the lemma for factorizing superfunctions F'.

Since all analytic and rotational invariant superfunctions F'(p) are analytic in the supertraces of p these superfunc-
tions are generated by factorizing ones. For example one can consider an arbitrary polynomial in the supertraces
times a factorizing and integrable superfunction. With help of Weierstrass” approximation theorem one can generate
an arbitrary sufficiently integrable superfunction which may also be non-factorizable.

Appendix D: Proof of theorem [V.2]

We use the result of lemma [V.I] as an ansatz in Eq. (5.1). To prove that this ansatz is indeed the result we are
looking for we construct a boundary value problem in a weak sense. We consider the left hand side of Eq. (&) with
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the supermatrix

.
{oan} 1<a,b<ki (i} 1<a<k,
1<b<ks
o= =P= (D1)
{Xa} 1<a<ks {oab2} 1<a,b<ko
1<b<ki

with non-zero entries everywhere instead of a diagonal supermatrix k. Then the action of the differential operator

2 oL 02 52 g2 52 52
Str —— = +2 — 2 N =2 — 7 42 — (D)
Oo2 aoaal 1§a<zb§k1 00 00, Pt 902 5 1§a<zb§k2 00ap200%,, e OX%,0Xab
1<b<k,
on the left hand side of Eq. (&) yields
82
Str 902 / F(p) exp[—1Stropld[p] = — / F(p)Str p* exp[—1Str op]d[p] . (D3)
o
E;:f)/@ E5:11))/’@

Since the integrand is rotation invariant the integral only depends on the eigenvalues of the supermatrix o. This leads
to a differential equation in the diagonal supermatrix . With the differential operator Str 92 /0k? defined similar to

Eq. (5I7) we have

1 2
5 Str 68,% Ber 221)/@( ) / F(p) exp[—1Str kp]d[p] = — / F(p)Str p* exp[—iStr rp]d]p],  (D4)
Ber, . (k) S0 5@
k1/k2 K1/’€2
cf. Ref. |35].
The boundaries of E(d};k are given by El(cl) 1 ks , canonically embedded in El(c }k if one bosonic eigenvalue of a
supermatrix in E,(;f}kz equals to a fermionic one, i.e. there is a € {1,...,k1} and b € {1,...,ka} with Ke1 = Kee.

For these cases we may use the Cauchy-like integral theorems for Hermitian supermatricest®16:31 Without loss of
generality we consider the case ki1 = Ki,2 and have

| F@esl-sude = (-pR2 b [ R e[St wl,, o] del. (09
Zif)/h ng) 1/ko—1

Here we use the same symbol for the restriction of F' on E( ¥) ka1

The boundary condition (D3] for the distribution (57) can be readily checked. For the differential equation (D4
we expand the determinant (B7) in [ < ko rows and columns in the upper block. Apart from a constant prefactor
each term is given by

w(j

g(/ﬁ,?‘) 6 rw(j)l)
2 2
Be rl(cl)/kz( )Beré)/kz( )
kl k2
I exp(—tha, @iron@r) I expe™ kaymervsm2) . (D6)
a=Il+1 a=l+1
where kg = diag (Kg, (1)1, -+ Ka, (1)15 Ko (1)25 - - - > Fag()2) and 7w = diag (T4, (141)15 - + 5 Twr (k1) 1s Twa (141)25 + -+ » T (ka)1)

with the permutations wi, @ € &(k1) and wa,we € &(kz). The action of the distribution g(x,r) on Strr? is

\/Berl/l (k@) \/Berk1 Uk l

g(n,r)Strr = = @ H5 Tw(s)1)0(e rw(J)l)
Ber ", (k)Ber =7 (1)
k1 kZ

H exp(—1Kg, (a)17ws (a)1) H exp(zewnwz(b)grw(b)g)StrTi (D7)
a=Il+1 a=Il+1
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because all other terms are zero due to the Dirac-distributions. The differential operator in Eq. (D4]) acts on g(k,r)
as

1 2
Str 4 Ber %

S @ . Or? b /1y (B)9 (5, 7)

Ber Ecl)/kZ (k)

1 0 \/Berl/l \/ Ber;? i, il
S o oo Bor @ H5 Tu)3(€ )

