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On the Efetov-Wegner terms by diagonalizing a Hermitian supermatrix
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The diagonalization of Hermitian supermatrices is studied. Such a change of coordinates is in-

evitable to find certain structures in random matrix theory. However it still poses serious problems

since up to now the calculation of all Rothstein contributions known as Efetov-Wegner terms in

physics was quite cumbersome. We derive the supermatrix Bessel function with all Efetov-Wegner

terms. As applications we consider representations of generating functions for Hermitian random

matrices with and without an external field as integrals over eigenvalues of Hermitian supermatrices.

All results are obtained with all Efetov-Wegner terms which were unknown before.
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I. INTRODUCTION

Many eigenvalue correlations for random matrix ensembles as matrix Green functions, the k-point correlation
functions1,2 as well as the free energy3 can be derived by generating functions. These functions are averages over
ratios of characteristic polynomials for random matrices.
A common approach to calculate generating functions is the supersymmetry method1,4–6. Another approach is the

orthogonal polynomial method7. In the supersymmetry method one maps integrals over ordinary matrices to integrals
over supermatrices. Its advantage is the drastic reduction of the number of integration variables. Nevertheless there
is a disadvantage. Up to now it is not completely clear how to get the full structures found with the orthogonal
polynomial method for factorizing probability densities. For such probability densities the k-point correlation functions
can be written as determinants and Pfaffians of certain kernels. This property was extended to the generating
functions8–11. Unfortunately, the determinants and Pfaffians were not found for the full generating function after
mapping the integrals over ordinary matrices to integrals over supermatrices. Only the determinantal expression of
the k-point correlation function for rotation invariant Hermitian random matrix ensembles could be regained with
help of the supersymmetry method1,12. Grönqvist, Guhr and Kohler studied this problem from another point of view
in Ref. 10. They started from the determinantal and Pfaffian expressions of the k-point correlation functions for
Gaussian orthogonal, unitary and symplectic random matrix ensembles and showed that the kernels of the generating
functions with two characteristic polynomials as integrals in superspace yield the known result.
Changing coordinates in superspaces causes serious problems since the Berezinian13 playing the role of the Jacobian

in superspace incorporates differential operators. These differential operators have no analog in ordinary space and
are known in the mathematical literature as Rothstein’s vector fields14. For supermanifolds with boundaries such
differential operators yield boundary terms. In physics these boundary terms are called Efetov-Wegner terms15–18.
They can be understood as corrections to the Berezinian without Rothstein’s vector fields. There were several
attempts to calculate these vector fields or the corresponding Efetov-Wegner terms for diagonalizations of Hermitian
supermatrices but this was only successful for low dimensional supermatrices, e.g. (1 + 1) × (1 + 1) Hermitian
supermatrices19–21. For higher dimensions the calculation of all Efetov-Wegner terms becomes cumbersome. Also
for other sets of supermatrices such changes in the coordinates were studied22,23. However they came never beyond
low dimensional examples. One approach to derive all Efetov-Wegner terms is the one to consider these terms as
boundary terms resulting from partial integrations of differential operators which are equivalent to the integration over
the Grassmann variables.15 Though a quite compact form for a differential operator for the Hermitian supermatrices
was found we were unable to calculate all Efetov-Wegner terms. The order of such a differential operator is the
number of pairs of Grassmann variables.
We derive the supermatrix Bessel function for Hermitian supermatrices with all Efetov-Wegner terms. Thereby we

apply a method called “supersymmetry without supersymmetry”8 on Hermitian matrix ensembles whose characteristic
function factorizes in the eigenvalues of the randommatrix. This approach uses determinantal structures of Berezinians
without mapping into superspace. We combine this method with the supersymmetry method described in Refs. [1,12].
The supermatrix Bessel function is then obtained by simply identifying the left hand side with the right hand side
of the resulting matrix integrals. As a simple application we calculate the generating function of arbitrary, rotation
invariant Hermitian matrix ensembles with and without an external field. Hence we generalize known results1,8,12,24

because they now contain all Efetov-Wegner terms which guarantee the correct normalizations.
We organize the article as follows. In Sec. II, we will give an outline of our approach and introduce some basic
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quantities. Using the method “supersymmetry without supersymmetry” we derive a determinantal structure for
generating functions of rotation invariant Hermitian random matrices without an external field and with a factorizing
characteristic function, in Sec. III. In Sec. IV, we briefly present the results of the supersymmetry method. We also
calculate the supermatrix representation of the generating function with one determinant in the numerator as in the
denominator. For this generating function the corresponding supermatrix Bessel function with all Efetov-Wegner
terms is known25 since it only depends on (1+ 1)× (1 + 1) Hermitian supermatrices. In Sec. V, we plug the result of
Sec. IV into the result of Sec. III and obtain the supermatrix Bessel function with all Efetov-Wegner terms for arbitrary
dimensional Hermitian supermatrices. Moreover we discuss this result with respect to double Fourier transformations
and, thus, Dirac-distributions in superspace. In Sec. VI, we, first, apply our result on arbitrary, rotation invariant
Hermitian random matrices without an external field and, then, in an external field. Details of the proofs and the
calculations are given in the appendices.

II. OUTLINE

The main idea of our approach is the comparison of results for generating functions,

Z
(N)
k1/k2

(κ) =

∫

Herm (N)

P (N)(H)

k2∏
j=1

det(H − κj211N )

k1∏
j=1

det(H − κj111N )

d[H ] , (2.1)

obtained with and without supersymmetry. The matrix 11N is the N dimensional unit matrix. The in-
tegration domain in Eq. (2.1) is the set Herm (N) of N × N Hermitian matrices and the parameter κ =
diag (κ11, . . . , κk11, κ12, . . . , κk22) = diag (κ1, κ2) are chosen in such a way that the integral is convergent. One common
choice of them is as real energies xj with a small imaginary part ıε and source variables Jj , i.e. κj1/2 = xj−Jj∓ ıε.

1,12

The differentiation with respect to Jj of Z
(N)
k1/k2

generates the matrix Green function which are intimately related to

the k-point correlation functions. The measure d[H ] is defined as

d[H ] =

N∏

n=1

dHnn

N∏

1≤m<n≤N

dRe HmndIm Hmn . (2.2)

The matrix 11N is the N ×N unit matrix and P (N) is a probability density over N ×N Hermitian matrices.

In Sec. III, we show that Z
(N)
k1/k2

is a determinant,

Z
(N)
k1/k2

(κ) ∼ det

[
Z

(N)
1/1 (κa1, κb2)

κa1 − κb2
Z

(b)
1/0(κa1)

]
, (2.3)

if the Fourier-transform

FP (N)(H̃) =

∫

Herm(N)

P (N)(H) exp
[
ıtrHH̃

]
d[H ] (2.4)

factorizes in the eigenvalues of the Hermitian matrix H̃ . These determinantal structures are similar to those found
for generating functions with factorizing P (N) in the eigenvalues of the Hermitian matrix H .8

Moreover, the integral of Z
(N)
k1/k2

can be easily mapped into superspace if the characteristic function FP (N) is

rotation invariant, see Refs. [1,12]. In this representation one does not integrate over ordinary matrices but over
Wick-rotated Hermitian supermatrices. The integrand is almost rotation invariant apart from an exponential term
which reflects a Fourier-transformation in superspace. We aim at the full integrand with all Efetov-Wegner terms
appearing by a diagonalization of a supermatrix. In particular we want to find the distribution ϕ̂k1/k2 which satisfies

∫
exp [−ıStrκρ]F (ρ)d[ρ] =

∫
Ber

(2)
k1/k2

(r)ϕ̂k1/k2(−ır, κ)F (r)d[r] (2.5)

for an arbitrary rotation invariant superfunction F . In Eq. (2.5) we diagonalize the (k1 + k2)× (k1 + k2) Hermitian

supermatrix ρ to its eigenvalues r. This diagonalization does not only yield the Berezinian Ber
(2)
k1/k2

but also the
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distribution ϕ̂k1/k2 . The distribution ϕ̂k1/k2 is the integral over the supergroup U (k1/k2) and, additionally, all
Efetov-Wegner terms.
We derive ϕ̂k1/k2 in two steps. In the first step we combine the mapping into superspace with the determinant (2.3)

for factorizing FP (N). This is a particular case of the identity Eq. (2.5) but it is sufficient to generalize its result to
an arbitrary rotation invariant superfunction F in the second step.
The procedure described above incorporates determinants derived in Ref. [8,26]. Let p ≥ q. Then, these determi-

nants are

√
Ber

(2)
p/q(κ) =

∏
1≤a<b≤p

(κa1 − κb1)
∏

1≤a<b≤q

(κa2 − κb2)

p∏
a=1

q∏
b=1

(κa1 − κb2)

(2.6)

= (−1)p(p−1)/2 det




{
κp−qb1 κq−pa2

κb1 − κa2

}

1≤a≤q

1≤b≤p{
κa−1
b1

}
1≤a≤p−q

1≤b≤p




(2.7)

= (−1)p(p−1)/2 det




{
1

κb1 − κa2

}

1≤a≤q

1≤b≤p{
κa−1
b1

}
1≤a≤p−q

1≤b≤p


 . (2.8)

All three expressions find their applications in our discussion. For p = q we obtain the Cauchy-determinant25

√
Ber

(2)
p/p(κ) = (−1)p(p−1)/2 det

[
1

κa1 − κb2

]

1≤a,b≤p

, (2.9)

whereas for p = 0 we have the Vandermonde-determinant
√
Ber

(2)
0/q(κ) = ∆q(κ) = (−1)q(q−1)/2 det

[
κa−1
b2

]
1≤a,b≤q

. (2.10)

These determinants appear as square roots of Berezinians by diagonalizing Hermitian supermatrices. This also explains
our notation for them. The upper index 2 results from the Dyson index β which is two throughout this work. Thus
we are consistent with our notation used in other articles [8,9,12,27].