Igerkl/kZ(“) er ks (1)

k1 ko

H eXp(_Zﬁwl(a)ﬂ“wl(a)l) H eXp(l€Z¢H@2(b)27‘w2(b)2). (D8)
a=l+1 a=Il+1

We split the differential operator Str 92/9x? into a part acting on kg and a part for the remaining variables in k. The
term for the latter variables acts on the exponential functions in Eq. (D)) and contributes the term —Strr2. For the
term according to kg we use the identity

82
StraT Berl(?l)( ) =0. (D9)

Thus, the differential equation is also fulfilled by @y, /k, -

Appendix E: Double Fourier-transform

We consider the integral

—278(rp1 )0 (er exp (—tkp1T 1Ko
{ ( bl)ﬂ(w a2) n p (—thp b1“2- a2 GQ)X(RM B 6_“/%@2)}
Kp1 — € Ka2 Th1 — €7 Ta2 1<a<ks
I = / det 1<b<k; (E1)
RF1+k2 {T exp Zﬁblrbl)} 1<a<ki—ks
1<b<k;
28 (sp1)0(e7 Y 542) _exp (Wp1Sb1 — Wa25a2) (ror — €702)
Th1 — e¥ran Sp1 — € Wsyn X\ [ 1<aghs
X det 1<b<k;y
-1
{sgl exp (Zrblsbl)} ahsts

1<b<ky

dfr]

(2 (2 ) 2)
\/Ber kl)/k \/Berk )/k Berél/kz( )

We omit the two sums over the permutation groups, see Eq. (&.1).They do not contribute any additional new infor-
mation of the calculation and the missing terms can be regained by permuting the indices of the eigenvalues in s or
.
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The expansion in the first determinant yields

sign wiws =270 (7o, (5)1)0(€" Ty (a)2)
I = E2
Z Z 2(ky = Dlkz = )t / o [ - 1<a,b<l )

Kuwy(b)1 — € w“wg(a)Q

=0 w1 €6 (k1 ) R1 ko
w2 €S (ka)
exp (*mwl(b)ﬂ’wl(bn + mm(a)ﬂm(a)z) —ap
2% X(le(b)l —€ HUJQ(G,)Q)
Twi(b)1 — €7 Twy(a)2 I+1<a<ks
x det 1+1<b<ky
a—1
{Twl(b)l P (72’&“1(1’)1%1(1’)1)} 1<a<ki—ka
L I+1<b<k;
270 (sp1)0(e ¥ s42)  exp (1p18p1 — 1Ta2542) X Vran)
- b1 — 2
Th1 — €V a2 Sp1 — €W sg0 “* 1<a<ks
x det ) 1<b<ky
a“
S exXpP (171 Sp1
{ bl p( )}1§a§k17k2
L 1<b<k;

d[r]
(2) O (2)
\/Berk /kz \/Berk /k x)Ber kl/k2( s)

_ ( kl(kl 1)/2 Z Z Slgnwlwg det [—(27r)26(8w1(b)1)6(6_1w8w2(a)2)]
) 1<a,b<l

120wy 1) = Dl —1)! Ruoy (b)1 = € Ky (a)2
w2 €S (k2)
kl kQ kl k2
X H H X(“wl(bn - 67“/}'%2(@)2) / H exp (*mwl(a)ﬂ"al) H exp (ng(b)ﬂbz)
a=14+1b=I+1 Ri14ko—21 a=1+1 b=I+1
270 (Swy (0)1)0(€ " Suz(a)2) XD (170150, ()1 — a2 (a)2) (o1 — €¥ra2)
Tb1 — e“l’rag Swl(b)l — 6_“/’8002(@)2 X\To1 a2 I+1<a<ks
x det 1+1<b<ky
a—1
{Swl(b)l €xp (“"blswl(b)l)} 1<a<ky—ks
I+1<b<ky
d
x (2) . (2)
Ber kl/kz( )Ber kl/kz( s)

where the function “sign” yields 1 for an even permutation and —1 for an odd one. The permutations in the indices of
the r are absorbed in the integration. We remark that the remaining integral goes over k; + ko — 21 variables because
we have already used the Dirac-distributions.