III. THE DETERMINANTAL STRUCTURE AND THE CHARACTERISTIC FUNCTION

We consider the generating function (2.1). Let the probability density P (N) be rotation invariant. Then, the
characteristic function (2.4) inherits this symmetry. We consider such characteristic functions which factorize in the

eigenvalues Ẽ = diag (Ẽ1, . . . , ẼN ) of the matrix H̃ ,

FP (N)(Ẽ) =

N∏

j=1

f(Ẽj) . (3.1)

Due to the normalization of P (N), the function f : R → C is unity at zero. We restrict us to the case

k2 ≤ k1 ≤ N . (3.2)

This case is sufficient for our purpose.

Theorem III.1 Let f be conveniently integrable and d = N + k2 − k1. The generating function in Eq. (2.1) has for

factorizing characteristic function (3.1) under the condition (3.2) the determinantal expression

Z
(N)
k1/k2

(κ) =
(−1)k2(k2+1)/2+k2k1

√
Ber

(2)
k1/k2

(κ)
det







Z

(Ñ)
1/1 (κa1, κb2)

κa1 − κb2



 1≤a≤k1

1≤b≤k2

{
Z

(b)
1/0(κa1)

}
1≤a≤k1
d+1≤b≤N


 (3.3)

for all Ñ ∈ {d, d+ 1, . . . , N}.
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Notice that indeed Eq. (3.3) is for all values Ñ ∈ {d, d+ 1, . . . , N} true because the determinant is skew symmetric.
Hence, we may add any linear combination of the last k1 − k2 columns to the first k2 columns.
With this theorem we made the first step to obtain all Efetov-Wegner terms for the diagonalization of a supermatrix.

We prove it in App. A. For non-normalized probability densities, we find Eq. (3.3) multiplied by fλ(0) where

λ = d(d+ 1)/2− (N − 1)N/2− Ñk2. We need the non-normalized version to analyze the integral in Sec. V.
Theorem III.1 is also a very handy intermediate result. It yields an easier result than the one for factorizing

probability densities8. Thus, all eigenvalue correlations for probability densities stemming from a characteristic
function with the property (3.1) are determined by one and two point averages.

IV. INTEGRAL REPRESENTATION IN THE SUPERSPACE OF THE GENERATING FUNCTION
AND THE EFETOV–WEGNER TERM OF Z

(N)
1/1

In Refs. [1,4,12,27], it was shown that the generating function (2.1) can be mapped to an integral over supermatrices.

Let Σ
(0)
k1/k2

be the set of supermatrices with the form

ρ =

[
ρ1 η†

η ρ2

]
. (4.1)

The Boson–Boson block ρ1 is an ordinary k1 × k1 positive definite Hermitian matrix and the Fermion–Fermion block
ρ2 is an ordinary k2 × k2 Hermitian matrix. The off-diagonal block η comprises k1 × k2 independent Grassmann
variables. We recall that (η†)† = −η and the integration over one Grassmann variable is defined by

∫
ηjnmdηnm =

∫
η∗ jnmdη

∗
nm = δj1 , j ∈ {0, 1} . (4.2)

We need the Wick–rotated set Σ
(ψ)
k1/k2

= Π̃ψΣ
(0)
k1/k2

Π̃ψ to regularize the integrals below. The matrix Π̃ψ =

(11k1 , e
ıψ/211k2) with ψ ∈]0, π[ is the generalized Wick–rotation12,15. We assume that a Wick–rotation exists such

that the characteristic function is a Schwartz function on the Wick–rotated real axis.
We define the supersymmetric extension Φ of the characteristic function FP with help of a representation

FP1(trH
m,m ∈ N) = FP (N)(H) (4.3)

as a function in matrix invariants,

Φ(k1/k2)(ρ) = FP1(Str ρ
m,m ∈ N) , (4.4)

see Ref. [12]. Let the signs of the imaginary parts for all κj1 be negative. Assuming that Φ is analytic in the Fermion–
Fermion block ρ2, the generalized Hubbard-Stratonovich transformation1,12,27 tells us that the integral Eq. (2.1) with
the condition (3.2) is

Z
(N)
k1/k2

(κ) = C
(N)
k1/k2

∫

Σ
(ψ)

k1/k2

Φ(k1/k2)(ρ̂) exp[−ıStrκρ̂]detdρ1

k2∏

j=1

(
e−ıψ

∂

∂rj2

)d−1

δ
(
eıψrj2

)
d[ρ] , (4.5)

where e−ıψrj2 are the eigenvalues of ρ2 and the matrix ρ̂ is given by

ρ̂ =

[
ρ1 eıψ/2η†

eıψ/2η eıψ(ρ2 + ηρ−1
1 η†)

]
. (4.6)

The constant is

C
(N)
k1/k2

=
(−1)k2(k2+2N−1)/2ıN(k2−k1)πN(k2−k1)+k22k2k1+k2−k1

[(d− 1)!]
k2

Vol(U (N))

Vol(U (d))
fd(0) . (4.7)

Here, the volume of the unitary group is

Vol(U (N)) =

N∏

j=1

2πj

(j − 1)!
. (4.8)
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The term f(0) vanishes if we consider normalized probability densities. The definition of the measure d[ρ] =
d[ρ1]d[ρ2]d[η] is equal to the one in Ref. [27],

d[ρ1] =

k1∏

n=1

dρnn1
∏

1≤m<n≤k1

dRe ρmn1dIm ρmn1 , (4.9)

d[ρ2] = eık
2
2ψ

k2∏

n=1

dρnn2
∏

1≤m<n≤k2

dRe ρmn2dIm ρmn2 , (4.10)

d[η] = e−ık1k2ψ
k1∏

n=1

k2∏

m=1

dηmndη
∗
mn . (4.11)

We use the conventional notation for the supertrace “Str ” and superdeterminant “Sdet ”.

Let ρ ∈ Σ
(ψ)
k1/k2

with the form (4.1). As long as the eigenvalues of the Boson-Boson block ρ1 are pairwise different with

those of the Fermion-Fermion block ρ2, we may diagonalize the whole supermatrix ρ by an element U ∈ U(k1/k2).
The corresponding diagonal eigenvalue matrix is r = diag (r11, . . . , rk11, e

ıψr12, . . . , e
ıψr22) = diag (r1, e

ıψr2), i.e.
ρ = UrU †. Due to Rothstein’s14 vector field resulting from such a change of coordinates in the Berezin measure, we
have

d[ρ] 6= Ber
(2)
k1/k2

(r)d[r]dµ(U) , (4.12)

where d[r] is the product of all eigenvalue differentials and dµ(U) is the supersymmetric Haar–measure of the unitary
supergroup U (k1/k2). We have to consider some boundary terms since the Berezin integral is fundamentally connected
with differential operators14,15,28,29.
An arbitrary supersymmetric extension Φ of a factorizing characteristic function (3.1) has not always to factorize.

However, we want to consider only such extensions which have this property. In particular, we only use the extension

Φ(k1/k2)(ρ) =

k1∏

a=1

f(ra1)

k2∏

b=1

1

f(eıψrb2)
. (4.13)

We consider the generating function Z
(N)
1/1 . Equation (4.5) is an integral over Dirac distributions. Hence, we cannot

simply apply a Cauchy-like theorem15–18,30,31. The following lemma states that also for this integration domain we

obtain an Efetov–Wegner term for Z
(N)
1/1 .

Lemma IV.1 Let the function 1/f be analytic at the zero point. Then, we have

Z
(N)
1/1 (κ)

fN (0)
=

[
f(r1)

f (eıψr2)
exp[−ıStrκr]

]∣∣∣∣
r=0

+
ı(−1)N

(N − 1)!

×

∫

R+×R

κ1 − κ2
r1 − eıψr2

f(r1)

f (eıψr2)
exp[−ıStrκr]rN1

(
e−ıψ

∂

∂r2

)N−1

δ (r2) dr2dr1 (4.14)

=
(−1)N

(N − 1)!

∫

R+×R

[
1

r1 − eıψr2

(
∂

∂r1
+ e−ıψ

∂

∂r2

)
+ ı

κ1 − κ2
r1 − eıψr2

]

×
f(r1)

f (eıψr2)
exp[−ıStrκr]rN1

(
e−ıψ

∂

∂r2

)N−1

δ (r2) dr2dr1 . (4.15)

In Eq. (4.15), we integrate first over r2 and then over r1.

We prove this lemma in App. B. The first summand of the equality (4.14) is 1 which is the Efetov-Wegner term. The
second equality (4.15) is more convenient than equality (4.14) for the discussions in the ensuing section.
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V. SUPERMATRIX BESSEL FUNCTION WITH ALL EFETOV–WEGNER TERMS

Let supermatrices in Σ̃
(ψ)
k1/k2

be similar to those in Σ
(ψ)
k1/k2

without the positive definiteness of the Boson-Boson block.

We want to find the distribution ϕ̂k1/k2 which satisfies

∫

Σ̃
(ψ)

k1/k2

exp [−ıStrκρ]F (ρ)d[ρ] =

∫

Rk1+k2

Ber
(2)
k1/k2

(r)ϕ̂k1/k2(−ır, κ)F (r)d[r] , (5.1)

for an arbitrary sufficiently integrable, rotation invariant superfunction F analytic at the zero point. Recognizing
that the integral expression (4.5) includes the supersymmetric Ingham–Siegel integral1,12,27, the generating function
is apart from a shift in the Fermion-Fermion block and analyticity a particular example of this type of integral.
It is convenient to derive ϕ̂k1/k2 in Eq. (5.1) for factorizing superfunctions (4.13) since the function F can be

expressed in terms of such functions. Due to the analyticity of F , this superfunction can be chosen as a function of
supertraces,

F (ρ) = F0(Str ρ
m,m ∈ N) . (5.2)

As for the ordinary determinant and trace, the relation

Sdet (αρ+ 11k1+k2) = exp [Str ln(αρ+ 11k1+k2)] (5.3)

holds, α ∈ C. By expansion of the logarithm at zero, we regain all supertraces from the superdeterminant with the
formula

Str ρm = (−1)mα1−m ∂

∂α
exp

[
m−1∑

n=1

(−α)n

n
Str ρn

]
Sdet (αρ+ 11k1+k2)

∣∣∣∣∣
α=0

, m ∈ N . (5.4)

The superfunction under the differentiation factorizes and has a generalized Wick–rotation to regularize the integral.
The superfunction F may consist of products and sums of those functions and can be approximated by polyno-
mials in the traces with help of Weierstraß approximation theorem. Thus, we can first restrict us to factorizing
superfunctions (4.13) and, then, extend to arbitrary F .

Lemma V.1 The distribution ϕ̂k1/k2 defined by

∫

Σ
(ψ)

k1/k2

F (ρ̂) exp[−ıStrκρ̂]detdρ1

k2∏

j=1

(
e−ıψ

∂

∂rj2

)d−1

δ
(
eıψrj2

)
d[ρ]

=

∫

R
k1
+ ×Rk2

Ber
(2)
k1/k2

(r)ϕ̂k1/k2(−ır, κ)F (r)det
dr1

k2∏

j=1

(
e−ıψ

∂

∂rj2

)d−1

δ
(
eıψrj2

)
d[r] (5.5)

is

ϕ̂k1/k2(−ır, κ) =
(−1)(k1+k2)(k1+k2−1)/2(ıπ)(k2−k1)

2/2−(k1+k2)/2

2k1k2k1!k2!
√
Ber

(2)
k1/k2

(κ)Ber
(2)
k1/k2

(r)

∑

ω1∈S(k1)

ω2∈S(k2)

exp


−ı

k1∑

j=1

κj1rω1(j)1 + ıeıψ
k2∑

j=1

κj2rω2(j)2




× det




{
−ı

(κb1 − κa2)(rω1(b)1 − eıψrω2(a)2)

(
∂

∂rω1(b)1
+ e−ıψ

∂

∂rω2(a)2

)}

1≤a≤k2
1≤b≤k1{

ra−1
ω1(b)1

}
1≤a≤k1−k2

1≤b≤k1




(5.6)

for an arbitrary sufficiently integrable, rotation invariant superfunction F (ρ̂) analytic at zero. The set of permutations

over k elements is S(k).
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The Wick-rotated Dirac-distribution is defined by δ(eıψrb1) = e−ıψδ(rb1). We prove this lemma in App. C. The proof
incorporates theorem III.1 and lemma IV.1.
In the next theorem we extend this lemma to arbitrary rotation invariant superfunctions without the additional

Dirac-distributions in the integral, cf. Eq. (4.5).

Theorem V.2 The distribution ϕ̂k1/k2 defined by Eq. (5.1) is the one defined in Eq. (5.6) for an arbitrary sufficiently

integrable, rotation invariant superfunction F (ρ) analytic at zero. For such superfunctions and for generalized Wick-

rotations ψ ∈]0, π[ this distribution has alternatively the form

ϕ̂k1/k2(−ır, κ) =
(−1)(k1+k2)(k1+k2−1)/2(ıπ)(k2−k1)

2/2−(k1+k2)/2

2k1k2k1!k2!
√
Ber

(2)
k1/k2

(κ)Ber
(2)
k1/k2

(r)
(5.7)

×
∑

ω1∈S(k1)

ω2∈S(k2)

det




{
−2πδ(rω1(b)1)δ(e

ıψrω2(a)2)

κb1 − κa2
+

exp
(
−ıκb1rω1(b)1 + ıeıψκa2rω2(a)2

)

rω1(b)1 − eıψrω2(a)2
χ(κb1 − κa2)

}

1≤a≤k2
1≤b≤k1{

ra−1
ω1(b)1

exp
(
−ıκb1rω1(b)1

)}
1≤a≤k1−k2

1≤b≤k1




with the distribution

χ(x) =

{
0 , x = 0,
1 , else.

(5.8)

Equation (5.7) is true because of the Cauchy-like theorem for (1+1)× (1+1) Hermitian supermatrices, see Refs. [15,
16,31]. One has to pay caution on which half of the complex plane the general Wick-rotation is lying. If ψ ∈]π, 2π[
then the minus changes to a plus infront of the Dirac-distributions.
We notice that the distribution ϕ̂k1/k2(r, κ) is not symmetric in exchanging its arguments r and κ. Apart from

the characteristic function χ such a symmetry exists for the supermatrix Bessel functions15,25,32 which is ϕ̂k1/k2(r, κ)
without the Dirac-distributions, i.e.

ϕk1/k2(−ır, κ) =
(−1)(k1+k2)(k1+k2−1)/2(ıπ)(k2−k1)

2/2−(k1+k2)/2

2k1k2k1!k2!
√
Ber

(2)
k1/k2

(κ)Ber
(2)
k1/k2

(r)
(5.9)

×
∑

ω1∈S(k1)

ω2∈S(k2)

det




{
exp

(
−ıκb1rω1(b)1 + ıeıψκa2rω2(a)2

)

rω1(b)1 − eıψrω2(a)2
χ(κb1 − κa2)

}

1≤a≤k2
1≤b≤k1{

ra−1
ω1(b)1

exp
(
−ıκb1rω1(b)1

)}
1≤a≤k1−k2

1≤b≤k1




=
(−1)k2(k2−1)/2+k1k2(ıπ)(k2−k1)

2/2−(k1+k2)/2

2k1k2k1!k2!

∏

1≤a≤k1
1≤a≤k2

χ(κa1 − κb2)

×
det [exp(−ıκa1rb1)]1≤a,b≤k1 det

[
exp(ıeıψκa2rb2)

]
1≤a,b≤k2√

Ber
(2)
k1/k2

(κ)
√
Ber

(2)
k1/k2

(r)
.

The asymmetry, ϕ̂k1/k2(r, κ) 6= ϕ̂k1/k2(κ, r), is mainly due to the diagonalization of ρ to r whereas the supermatrix κ
is already diagonal. The characteristic function χ in Eqs. (5.7) and (5.9) is crucial because of the commutator

[
∂

∂rω1(b)1
+ e−ıψ

∂

∂rω2(a)2
, exp

(
−ıκb1rω1(b)1 + ıeıψκa2rω2(a)2

)]

−

= −ı(κb1 − κa2) exp
(
−ıκb1rω1(b)1 + ıeıψκa2rω2(a)2

)
χ(κb1 − κa2) . (5.10)

Indeed the set which is cutted out by χ is a set of measure zero and does not play any role when one integrates
ϕk1/k2(−ır, κ) or ϕ̂k1/k2(−ır, κ) over κ with a conveniently smooth function. However it becomes important for the
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integral

∫

Rk1+k2

ϕk1/k2(ıs, r)ϕk1/k2(−ır, κ̃)Ber
(2)
k1/k2

(r)d[r] (5.11)

=
π(k2−k1)

2

22k1k2−k1−k2k1!k2!

∏

1≤a≤k1
1≤a≤k2

χ(κa1 − e−ıψκb2)
det [δ(κa1 − sb1)]1≤a,b≤k1 det

[
eıψδ(κa2 − sb2)

]
1≤a,b≤k2√

Ber
(2)
k1/k2

(κ̃)
√
Ber

(2)
k1/k2

(s)
.

where s = diag (s11, . . . , sk11, e
−ıψs12, . . . , e

−ıψsk22) and κ̃ = diag (κ11, . . . , κk11, e
−ıψκ12, . . . , e

−ıψκk22) with sab, κab ∈
R. This result is the correct one for the supermatrix Bessel function. The difference to other results15,25,32 is the
distribution χ which guarantees that the Dirac-distribution (5.11) in the eigenvalues s of a Hermitian supermatrix
σ vanishes if a bosonic eigenvalue of κ̃ equals with a fermionic one. The reasoning becomes clear when we interpret
Eq. (5.11) as an integral over the supergroup U (k1/k2), i.e.

∫

Rk1+k2

ϕk1/k2(ıs, r)ϕk1/k2(−ır, κ̃)Ber
(2)
k1/k2

(r)d[r] ∼

∫

U(k1/k2)

δ(UsU † − κ̃)dµ(U) . (5.12)

The measure dµ(U) is the Haar measure on U (k1/k2) and the Dirac-distribution is defined by two Fourier transfor-
mations

δ(UsU † − κ̃) ∼

∫
exp

[
ıStr ρ(UsU † − κ̃)

]
d[ρ] . (5.13)

The Haar measure dµ of the supergroup U (k1/k2) can not be normalized as it can be done for the ordinary unitary
groups since the volume of U (k1/k2) is zero for k1k2 6= 0. This is also the reason why Eq. (5.11) has to vanish if one
bosonic eigenvalue of κ̃ equals to a fermionic one. Then the integral (5.12) is rotation invariant under the subgroup
U (1/1) which has zero volume, too. This cannot be achieved without the distribution χ as it was done in the common
literature [15,25,32]. Interestingly the replacement of ϕk1/k2 by ϕ̂k1/k2 in Eq. (5.11) yields the Dirac-distribution

∫

Rk1+k2

ϕ̂k1/k2(ıs, r)ϕ̂k1/k2(−ır, κ̃)Ber
(2)
k1/k2

(r)d[r] (5.14)

=
π(k2−k1)

2

22k1k2−k1−k2k1!k2!

det [δ(κa1 − sb1)]1≤a,b≤k1 det
[
eıψδ(κa2 − sb2)