With help of the formula

T exp (=K, (11761 + Wieoy (a)2Ta2) d1]

/ 27T5(8w1 (b)l)é(e_wswz(a)g)
R2

7“1}
_ / 2110 (Sw, (5)1)0 (6" Sua()2) < 0 | —w
R2 (le(bﬂ - e_szwQ(a)Q)(Tbl - 6“/’%2) Ory

(27)?8(50, (5)1)0(e™" S0y (a)2)
K ()1 — €~V Ky (a)2

%@2) exp (*'inl(b)ﬂ’bl + 'Llin(a)gTGQ) d[r]
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we integrate and sum the expression (E2) up. This yields

Doy ks (45, 7) Dy 1oy (27, ) Ber ](€21)//€2 (r)d[r] (E4)
RE1+k2
(—1)kr(kn —1)/2 (k2 —k1)?

22kika—ki1—k2 [ kol /Ber (2)

k1 /ko (K)Ber kl)/kz (8) wieS (k1)

ngG(kz)

—wp

6 (8w (5)1)0(€7"Y 500, (a)2) [

) - 0 a wa(a
o —z1/),€a2)] eu/) (K‘bl S 1(b)1) (H 2 S 2 ( )2)
Rb1 € Ka2

— Ka2)
Swr ()1 — €~ VSuwy(a)2 “

X(Fébl —€
x det

SZZ&>15(%1 = 8wy (0)1)

which is the result (&.I4). The index a goes from 1 to ko in the upper block and from 1 to k3 — k2 in the lower block
whereas b takes the values from 1 to k1 in both blocks.

Appendix F: Calculations for subsection [VIAl

We diagonalize the supermatrices o and p in (64 and have for the generating function

dlrldls]

y
(2m1) \/Ber (2) \/Ber (2)

kl/kz

Z\M (k) = f@(sﬂ,ﬁN’ (r) (F1)

—278(ry1 )0 (e¥r exp (—tkp17rp1 + 1% Kot
x det (r1)o 2) + p( oLbt p; a2 a2) X(Kp1 — Ka2)
Rp1l — Ra2 Tpl — €77 Ta2 1<a.b<k
278 (sp1)5 (e ¥ 842 exp (2rp18p1 — 1a2842
¢t [ 0] _ o lraon i) 1 _ o |
Tp1 — €% Trgo Sp1 — € Sa2 1<a,b<k

This expression is not well defined because the supersymmetric Ingham-Siegel is at zero not well defined. We recall
that the supersymmetric Ingham-Siegel integral factorizes in each eigenvalue of the supermatrix r, cf. Eq. (G.5).
To understand Eq. (EI) we have to know what Il(N)(O) is. Since the supersymmetric Ingham-Siegel integral is a

distribution we consider an arbitrary rotation invariant, sufficiently integrable superfunction f on the set of (14 1) x
(1+ 1) Hermitian supermatrices. Then we have

[ 101 @del = [ | [ #e)exp(-iStepo -+ St pylp] | Sdet V(o + ietiia)ale
s sov 6y
— 1 [ Fyexp(Str oyl
s
— (0)
= —f(0) 1™ (0) (F2)

with help of the Cauchy-like integral theorem for (14 1) x (1 + 1) Hermitian supermatrices, see Ref. [15/16]. Please
notice that the constant resulting from the Cauchy-like integral theorem converts to the complex conjugate when the
generalized Wick-rotation is complex conjugated. The last equality in Eq. (E2)) is the Cauchy-like integral theorem

formally applied to the left hand side of Eq. (E2]). Hence we conclude that I 1(N) (0) = ¢ in a distributional sense. Using
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this result we find

_q)k(k+1)/2 P —2mid(r,, 5(e%ry, (a
2™y = (-1 % Slgnwlwz /]__(I) ) det | =2 (T, (0)1)8 (€ Ty (a)2) (F3)
1<a,b<l

k(k+1) 2k —_
2 ( )ﬂ- -0 w1,UJ2€6(k) Klwl(b)l Hw2(a)2

et [eXp(—mmb)lml(b)lﬂe mw2<a>2rw2<a>2)

(N) 1) _
Forort — Ty L (T )15 € T () 2) X (B, (001 Ku&(a)?)]

+1<a,b<k
dfr]d[s

1<a,b<k \/Ber §€21)/k \/Ber k/k

k k
(=D sign wiwe
= ok(k+1) 2k Z Z Ik — 2 H X (K ()1 — Kuws(a)2) Fo(s)

21 §(e~w¥ —
« det w0 (sp1)d(e Sa2) _exp (zrblsbl_ ZTaQSaQ)X(Tbl B e“’brag)
o1 — €¥rqo Sp1 — €7 Wsao

=0 wi,w2€6(k) l)] a,b=I+1 R4k—21
—(2m)240(s,, 5(e s, (a k
% det (2m)7o( l(b)l) ( 2 )2) H exp (*mwl(b)ﬂ"m +ze”lim(a)27"a2) 11(N)(7"b1,€w7’a2)
le(b)l - HU,}Q((I)Q 1<a,b<l a,b=I+1
d[r]d[s]

% det 27r5(5w1 (b)l)é(eizwst(a)Q) . €xp (’Lrblswl(b)l - ZTaQSwg(a)Q)
Ty — €¥Tq2 Sy (b)1 — €~ V5w, (a)2

X(Te1 — ewra2)] WSRO
I+1<a,b<k \/Ber k/k( K)

k
1 51gnw1w2
- 2k(k*1)lk Z Z [l'(kf H X wl(b)l WZ(‘I)Q)

=0 w1,w2€6(k) a,b=I+1

X / ‘F® d t [ 5(Sw1(b)1)5(61¢5w2(a)2)‘|
Ber Ef/k Far)1 ~ Fus(@2 ||y
5 5ev N
% det (Sw1(b)1) (6 Swz(a)2) 1— (’iwz(a)2>
Rwi(b)1 = Ruws(a)2 Kwi(a)1

N (€Y Sus@)2 — Fun(@2)

N+1
210 (€7 Sy ()1 — Feor(0)1)  (Seor(b)1 — e‘wsw(a)z)] 1<ab<k

We perform the sum and use the identity

L <K,w2(a)2 > N ( ) (nm(ap > N (F4)
- - X\Kw, (1)1 — Rwy(a)2) =\ —— .
Ruwy(a)l ®) (@) Kwi (a)1

Then we have the result (6.6)).

Appendix G: Calculations for subsection [VI B]

In the first step we derive the Fourier-transform of the superdeterminant in Eq. (€1)). Let the entries of the diagonal
(k + k) x (k+ k) supermatrix r and the entries of diagonal N x N matrix Ey be the eigenvalues of the supermatrix
p and the Hermitian matrix Hy, i.e. p = UrU'" with U € U(k/k) and Hy = VE VT with V € U(N). Then the
Fourier-transform is

J = / exp(—1Strro + eStrp)Sdet " (o ®@ 1y + alyyr @ Ho + 161N (k1)) d]0]

S(=v)
Ek/k

X(Tp1 — 6w7’a2)

B / [27r5 551)8(€7 " 542) N exp (—18p17b1 + 1842742) (
2k ™ /Ber® ( b1 — €"Ta2 Sb1 — €7 8402 1 <ab<k

k/k
x Sdet M (s ® 1y + aljsr ® Ho + 161y )d[s] - (G1)
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With help of identity ([2.7)) we find

* exp(eStrr) k 51gnw1w2
J = Z Z H X Twy(b)1 —e TWQ(G)2)

K2k
28 Ber,(f/)k(r) 1=0 w1 ,wo €6 (k) [1X( d a,b=l+1
- 278 (sp1)0(e" ¥ sq
X / Sdet "' (s ® 1y + alyir ® Eo + 1€l N (k+r)) det [ (o) (up 2)}
J Twr(®)1 = € Twa(a)2 11 <4 <y
€ - w1 + 184 wi(a
. det XD (—280170, ()1 T 150270, (a)2) dls]
Sp1 = €7V Sa2 I+1<a,b<k
k
1 exp(eStrr) S1gN wiws
- S Y dmee T et

K2k
¥ An(aEp) Berk/k (1) 1=0 w1,wee&(k [l!(k_l)'] a,b=I+1

o
K4 Twr ()1 ~ € Twy(a)2 11 <4 p<
X - a2l wi(a —w a N - a
exp ( @Sl;lb:wﬁi:;;;ﬂ L(@)2) (6 S:jl”) exXP (15027 n (a12) (€502 +22)
 det — dfs]. (G2)
exp (*'stl?"wl(b)l) fozE,gO) (— E(o))bfl
sp1 + 16+ B\ sp1 +e o