]
1≤a,b≤k2√

Ber
(2)
k1/k2

(κ̃)
√
Ber

(2)
k1/k2

(s)

which is similar to the one in Eq. (5.11). Equation (5.14) is derived in Appendix E.
We want to finish this section by a remark about the relation of the result for the supermatrix Bessel function,

see Eq. (5.7), and the differential operator derived by the author in an earlier work [15]. This differential operator is
defined by

D(k1k2)
r F (r) =

∫
F (ρ)d[η] (5.15)

for an arbitrary sufficiently integrable superfunction F on the (k1 + k2) × (k1 + k2) supermatrices invariant under
U (k1/k2). It has the form

D(k1k2)
r =

1

(k1k2)!(4π)k1k2
1

∆k1(r1)∆k1(e
ıψr2)

×

k1k2∑

n=0

(
k1k2
n

)(
Str

∂2

∂r2

)k1k2−n ∏

1≤a≤k1
1≤b≤k2

(ra1 − eıψrb2)

(
−Str

∂2

∂r2

)n√
Ber

(2)
k1/k2

(r) , (5.16)

where we define

Str
∂2

∂r2
=

k1∑

a=1

∂2

∂r2a1
− e−2ıψ

k2∑

b=1

∂2

∂r2b2
. (5.17)
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Due to Eq. (5.15) the differential operator D
(k1k2)
r is equivalent to the integration over all Grassmann variables of the

supermatrix ρ.
The comparison of Eqs. (5.15) and (5.16) with Eqs. (5.1) and (5.7) for an arbitrary sufficiently integrable, rotation

invariant superfunction F and arbitrary diagonal supermatrix κ yields

D(k1k2)
r =

1

(2π)k1k2
1

∆k1(r1)∆k1 (e
ıψr2)

∏

1≤a≤k1
1≤b≤k2

(
∂

∂ra1
+ e−ıψ

∂

∂rb2

)√
Ber

(2)
k1/k2

(r) . (5.18)

Thus, we have found a quite compact form for D
(k1k2)
r which is easier to deal with as the one in Eq. (5.16).

VI. SOME APPLICATIONS FOR HERMITIAN MATRIX ENSEMBLES

In random matrix theory generating functions as

Z
(N)
k (κ, αH0) =

∫

Herm(N)

P (N)(H)

k∏

j=1

det(H + αH0 − κj211N )

det(H + αH0 − κj111N )
d[H ] . (6.1)

are paramount important since they model Hermitian random matrices in an external potential24,33 or intermediate
random matrix ensembles34–39. The matrix H0 is a N × N Hermitian matrix and can be an arbitrary matrix or
can also be drawn from another random matrix ensemble. The external parameter α ∈ R is the coupling constant

between the two matrices H and H0 and yields the generating function (2.1) for α = 0, i.e. Z
(N)
k (κ, 0) = Z

(N)
k/k (κ). The

variables κj1 have to have an imaginary increment to guarantee the convergence of the integral, i.e. κj1 = xj1−Jj−ıε.
In subsection VIA we consider the generating function (6.1) with λ = 0. We will use the mapping of this integral

to a representation in superspace which is shown in a previous work by the authors8 and diagonalize the supermatrix.
In a formalism similar to the case α = 0 we will treat the more general case α 6= 0 in subsection VIB.

A. Hermitian matrix ensembles without an external source (α = 0)

Omitting the index N in P (N) we consider a normalized rotation invariant probability density P with respect to
N ×N Hermitian random matrices.
Following the derivations made in Refs. [1,12] we have to calculate the characteristic function FP , see Eq. (2.4).

Assuming that this can be done we recall the rotation invariance of FP . This allows us to choose a representation

of FP as a function in a finite number of matrix invariants, i.e. FP (H̃) = FP1(tr H̃, . . . , tr H̃
N). A straightforward

supersymmetric extension Φ of the characteristic function is the one in Eq. (4.3) and its Fourier transform is

FΦ(σ) = 22k(k−1)

∫

Σ̃
(ψ)

k/k

Φ(ρ) exp(−ıStr ρσ)d[ρ] . (6.2)

The Fourier-transform is denoted by Q in Ref. [1]. The supermatrices ρ and σ are Wick-rotated with the phases eıψ

and e−ıψ, respectively.

The supersymmetric integral for Z
(N)
k (κ, αH0) is

1,12

Z
(N)
k (κ, αH0) =

∫

Σ̃
(−ψ)

k/k

FΦ(σ)Sdet−1(σ ⊗ 11N + α11k+k ⊗H0 − κ)d[σ] . (6.3)

Setting the coupling constant α to zero we also find

Z
(N)
k (κ) = 22k(k−1)

∫

Σ̃
(ψ)

k/k

∫

Σ̃
(−ψ)

k/k

FΦ(σ) exp[ıStr ρ(σ − κ)]IN (ρ)d[σ]d[ρ] , (6.4)
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where the supersymmetric Ingham-Siegel integral is1

I
(N)
k (ρ) =

∫

Σ̃
(−ψ)

k/k

Sdet−N (σ + ıε11k+k) exp(−ıStr ρσ + εStr ρ)d[σ]

= (−1)k(k+1)/22−k(k−1)
k∏

j=1

[
2π

(N − 1)!
rNj1Θ(rj1)

(
−e−ıψ

∂

∂rj2

)N−1

δ(eıψrj2)

]
, (6.5)

The distribution Θ is the Heavyside distribution and rj1 and eıψrj2 are the bosonic and fermionic eigenvalues of ρ,
respectively. In App. F we perform the integration (6.5) with help of the results in Sec. V and find

Z
(N)
k (κ) =

ık

2k(k−1)

∫

R2k

d[s]√
Ber

(2)
k/k(κ)

FΦ(s) (6.6)

× det

[
δ(sb1)δ(e

−ıψsa2)

κb1 − κa2

(
κa2
κa1

)N
+

N
(
e−ıψsa2 − κa2

)N−1

2πı (e−ıψsb1 − κb1)
N+1

(sb1 − e−ıψsa2)

]

1≤a,b≤k

.

The first term in the determinant is the Efetov-Wegner term whereas the second term can be understood as integrals
over supergoups.

B. Hermitian matrix ensembles in the presence of an external source (α 6= 0)

For Hermitian matrix ensembles in an external field it is convenient to consider the integral representation

Z
(N)
k (κ, αH0) = 22k(k−1)

∫

Σ̃
(ψ)

k/k

Φ(ρ) exp[−ıStrκρ]

×



∫

Σ̃
(−ψ)

k/k

exp(−ıStr ρσ + εStr ρ)Sdet−1(σ ⊗ 11N + α11k+k ⊗H0 + ıε11N(k+k))d[σ]


 d[ρ] (6.7)

for the generating function, see Eqs. (6.1) and (6.3). In App. G we integrate this representation in two steps and get

Z
(N)
k (κ, αH0) =

(−1)k(k−1)/2

∆N (αE0)
√
Ber

(2)
k/k(κ)

∫

R2k

det




{B1(rb1, ra2, κb1, κa2)}1≤a,b≤k {Bb2(ra2, κa2)}
1≤a≤k

1≤b≤N{
B3(rb1, κb1, αE

(0)
a )
}

1≤a≤N

1≤b≤k

{
(−αE(0)

a )b−1
}
1≤a,b≤N


Φ(r)d[r] ,

(6.8)

where

B1(rb1, ra2, κb1, κa2) =
δ(rb1)δ(e

ıψra2)

κb1 − κa2
+ ı

I
(N)
1 (rb1, e

ıψra2)

2π(rb1 − eıψra2)
exp

(
−ıκb1rb1 + ıeıψκa2ra2

)
χ(κb1 − κa2) , (6.9)

Bb2(ra2, κa2) = exp
(
ıeıψκa2ra2

)(
−ıe−ıψ

∂

∂ra2

)b−1

δ(eıψra2)

k∏

j=1

χ(κj1 − κa2) , (6.10)

B3(rb1, κb1, αE
(0)
a ) = −ı exp (−ıκb1rb1)Θ(rb1)

∞∑

n=N

(ıαE
(0)
a rb1)

n

n!

k∏

j=1

χ(κb1 − eıψκj2) . (6.11)

The case α = 0 can be easily deduced from the result (6.8),

Z
(N)
k (κ) =

(−1)k(k−1)/2

√
Ber

(2)
k/k(κ)

∫

R2k

det

[
δ(rb1)δ(e

ıψra2)

κb1 − κa2
+ ı

I
(N)
1 (rb1, e

ıψra2)

2π(rb1 − eıψra2)
χ(κb1 − κa2)

]

1≤a,b≤k

exp (−ıStrκr) Φ(r)d[r] .

(6.12)
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Again we are able to distinguish the Efetov-Wegner terms from those terms corresponding to supergroup integrals.
In the determinant of Eq. (6.12) and in the left upper block of Eq. (6.8), see Eq. (6.9), the Dirac-distributions are the
contribution from the Efetov-Wegner terms. When we expand the determinants in the Dirac-distribution we obtain

the leading terms of Z
(N)
k , Z

(N)
k−1, . . ., Z

(N)
0 which are exactly those found in Refs. [1,12]. Thus, we have found an

expression which can be understood as a generator for all generating functions Z
(N)
k .

The external matrix H0 can also be drawn from another random matrix ensemble as it was done in Refs. [34–39].
However, we do not perform the calculation, here, since it is straightforward to those in an application of Ref. [8].

VII. REMARKS AND CONCLUSIONS

We derived the supermatrix Bessel function with all Efetov-Wegner terms for Hermitian supermatrices of arbitrary
dimensions. We arrived at an expression from which one can easily deduce what the Efetov-Wegner terms are and
which terms result from supergroup integrals. With this result we showed that the completeness and orthogonality
relation for the supermatrix Bessel function without Efetov-Wegner terms slightly differs from the formerly assumed
one35. It is has to be zero on a set of measure zero and, thus, does not matter for smooth integrands but plays an
important role if the integrand has singularities on this set.
We applied the supermatrix Bessel function with all Efetov-Wegner terms to arbitrary, rotation invariant Hermitian

random matrix ensembles with and without an external field. The already known leading terms1,8,12,24,33–39 were
obtained plus all Efetov-Wegner terms. The correction terms were unknown before and yield new insights in the
supersymmetric representation of the generating functions. For example the Efetov-Wegner terms become important
for the matrix Green functions.
We also found an integral identity for the generating functions whose integrand can be easily expanded in the

Efetov-Wegner terms. In such an expansion one obtains correlation functions related to k-point correlation functions
which are of lower order than those corresponding to the originally considered generating function. Thus, it reflects the
relation of Mehta’s definition7 for the k-point correlation function and the one commonly used in the supersymmetry
method1 which was explained in Ref. [40].
We expect that similar results may also be derived for other supermatrices, e.g. diagonalization of complex

supermatrices41. Nevertheless we guess that the knowledge about the supergroup integrals as well as about the
ordinary group integrals is crucial. We could only obtain these compact results due to this knowledge.
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from Deutsche Forschungsgemeinschaft within Sonderforschungsbereich Transregio 12 “Symmetries and Universality
in Mesoscopic Systems”.

Appendix A: Proof of theorem III.1

We plug the characteristic function (2.4) in Eq. (2.1) and diagonalize H̃ . This yields

Z
(N)
k1/k2

(κ) =
VN

2NπN2

∫

Herm (N)

∫

RN

exp
[
−ıtrHẼ

]
k2∏
j=1

det(H − κj211N )

k1∏
j=1

det(H − κj111N )

N∏

j=1

f(Ẽj)∆
2
N (Ẽ)d[Ẽ]d[H ] , (A1)

where the constant is

VN =
1

N !

N∏

j=1

πj−1

(j − 1)!
. (A2)
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The diagonalization of H gives the matrix Bessel function42,43 according to the unitary group U (N),

ϕN (E, Ẽ) =

∫

U(N)

exp
[
−ıtrEUẼU †

]
dµ(U)

=

N∏

j=1

ıj−1(j − 1)!
det
[
exp(−ıEaẼb)

]
1≤a,b≤N

∆N (Ẽ)∆N (E)
(A3)

The measure dµ is the normalized Haar-measure. Thus, we find

Z
(N)
k1/k2

(κ) =
ıN(N−1)/2

(2π)NN !
N∏
j=0

j!

∫

R2N

det
[
exp(−ıEaẼb)

]
1≤a,b≤N

(A4)

×

N∏

a=1

f(Ẽa)

k2∏
b=1

(Ea − κb2)

k1∏
b=1

(Ea − κb1)

∆N (Ẽ)∆N (E)d[Ẽ]d[E] . (A5)

Here, one can easily check that the normalization is Z
(N)
k1/k2

(0) = fN (0). Since determinants are skew-symmetric, we

first expand the Vandermonde determinant ∆N (Ẽ) and then the determinant of the exponential functions. We have

Z
(N)
k1/k2

(κ) =
(−ı)N(N−1)/2

(2π)N
N∏
j=1

(j − 1)!

∫

R2N

N∏

a=1


f(Ẽa) exp(−ıEaẼa)Ẽ

a−1
a

k2∏
b=1

(Ea − κb2)

k1∏
b=1

(Ea − κb1)


∆N (E)d[Ẽ]d[E] . (A6)

Following the ideas in Ref. [8], we extend the integrand by a square root Berezinian and find with help of (2.8) the
determinant

Z
(N)
k1/k2

(κ) =
(−1)k2(k2−1)/2+(k2+1)k1 ıN(N−1)/2

(2π)N
N∏
j=1

(j − 1)!

1√
Ber

(2)
k1/k2

(κ)
(A7)

× det




{
1

κa1 − κb2

}

1≤a≤k1
1≤b≤k2





∫

R2

f(E2)E
b−1
2

κa1 − E1
exp[−ıE2E1]d[E]



 1≤a≤k1

1≤b≤N

{
κa−1
b2

}
1≤a≤d

1≤b≤k2





∫

R2

f(E2)E
b−1
2 Ea−1

1 exp[−ıE2E1]d[E]



 1≤a≤d

1≤b≤N



.

We define the sign of the imaginary parts of κj1 by

− Lj =
Imκj1
|Imκj1|

. (A8)

Integrating over E1, Eq. (A7) reads

Z
(N)
k1/k2

(κ) =
(−1)k2(k2−1)/2+(k2+1)k1ıN(N−1)/2

N∏
j=1

(j − 1)!

1√
Ber

(2)
k1/k2

(κ)
(A9)

× det




{
1

κa1 − κb2

}

1≤a≤k1
1≤b≤k2



ıLa

∫

R

f(E)Eb−1 exp[−ıκa1E]Θ(LaE)dE



 1≤a≤k1

1≤b≤N

{
κa−1
b2

}
1≤a≤d

1≤b≤k2





∫

R

f(E)Eb−1

(
ı
∂

∂E

)a−1

δ(E)dE



 1≤a≤d

1≤b≤N



.
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In the lower right block we use the following property of the integral

∫

R

f(E)Eb−1

(
ı
∂

∂E

)a−1

δ(E)dE = 0 for b > a . (A10)

Since d = N + k2 − k1 ≤ N , cf. Eq. (3.2), the last N − d columns in the lower right block in the determinant (A9) is
zero. The matrix

M =



∫

R

f(E)Eb−1

(
ı
∂

∂E

)a−1

δ(E)dE




1≤a,b≤d

(A11)

is a lower triangular matrix with diagonal elements

Mjj =

∫

R

f(E)Ej−1

(
ı
∂

∂E

)j−1

δ(E)dE = (−ı)j−1(j − 1)! . (A12)

Thus, the determinant of this matrix is

detM = (−ı)N(N−1)/2
N∏

j=1

(j − 1)! . (A13)

We pull the Matrix M out the determinant (A9) and find

Z
(N)
k1/k2

(κ) =
(−1)k2(k2−1)/2+(k2+1)k1

√
Ber

(2)
k1/k2

(κ)
(A14)

× det



{
K(d)(κa1, κb2)

}
1≤a≤k1
1≤b≤k2



ıLa

∫

R

f(E)Eb−1 exp[−ıκa1E]Θ(LaE)dE



 1≤a≤k1

d+1≤b≤N


 ,

where

K(d)(κa1, κb2) =
1

κa1 − κb2
− ıLa

d∑

m,n=1

∫

R

f(E)Em−1 exp[−ıκa1E]Θ(LaE)dEM−1
mnκ

n−1
b2 . (A15)

Again we use the fact that the determinant is skew-symmetric which allows also to write

Z
(N)
k1/k2

(κ) =
(−1)k2(k2−1)/2+(k2+1)k1

√
Ber

(2)
k1/k2

(κ)
(A16)

× det



{
K(Ñ)(κa1, κb2)

}
1≤a≤k1
1≤b≤k2



ıLa

∫

R

f(E)Eb−1 exp[−ıκa1E]Θ(LaE)dE



 1≤a≤k1

d+1≤b≤N


 ,

for an arbitrary Ñ ∈ {d, d+ 1, . . . , N}. For the cases (k1/k2) = (1/1) and (k1/k2) = (1/0), we identify

Z
(N)
1/1 (κa1, κb2) = (κa1 − κb2)K

(N)(κa1, κb2) , (A17)

Z
(N)
1/0 (κa1) = −ıLa

∫

R

f(E)EN−1 exp[−ıκa1E]Θ(LaE)dE . (A18)

This yields the theorem.



14

Appendix B: Proof of lemma IV.1

The proof of this Lemma is similar to the derivation of the supermatrix Bessel function with the Efetov–Wegner
term in Sec. V.A of Ref. [15]. We consider the integral

Z
(N)
1/1 (κ)

fN (0)
=

(−1)N2π

(N − 1)!

∫

Σ
(ψ)

1/1

Φ(1/1)(ρ̂) exp[−ıStrκρ̂]rN1

(
e−ıψ

∂

∂r2

)N−1

δ
(
eıψr2

)
d[ρ] . (B1)

As in Ref. [15], we exchange the integration over the Grassmann variables by a differential Operator which yields

Z
(N)
1/1 (κ)

fN (0)
=

(−1)N

(N − 1)!

∫

R+×R

rN1

[(
e−ıψ

∂

∂r2

)N−1

δ (r2)

][
ı
κ1 − κ2
r1 − eıψr2

(B2)

+
1

r1 − eıψr2

(
∂

∂r1
+ e−ıψ

∂

∂r2

)
−
e−ıψ

r1

∂

∂r2

] [
f(r1)

f (eıψr2)
exp[−ıStrκr]

]
dr1dr2 .

The term

Z1 =
ı(−1)N

(N − 1)!

∫

R+×R

κ1 − κ2
r1 − eıψr2

f(r1)

f (eıψr2)
exp[−ıStrκr]rN1

(
e−ıψ

∂

∂r2

)N−1

δ (r2) dr1dr2 (B3)

contains the supermatrix Bessel function with respect to U (1/1)15,25,32. The second term

Z2 =
(−1)N

(N − 1)!

∫

R+×R

rN1

(
e−ıψ

∂

∂r2

)N−1

δ (r2) (B4)

×

[
1

r1 − eıψr2

(
∂

∂r1
+ e−ıψ

∂

∂r2

)
−
e−ıψ

r1

∂

∂r2

] [
f(r1)

f (eıψr2)
exp[−ıStrκr]

]
dr1dr2 .

has to yield the Efetov–Wegner term. By partial integration, we evaluate the Dirac distribution and omit the
generalized Wick–rotation. Thus, Eq. (B2) becomes

Z2 =
−1

(N − 1)!