In the left upper block both indices @ and b run from [ + 1 to k£ whereas in the right lower block the range is from 1
to N. In the right upper block a goes from [+ 1 to k and b goes from 1 to N whereas it is vice versa in the left lower
block. We sum all terms in Eq. (G2]) up and pull the integrations into the determinant. Then we have

{A1(ren, ewrﬂ)}lga,bgk {Apa(era2) }

k 1 1<a<k
) 1<b<N

J = det - (G3)

k2 1k 2 { (0) } { 0 b—1} ;
™ An(aEy) Berl(c/)k(T) As(ron, abg™) 1<a<N (—ake™) 1<a,b<N
1<b<k
where
Ai(rer,e¥'raz) = exp [e(ror — €V7a2)]
N
27m0(51)6(e ™ ¥sg)  exp (—1817p1 + 1897a2) (€ Wso + 16 "
—e%ryn) | d
) /( o — eV 51— e Wsy 51+ 1€ [Tt = et¥raa) | dis
RQ
)
= 2m——""=
Tp1 — €% Ta2
21)%  rNO(ry) L 0\
- —e! 5(e"rq2), G4
(N =117 — e"raz a2 (%ra2) (G4)
k
—1 b—1 —1 k3
App(e¥r49) = exp (*E‘e“ﬁ?"ag) /exp (182742) (e Ysg +z€) e~ Wdsy HX(le — eWrgn)
R j=1
5 \b1 k
= 27 (—ze_“p . 2) 5(eraz) H x(rj1 — €¥raz), (G5)
a j=1
N
_ CQE© k
As(rpr, oE®)) = exp (er / =B (v — ds ro1 — eVrs
3(T1 o) P ( bl)R sl+zs+aE,§O) 51+ 12 1j1;[1X( bl j2)
00 (0) n k
weEy 'r .

= 27T’L®(Tb1) Z % HX(Tbl — € wTjQ) . (GG)

n=N j=1
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Surprisingly this part of our result agrees with the one in Ref. |§] (apart from a forgotten 27 in the upper left block
of Eq. (6.9) in Ref. [§] and the characteristic functions x(rp1 — €¥742)) although we omitted all Efetov-Wegner terms
in this work.

The second step is to diagonalize the supermatrix p in Eq. ([€71),

ZM(x, aHo) (G7)
2 270 (rp1)8 (e exp (—tkp1rp1 + 1€V KaaTy
(2m1) /d ; l 7w0(rp1)0(e¥ra2) + D (—1kp1701 . 27a2) X — Ha?)‘|
An(aFEg) W/Ber k/k ) gon kb1 — Ka2 o1 = €7 Ta2 1<a,b<k
(N) 2 b—1 k
1 o _
L) on (ze v ) Ur) T xrn — )
Tp1 — €Y 7rg2 Ta2 - d(r)d
x det g ©) J=1 (T)(QET]
E,
O(rp1) Z e Tbl H X(re1 — €¥'rj2) (—aB?) Bery(r)

The range of the indices in the second determinant is the same as in Eq. (G3). Expanding the first determinant we
have

Z](CN)(H, aHy) (G8)
k

_ (2m)~F Z Z Slgnw1w2 H X (s )1 — Fa(ar2)

AN(CYEQ) Ber é/)k( ) 1=0 wi,w2€S(k) [“(k a,b=l+1
y / et —27r6(rw1(b)1)(5(6“"7@2(@)2)] det [exp (=%, (b)1Twr (0)1 + zewmwz(a)grw(a)g)}
g Run ()1 ~ Kun(a)2 L<abel Taor ()1~ €T ()2 1ok
(N) wh b—1 k
I o _
e etrn) o (—1e 52 ) 6 ) [T s — o)
et _ (bl a2 a2 el @(r)(tigr]
zaEa T _
O(rp1) Z bl H X(re1 — €¥'rj2) (—aE(SO))b ' Ber k/k( ")

When summing up we use the normalization (F2)) of the supersymmetric Ingham-Siegel integral and arrive at the

result (6.8]).
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