∫

R+



N−1∑

j=0

(N − 1)!

j!
rj1

(
∂j+1

∂r1∂r
j
2

+
∂j+1

∂rj+1
2

)
− rN−1

1

∂N

∂rN2


 (B5)

×

[
f(r1)

f (r2)
exp[−ıStr κr]

]∣∣∣∣
r2=0

dr1 .

For all terms up to j = 0 we perform a partial integration in r1 and find a telescope sum. Hence, we have

Z2 = −

∫

R+

∂

∂r1

[
f(r1)

f (r2)
exp[−ıStrκr]

]∣∣∣∣
r2=0

dr1 = 1 . (B6)

This is indeed the Efetov–Wegner term.
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The second equality (4.15) follows from

∫

R+×R

1

r1 − eıψr2

(
∂

∂r1
+ eıψ

∂

∂r2

)(
f(r1)

f (eıψr2)
exp[−ıStrκr]rN1

(
e−ıψ

∂

∂r2

)N−1

δ(r2)

)
dr1dr2

=

∫

R+×R

rN1

[(
e−ıψ

∂

∂r2

)N−1

δ(r2)

]
1

r1 − eıψr2

(
∂

∂r1
+ eıψ

∂

∂r2

)(
f(r1)

f (eıψr2)
exp[−ıStrκr]

)
dr1dr2

+

∫

R+×R

f(r1)

f (eıψr2)
exp[−ıStrκr]

[
NrN−1

1

r1 − eıψr2

(
e−ıψ

∂

∂r2

)N−1

+
rN1

r1 − eıψr2

(
e−ıψ

∂

∂r2

)N]
δ(r2)dr1dr2

=

∫

R+×R

rN1

[(
e−ıψ

∂

∂r2

)N−1

δ(r2)

]
1

r1 − eıψr2

(
∂

∂r1
+ eıψ

∂

∂r2

)(
f(r1)

f (eıψr2)
exp[−ıStrκr]

)
dr1dr2

+ (−1)N−1

∫

R+



N−1∑

j=0

N !

j!
rj−1
1

∂j

∂rj2
−

N∑

j=0

N !

j!
rj−1
1

∂j

∂rj2



(

f(r1)

f (eıψr2)
exp[−ıStrκr]

)∣∣∣∣∣∣
r2=0

dr1 . (B7)

Both sum cancel each other up to the term j = N which is the term rN−1
1 ∂N/∂rN2 in Eq. (B5).

Appendix C: Proof of lemma V.1

Let the characteristic function and, hence, the superfunction Φ(k1/k2) be factorizable, cf. Eq. (4.13). To prove

lemma V.1 we plug Eqs. (4.5) and (4.15) into the result (3.3) for Ñ = d. We find

∫

R
k1
+ ×Rk2

Ber
(2)
k1/k2

(r)ϕ̂k1/k2(r, κ)




k1∏
j=1

f(rj1)

k2∏
j=1

f(eıψrj2)

detdr1

k2∏

j=1

(
e−ıψ

∂

∂rj2

)d−1

δ(rj2)d[r]




=
(−1)(k1+k2)(k1+k2−1)/2(ıπ)(k2−k1)

2/2−(k1+k2)/2

2k1k2
√
Ber

(2)
k1/k2

(κ)

× det








∫

R+×R

exp(−ıκb1r1 + ıeıψκb2r2)

(κb1 − κa2)(r1 − eıψr2)

(
∂

∂r1
+ e−ıψ

∂

∂r2

)[
f(r1)

f(eıψr2)
rd1

(
e−ıψ

∂

∂rj2

)d−1

δ(r2)

]
d[r]



 1≤a≤k2

1≤b≤k1



∫

R+

f(r1)r
a−1
1 e−ıκb1r1dr1



 d+1≤a≤N

1≤b≤k1




.

(C1)

The next step is to pull all factors of f , the monomials rd1 and the distribution
(
e−ıψ∂/∂rj2

)d−1
δ(r2) out the deter-

minant. This proves the lemma for factorizing superfunctions F .
Since all analytic and rotational invariant superfunctions F (ρ) are analytic in the supertraces of ρ these superfunc-

tions are generated by factorizing ones. For example one can consider an arbitrary polynomial in the supertraces
times a factorizing and integrable superfunction. With help of Weierstrass´ approximation theorem one can generate
an arbitrary sufficiently integrable superfunction which may also be non-factorizable.

Appendix D: Proof of theorem V.2

We use the result of lemma V.1 as an ansatz in Eq. (5.1). To prove that this ansatz is indeed the result we are
looking for we construct a boundary value problem in a weak sense. We consider the left hand side of Eq. (5.1) with
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the supermatrix

σ =




{σab1}
1≤a,b≤k1

{χ∗
ba}

1≤a≤k1
1≤b≤k2

{χab}
1≤a≤k2
1≤b≤k1

{σab2}
1≤a,b≤k2


 (D1)

with non-zero entries everywhere instead of a diagonal supermatrix κ. Then the action of the differential operator

Str
∂2

∂σ2
=

k1∑

a=1

∂2

∂σ2
aa1

+ 2
∑

1≤a<b≤k1

∂2

∂σab1∂σ∗
ab1

−

k2∑

a=1

∂2

∂σ2
aa2

− 2
∑

1≤a<b≤k2

∂2

∂σab2∂σ∗
ab2

+ 2
∑

1≤a≤k2
1≤b≤k1

∂2

∂χ∗
ab∂χab

(D2)

on the left hand side of Eq. (5.1) yields

Str
∂2

∂σ2

∫

Σ̃
(ψ)

k1/k2

F (ρ) exp[−ıStrσρ]d[ρ] = −

∫

Σ̃
(ψ)

k1/k2

F (ρ)Str ρ2 exp[−ıStrσρ]d[ρ] . (D3)

Since the integrand is rotation invariant the integral only depends on the eigenvalues of the supermatrix σ. This leads
to a differential equation in the diagonal supermatrix κ. With the differential operator Str ∂2/∂κ2 defined similar to
Eq. (5.17) we have

1√
Ber

(2)
k1/k2

(κ)
Str

∂2

∂κ2

√
Ber

(2)
k1/k2

(κ)

∫

Σ̃
(ψ)

k1/k2

F (ρ) exp[−ıStrκρ]d[ρ] = −

∫

Σ̃
(ψ)

k1/k2

F (ρ)Str ρ2 exp[−ıStrκρ]d[ρ] , (D4)

cf. Ref. [35].

The boundaries of Σ̃
(ψ)
k1/k2

are given by Σ̃
(ψ)
k1−1/k2−1 canonically embedded in Σ̃

(ψ)
k1/k2

if one bosonic eigenvalue of a

supermatrix in Σ̃
(ψ)
k1/k2

equals to a fermionic one, i.e. there is a ∈ {1, . . . , k1} and b ∈ {1, . . . , k2} with κa1 = κb2.

For these cases we may use the Cauchy-like integral theorems for Hermitian supermatrices15,16,31. Without loss of
generality we consider the case κk11 = κk22 and have

∫

Σ̃
(ψ)

k1/k2

F (ρ) exp[−ıStrκρ]d[ρ] = (−1)k122−k1−k2 ı

∫

Σ̃
(ψ)

k1−1/k2−1

F (ρ) exp
[
−ıStr κ|κk11=κk22=0 ρ

]
d[ρ] . (D5)

Here we use the same symbol for the restriction of F on Σ̃
(ψ)
k1−1/k2−1.

The boundary condition (D5) for the distribution (5.7) can be readily checked. For the differential equation (D4)
we expand the determinant (5.7) in l ≤ k2 rows and columns in the upper block. Apart from a constant prefactor
each term is given by

g(κ, r) =

√
Ber

(2)
l/l (κω̃)

√
Ber

(2)
k1−l/k2−l

(rω)
√
Ber

(2)
k1/k2

(κ)Ber
(2)
k1/k2

(r)

l∏

j=1

δ(rω(j)1)δ(e
ıψrω(j)1)

×

k1∏

a=l+1

exp(−ıκω̃1(a)1rω1(a)1)

k2∏

a=l+1

exp(ıeıψκω̃2(b)2rω2(b)2) , (D6)

where κω̃ = diag (κω̃1(1)1, . . . , κω̃1(l)1, κω̃2(1)2, . . . , κω̃2(l)2) and rω = diag (rω1(l+1)1, . . . , rω1(k1)1, rω2(l+1)2, . . . , rω2(k2)1)

with the permutations ω1, ω̃1 ∈ S(k1) and ω2, ω̃2 ∈ S(k2). The action of the distribution g(κ, r) on Str r2 is

g(κ, r)Str r2 =

√
Ber

(2)
l/l (κω̃)

√
Ber

(2)
k1−l/k2−l

(rω)
√
Ber

(2)
k1/k2

(κ)Ber
(2)
k1/k2

(r)

l∏

j=1

δ(rω(j)1)δ(e
ıψrω(j)1)

×

k1∏

a=l+1

exp(−ıκω̃1(a)1rω1(a)1)

k2∏

a=l+1

exp(ıeıψκω̃2(b)2rω2(b)2)Str r
2
ω (D7)
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because all other terms are zero due to the Dirac-distributions. The differential operator in Eq. (D4) acts on g(κ, r)
as

1√
Ber

(2)
k1/k2

(κ)
Str

∂2

∂κ2

√
Ber

(2)
k1/k2

(κ)g(κ, r)

=
1√

Ber
(2)
k1/k2

(κ)
Str

∂2

∂κ2

√
Ber

(2)
l/l (κω̃)

√
Ber

(2)
k1−l/k2−l

(rω)

Ber
(2)
k1/k2

(r)

l∏

j=1

δ(rω(j)1)δ(e
ıψrω(j)1)

×

k1∏

a=l+1

exp(−ıκω̃1(a)1rω1(a)1)

k2∏

a=l+1

exp(ıeıψκω̃2(b)2rω2(b)2) . (D8)

We split the differential operator Str ∂2/∂κ2 into a part acting on κω̃ and a part for the remaining variables in κ. The
term for the latter variables acts on the exponential functions in Eq. (D8) and contributes the term −Str r2ω. For the
term according to κω̃ we use the identity

Str
∂2

∂κ2ω̃

√
Ber

(2)
l/l (κω̃) = 0 . (D9)

Thus, the differential equation is also fulfilled by ϕ̂k1/k2 .

Appendix E: Double Fourier-transform

We consider the integral

I =

∫

Rk1+k2

det




{
−2πδ(rb1)δ(e

ıψra2)

κb1 − e−ıψκa2
+

exp (−ıκb1rb1 + ıκa2ra2)

rb1 − eıψra2
χ(κb1 − e−ıψκa2)

}

1≤a≤k2
1≤b≤k1{

ra−1
b1 exp (−ıκb1rb1)

}
1≤a≤k1−k2

1≤b≤k1




(E1)

× det




{
2πδ(sb1)δ(e

−ıψsa2)

rb1 − eıψra2
−

exp (ırb1sb1 − ıra2sa2)

sb1 − e−ıψsa2
χ(rb1 − eıψra2)

}

1≤a≤k2
1≤b≤k1{

sa−1
b1 exp (ırb1sb1)

}
1≤a≤k1−k2

1≤b≤k1




×
d[r]√

Ber
(2)
k1/k2

(r)
√
Ber

(2)
k1/k2

(κ̃)Ber
(2)
k1/k2

(s)
.

We omit the two sums over the permutation groups, see Eq. (5.7).They do not contribute any additional new infor-
mation of the calculation and the missing terms can be regained by permuting the indices of the eigenvalues in s or
κ̃.
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The expansion in the first determinant yields

I =

k2∑

l=0

∑

ω1∈S(k1)

ω2∈S(k2)

signω1ω2

(l!)2(k1 − l)!(k2 − l)!

∫

Rk1+k2

det

[
−2πδ(rω1(b)1)δ(e

ıψrω2(a)2)

κω1(b)1 − e−ıψκω2(a)2

]

1≤a,b≤l

(E2)

× det




{
exp

(
−ıκω1(b)1rω1(b)1 + ıκω2(a)2rω2(a)2

)

rω1(b)1 − eıψrω2(a)2
χ(κω1(b)1 − e−ıψκω2(a)2)

}

l+1≤a≤k2
l+1≤b≤k1{

ra−1
ω1(b)1

exp
(
−ıκω1(b)1rω1(b)1

)}
1≤a≤k1−k2
l+1≤b≤k1




× det




{
2πδ(sb1)δ(e

−ıψsa2)

rb1 − eıψra2
−

exp (ırb1sb1 − ıra2sa2)

sb1 − e−ıψsa2
χ(rb1 − eıψra2)

}

1≤a≤k2
1≤b≤k1{

sa−1
b1 exp (ırb1sb1)

}
1≤a≤k1−k2

1≤b≤k1




×
d[r]√

Ber
(2)
k1/k2

(r)
√
Ber

(2)
k1/k2

(κ̃)Ber
(2)
k1/k2

(s)

= (−1)k1(k1−1)/2
k2∑

l=0

∑

ω1∈S(k1)

ω2∈S(k2)

signω1ω2

(l!)2(k1 − l)!(k2 − l)!
det

[
−(2π)2δ(sω1(b)1)δ(e

−ıψsω2(a)2)

κω1(b)1 − e−ıψκω2(a)2

]

1≤a,b≤l

×

k1∏

a=l+1

k2∏

b=l+1

χ(κω1(b)1 − e−ıψκω2(a)2)

∫

Rk1+k2−2l

k1∏

a=l+1

exp
(
−ıκω1(a)1ra1

) k2∏

b=l+1

exp
(
ıκω2(b)2rb2

)

× det




{
2πδ(sω1(b)1)δ(e

−ıψsω2(a)2)

rb1 − eıψra2
−

exp
(
ırb1sω1(b)1 − ıra2sω2(a)2

)

sω1(b)1 − e−ıψsω2(a)2
χ(rb1 − eıψra2)

}

l+1≤a≤k2
l+1≤b≤k1{

sa−1
ω1(b)1

exp
(
ırb1sω1(b)1

)}
1≤a≤k1−k2
l+1≤b≤k1




×
d[r]√

Ber
(2)
k1/k2

(κ̃)Ber
(2)
k1/k2

(s)

where the function “sign ” yields 1 for an even permutation and −1 for an odd one. The permutations in the indices of
the r are absorbed in the integration. We remark that the remaining integral goes over k1 + k2 − 2l variables because
we have already used the Dirac-distributions.
With help of the formula

∫

R2

2πδ(sω1(b)1)δ(e
−ıψsω2(a)2)

rb1 − eıψra2
exp

(
−ıκω1(b)1rb1 + ıκω2(a)2ra2

)
d[r]

=

∫

R2

2πıδ(sω1(b)1)δ(e
−ıψsω2(a)2)

(κω1(b)1 − e−ıψκω2(a)2)(rb1 − eıψra2)

(
∂

∂rb1
+ e−ıψ

∂

∂ra2

)
exp

(
−ıκω1(b)1rb1 + ıκω2(a)2ra2

)
d[r]

=
(2π)2δ(sω1(b)1)δ(e

−ıψsω2(a)2)

κω1(b)1 − e−ıψκω2(a)2
(E3)
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we integrate and sum the expression (E2) up. This yields

∫

Rk1+k2

ϕ̂k1/k2(ıs, r)ϕ̂k1/k2(−ır, κ̃)Ber
(2)
k1/k2

(r)d[r] (E4)

=
(−1)k1(k1−1)/2π(k2−k1)

2

22k1k2−k1−k2k1!k2!
√
Ber

(2)
k1/k2

(κ̃)Ber
(2)
k1/k2

(s)

∑

ω1∈S(k1)

ω2∈S(k2)

× det




δ(sω1(b)1)δ(e
−ıψsω2(a)2)

κb1 − e−ıψκa2
[1− χ(κb1 − e−ıψκa2)] + eıψ

δ(κb1 − sω1(b)1)δ(κa2 − sω2(a)2)

sω1(b)1 − e−ıψsω2(a)2
χ(κb1 − e−ıψκa2)

sa−1
ω1(b)1

δ(κb1 − sω1(b)1)




which is the result (5.14). The index a goes from 1 to k2 in the upper block and from 1 to k1 − k2 in the lower block
whereas b takes the values from 1 to k1 in both blocks.

Appendix F: Calculations for subsection VIA

We diagonalize the supermatrices σ and ρ in (6.4) and have for the generating function

Z
(N)
k (κ) =

1

(2πı)2k

∫

R4k

d[r]d[s]√
Ber

(2)
k/k(r)

√
Ber

(2)
k1/k2

(κ)
FΦ(s)I

(N)
k (r) (F1)

× det

[
−2πδ(rb1)δ(e

ıψra2)

κb1 − κa2
+

exp
(
−ıκb1rb1 + ıeıψκa2ra2

)

rb1 − eıψra2
χ(κb1 − κa2)

]

1≤a,b≤k

× det

[
2πδ(sb1)δ(e

−ıψsa2)

rb1 − eıψra2
−

exp (ırb1sb1 − ıra2sa2)

sb1 − e−ıψsa2
χ(rb1 − eıψra2)

]

1≤a,b≤k

.

This expression is not well defined because the supersymmetric Ingham-Siegel is at zero not well defined. We recall
that the supersymmetric Ingham-Siegel integral factorizes in each eigenvalue of the supermatrix r, cf. Eq. (6.5).

To understand Eq. (F1) we have to know what I
(N)
1 (0) is. Since the supersymmetric Ingham-Siegel integral is a

distribution we consider an arbitrary rotation invariant, sufficiently integrable superfunction f on the set of (1 + 1)×
(1 + 1) Hermitian supermatrices. Then we have

∫

Σ̃
(ψ)

1/1

f(ρ)I
(N)
1 (ρ)d[ρ] =

∫

Σ̃
(−ψ)

1/1



∫

Σ̃
(ψ)

1/1

f(ρ) exp(−ıStr ρσ + εStr ρ)d[ρ]


 Sdet−N(σ + ıε111+1)d[σ]

= ı

∫

Σ̃
(ψ)

1/1

f(ρ) exp(εStr ρ)d[ρ]

= f(0)
!
= −ıf(0)I

(N)
1 (0) (F2)

with help of the Cauchy-like integral theorem for (1 + 1)× (1 + 1) Hermitian supermatrices, see Ref. [15,16]. Please
notice that the constant resulting from the Cauchy-like integral theorem converts to the complex conjugate when the
generalized Wick-rotation is complex conjugated. The last equality in Eq. (F2) is the Cauchy-like integral theorem

formally applied to the left hand side of Eq. (F2). Hence we conclude that I
(N)
1 (0) = ı in a distributional sense. Using
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this result we find

Z
(N)
k (κ) =

(−1)k(k+1)/2

2k(k+1)π2k

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

∫

R4k

FΦ(s) det

[
−2πıδ(rω1(b)1)δ(e

ıψrω2(a)2)

κω1(b)1 − κω2(a)2

]

1≤a,b≤l

(F3)

× det

[
exp

(
−ıκω1(b)1rω1(b)1 + ıeıψκω2(a)2rω2(a)2

)

rω1(b)1 − eıψrω2(a)2
I
(N)
1 (rω1(b)1, e

ıψrω2(a)2)χ(κω1(b)1 − κω2(a)2)

]

l+1≤a,b≤k

× det

[
2πδ(sb1)δ(e

−ıψsa2)

rb1 − eıψra2
−

exp (ırb1sb1 − ıra2sa2)

sb1 − e−ıψsa2
χ(rb1 − eıψra2)

]

1≤a,b≤k

d[r]d[s]√
Ber

(2)
k1/k2

(r)
√
Ber

(2)
k/k(κ)

=
(−1)k

2k(k+1)π2k

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

k∏

a,b=l+1

χ(κω1(b)1 − κω2(a)2)

∫

R4k−2l

FΦ(s)

× det

[
−(2π)2ıδ(sω1(b)1)δ(e

−ıψsω2(a)2)

κω1(b)1 − κω2(a)2

]

1≤a,b≤l

k∏

a,b=l+1

exp
(
−ıκω1(b)1rb1 + ıeıψκω2(a)2ra2

)
I
(N)
1 (rb1, e

ıψra2)

× det

[
2πδ(sω1(b)1)δ(e

−ıψsω2(a)2)

rb1 − eıψra2
−

exp
(
ırb1sω1(b)1 − ıra2sω2(a)2

)

sω1(b)1 − e−ıψsω2(a)2
χ(rb1 − eıψra2)

]

l+1≤a,b≤k

d[r]d[s]√
Ber

(2)
k/k(κ)

=
1

2k(k−1)ık

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

k∏

a,b=l+1

χ(κω1(b)1 − κω2(a)2)

×

∫

R2k

d[r]d[s]√
Ber

(2)
k/k(κ)

FΦ(s) det

[
−
δ(sω1(b)1)δ(e

−ıψsω2(a)2)

κω1(b)1 − κω2(a)2

]

1≤a,b≤l

× det

[
δ(sω1(b)1)δ(e

−ıψsω2(a)2)

κω1(b)1 − κω2(a)2

[
1−

(
κω2(a)2

κω1(a)1

)N]

−
N
(
e−ıψsω2(a)2 − κω2(a)2

)N−1

2πı
(
e−ıψsω1(b)1 − κω1(b)1

)N+1
(sω1(b)1 − e−ıψsω2(a)2)

]

l+1≤a,b≤k

We perform the sum and use the identity

1−

[
1−

(
κω2(a)2

κω1(a)1

)N]
χ(κω1(b)1 − κω2(a)2) =

(
κω2(a)2

κω1(a)1

)N
. (F4)

Then we have the result (6.6).

Appendix G: Calculations for subsection VIB

In the first step we derive the Fourier-transform of the superdeterminant in Eq. (6.7). Let the entries of the diagonal
(k + k)× (k + k) supermatrix r and the entries of diagonal N ×N matrix E0 be the eigenvalues of the supermatrix
ρ and the Hermitian matrix H0, i.e. ρ = UrU † with U ∈ U(k/k) and H0 = V E0V

† with V ∈ U(N). Then the
Fourier-transform is

J =

∫

Σ̃
(−ψ)

k/k

exp(−ıStr rσ + εStr ρ)Sdet−1(σ ⊗ 11N + α11k+k ⊗H0 + ıε11N(k+k))d[σ]

=
ık

2k2πk
1√

Ber
(2)
k/k(r)

∫

R2k

det

[
2πδ(sb1)δ(e

−ıψsa2)

rb1 − eıψra2
+

exp (−ısb1rb1 + ısa2ra2)

sb1 − e−ıψsa2
χ(rb1 − eıψra2)

]

1≤a,b≤k

× Sdet−1(s⊗ 11N + α11k+k ⊗H0 + ıε11N(k+k))d[s] . (G1)
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With help of identity (2.7) we find

J =
ık

2k2πk
exp(εStr r)√
Ber

(2)
k/k(r)

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

k∏

a,b=l+1

χ(rω1(b)1 − eıψrω2(a)2)

×

∫

R2k

Sdet−1(s⊗ 11N + α11k+k ⊗ E0 + ıε11N(k+k)) det

[
2πδ(sb1)δ(e

−ıψsa2)

rω1(b)1 − eıψrω2(a)2

]

1≤a,b≤l

× det

[
exp

(
−ısb1rω1(b)1 + ısa2rω1(a)2

)

sb1 − e−ıψsa2

]

l+1≤a,b≤k

d[s]

=
ık

2k2πk
exp(εStr r)

∆N (αE0)
√

Ber
(2)
k/k(r)

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

k∏

a,b=l+1

χ(rω1(b)1 − eıψrω2(a)2)

×

∫

R2k

det

[
2πδ(sb1)δ(e

−ıψsa2)

rω1(b)1 − eıψrω2(a)2

]

1≤a,b≤l

× det




exp
(
−ısb1rω1(b)1 + ısa2rω1(a)2

)

sb1 − e−ıψsa2

(
e−ıψsa2 + ıε

sb1 + ıε

)N
exp

(
ısa2rω1(a)2

) (
e−ıψsa2 + ıε

)b−1

exp
(
−ısb1rω1(b)1

)

sb1 + ıε+ αE
(0)
a

(
−αE

(0)
a

sb1 + ıε

)N
(−αE(0)

a )b−1



d[s] . (G2)

In the left upper block both indices a and b run from l + 1 to k whereas in the right lower block the range is from 1
to N . In the right upper block a goes from l+1 to k and b goes from 1 to N whereas it is vice versa in the left lower
block. We sum all terms in Eq. (G2) up and pull the integrations into the determinant. Then we have

J =
ık

2k2πk
1

∆N (αE0)
√

Ber
(2)
k/k(r)

det




{
A1(rb1, e

ıψra2)
}
1≤a,b≤k

{
Ab2(e

ıψra2)
}

1≤a≤k

1≤b≤N{
A3(rb1, αE

(0)
a )
}

1≤a≤N

1≤b≤k

{
(−αE(0)

a )b−1
}
1≤a,b≤N


 , (G3)

where

A1(rb1, e
ıψra2) = exp

[
ε(rb1 − eıψra2)

]

×

∫

R2

(
2πδ(s1)δ(e

−ıψs2)

rb1 − eıψra2
+

exp (−ıs1rb1 + ıs2ra2)

s1 − e−ıψs2

(
e−ıψs2 + ıε

s1 + ıε

)N∏
χ(rb1 − eıψra2)

)
d[s]

= −2πı
I
(N)
1 (rb1, e

ıψra2)

rb1 − eıψra2

=
(2π)2ı

(N − 1)!

rNb1Θ(rb1)

rb1 − eıψra2

(
−e−ıψ

∂

∂ra2

)N−1

δ(eıψra2) , (G4)

Ab2(e
ıψra2) = exp

(
−εeıψra2

) ∫

R

exp (ıs2ra2)
(
e−ıψs2 + ıε

)b−1
e−ıψds2

k∏

j=1

χ(rj1 − eıψra2)

= 2π

(
−ıe−ıψ

∂

∂ra2

)b−1

δ(eıψra2)

k∏

j=1

χ(rj1 − eıψra2) , (G5)

A3(rb1, αE
(0)
a ) = exp (εrb1)

∫

R

exp (−ıs1rb1)

s1 + ıε+ αE
(0)
a

(
−αE

(0)
a

s1 + ıε

)N
ds1

k∏

j=1

χ(rb1 − eıψrj2)

= 2πıΘ(rb1)

∞∑

n=N

(ıαE
(0)
a rb1)

n

n!

k∏

j=1

χ(rb1 − eıψrj2) . (G6)
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Surprisingly this part of our result agrees with the one in Ref. [8] (apart from a forgotten 2πı in the upper left block
of Eq. (6.9) in Ref. [8] and the characteristic functions χ(rb1 − eıψra2)) although we omitted all Efetov-Wegner terms
in this work.
The second step is to diagonalize the supermatrix ρ in Eq. (6.7),

Z
(N)
k (κ, αH0) (G7)

=
(2πı)−k

∆N (αE0)
√
Ber

(2)
k/k(κ)

∫

R2k

det

[
−2πδ(rb1)δ(e

ıψra2)

κb1 − κa2
+

exp
(
−ıκb1rb1 + ıeıψκa2ra2

)

rb1 − eıψra2
χ(κb1 − κa2)

]

1≤a,b≤k

× det




−
I
(N)
1 (rb1, e

ıψra2)

rb1 − eıψra2
2π

(
−ıe−ıψ

∂

∂ra2

)b−1

δ(eıψra2)

k∏

j=1

χ(rj1 − eıψra2)

Θ(rb1)
∞∑

n=N

(ıαE
(0)
a rb1)

n

n!

k∏

j=1

χ(rb1 − eıψrj2) (−αE(0)
a )b−1




Φ(r)d[r]√
Ber

(2)
k/k(r)

.

The range of the indices in the second determinant is the same as in Eq. (G3). Expanding the first determinant we
have

Z
(N)
k (κ, αH0) (G8)

=
(2πı)−k

∆N (αE0)
√
Ber

(2)
k/k(κ)

k∑

l=0

∑

ω1,ω2∈S(k)

signω1ω2

[l!(k − l)!]
2

k∏

a,b=l+1

χ(κω1(b)1 − κω2(a)2)

×

∫

R2k

det

[
−2πδ(rω1(b)1)δ(e

ıψrω2(a)2)

κω1(b)1 − κω2(a)2

]

1≤a,b≤l

det

[
exp

(
−ıκω1(b)1rω1(b)1 + ıeıψκω2(a)2rω2(a)2

)

rω1(b)1 − eıψrω2(a)2

]

l+1≤a,b≤k

× det




−
I
(N)
1 (rb1, e

ıψra2)

rb1 − eıψra2
2π

(
−ıe−ıψ

∂

∂ra2

)b−1

δ(eıψra2)

k∏

j=1

χ(rj1 − eıψra2)

Θ(rb1)

∞∑

n=N

(ıαE
(0)
a rb1)

n

n!

k∏

j=1

χ(rb1 − eıψrj2) (−αE(0)
a )b−1




Φ(r)d[r]√
Ber

(2)
k/k(r)

.

When summing up we use the normalization (F2) of the supersymmetric Ingham-Siegel integral and arrive at the
result (6.8).
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